
CGFE: Efficient Range Encoding for TCAMs∗
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Abstract—High-performance packet classification is essential
for a wide range of fundamental network functions, including
access control, firewalls, and advanced programmable network
applications. Ternary content addressable memory (TCAM) is
heavily used for packet classification due to its impressive
performance but it is size-limited, expensive, and power-intensive.
Since TCAM requires special encoding for ranges in packet
classifiers, minimizing the encoding size is essential. Classical
methods such as DIRPE and SRGE work well for different types
of ranges and have different limitations. We present the chunked
Gray fence encoding (CGFE), a novel encoding that combines the
advantages of DIRPE’s fence encoding and Gray code reflectivity
in SRGE, achieving the best of both worlds. CGFE reduces
the number of TCAM entries needed for range-based packet
classifiers, improving TCAM efficiency and lowering energy
consumption. We prove that CGFE uses the same or smaller
number of TCAM entries than both DIRPE and SRGE for every
possible range, reducing the number of ternary strings up to
2× in theory and, as we show in a comprehensive practical
evaluation, by 40.8% and 9.3% on average, respectively, for rules
with two 16-bit range fields.

I. INTRODUCTION

The ever-growing demands of network functionality neces-
sitate high-performance packet classification across network
appliances, to optimize network performance and functionality.
This includes traditional security tools such as firewalls [1] and
access control lists [2], as well as programmable switches and
sketches [3] for more dynamic and flexible network control
and traffic management. Especially modern architectures such
as software-defined networking and network function virtual-
ization rely on efficient packet classification [4, 5, 6, 7].

Packet classifier rules target specific fields in packet headers
such as IP addresses or port numbers and define actions to
perform with a packet, e.g., forwarding, dropping, redirecting,
logging, if the header matches one of the rules [8]. Some rule
fields (e.g, port numbers) define matches by ranges of values.

Ternary content addressable memory (TCAM) has evolved
to become the industry standard for packet classification,
widely adopted in networking equipment and network pro-
cessing units [9]. TCAM is composed of fixed-width ternary
entries, each being a string consisting of 0, 1, and ⋆ (“don’t
care”) bits. Given a binary string, a TCAM can match it

∗ Work financially supported by Hasler Foundation grant #21021, Swiss
National Science Foundation grant #192121, and FIR grant ”Safe and modular
control plane-aware programming of the network data plane“.

© 2025 IEEE. Personal use of this material is permitted. Permission from
IEEE must be obtained for all other uses, in any current or future media,
including reprinting/republishing this material for advertising or promotional
purposes, creating new collective works, for resale or redistribution to servers
or lists, or reuse of any copyrighted component of this work in other works.

against all ternary entries in parallel. Thus, TCAM can provide
high throughput unparalleled by software-based solutions [10].
Despite the ubiquity of TCAM, it remains a challenge to
efficiently express range-based rules in them.

Solutions for this problem can in general be divided into
database-independent and database-dependent approaches.
The former approaches [11, 12, 13] encode all ranges using
the same technique, thus allowing for fast hot updates but
suffer from the so-called range expansion problem: a single
range-based rule often needs to be encoded to multiple TCAM
entries, and the number of entries grows exponentially with
the number of range fields. In contrast, database-dependent
approaches [14, 15] often achieve more compact representa-
tions but suffer from limitations in update speed and scalability
for a large number of different ranges [16]. Since modern
network applications often deal with large and dynamic rule
sets that require near real-time processing [17, 18, 19] and
contain many different ranges, in this work we concentrate
on the database-independent approaches. A common database-
independent approach is prefix encoding [12] that converts a
range into individual prefixes, each represented by a separate
TCAM entry. In the worst-case scenario, a single rule specify-
ing a 16-bit range field would require 2 · 16− 2 = 30 TCAM
entries; if the same rule specifies two 16-bit range fields, prefix
encoding would use up to 30 · 30 = 900 entries.

While TCAM offers superior speed, it is limited in size
and has high energy consumption [20, 21, 22, 23, 24, 25]. As
shown, naı̈ve encoding approaches for range-based rules can
significantly inflate the number of TCAM entries required,
limiting the system’s ability to handle complex or large
packet classifiers. Efficient range encoding techniques can
significantly reduce the number of TCAM entries needed to
represent a set of range-based rules. This reduction translates
into two key benefits. First, it allows for a larger and more
diverse classifier to be accommodated within limited TCAM
space, enhancing the overall flexibility and functionality of a
packet classification system. Second, by reducing the number
of TCAM entries one can achieve a substantial decrease
in energy consumption, a critical factor for energy-efficient
network devices in the modern data-intensive environment.

We thus introduce a novel approach, chunked Gray fence
encoding (CGFE), designed to address the challenges of
efficient range encoding in TCAMs for packet classification.
By combining the strengths of existing methods, database-
independent range pre-encoding (DIRPE) [11] and short range
Gray encoding (SRGE) [13], CGFE offers a comprehensive
solution capable of efficiently encoding both short and long



ranges. Leveraging DIRPE’s fence encoding technique and
integrating a generalization of reflective Gray code akin to
SRGE, CGFE achieves superior performance in TCAMs re-
source utilization and energy consumption. Thus, our pri-
mary contributions are as follows: (1) innovative database-
independent encoding technique CGFE that combines the
benefits of DIRPE and SRGE and better encodes range-based
rules in TCAM; (2) extensive theoretical analysis, where we
prove various properties of CGFE, e.g., that CGFE provides
the same or smaller range encoding (in TCAM entries) than
DIRPE and SRGE for any possible range, achieving up to
2× improvement in the best case scenario; (3) comprehensive
experimental evaluation, where we test CGFE on all possi-
ble ranges in 16-bit range fields, showing reduced TCAM
entry counts across various scenarios against both DIRPE and
SRGE; e.g., CGFE reduces the amount of required TCAM
entries for rules with two 16-bit range fields compared to
DIRPE and SRGE on average by 18.5% and 34.6% for short
ranges (≤ 64 values per range) and 9.3% and 40.8% for all
possible ranges respectively. By minimizing the number of
TCAM entries, CGFE reduces both resource utilization and
also energy consumption, addressing two critical challenges
in TCAM-based packet classification.

The paper is structured as follows. § II provides background
on packet classifiers, range-based rule encodings, and existing
range encoding techniques. § III introduces CGFE, detailing
its algorithm and advantages over existing methods, including
formal analysis. § IV evaluates CGFE through comprehensive
simulations, analyzing its resource utilization and energy con-
sumption w.r.t. DIRPE and SRGE. § V positions CGFE in
the broader field of range encoding for TCAM-based packet
classification. Finally, § VI summarizes our key findings and
outlines potential future research directions.

II. BACKGROUND

This section establishes the core terminology employed
throughout the paper in line with the terminology used in the
field [11, 13, 26], defines the range encoding problem, and
summarizes commonly used range encoding methods.

A. Packet Classification Definition

A packet header H = (H1, ...,Hk) is a tuple of k header
fields, where each field Hi is a wi-bit number. Classifiers
match headers to determine the respective actions for incoming
packets. A classifier K = {R1, ..., RN} is an ordered set of
rules, where each rule Rj = (Fj , Aj) consists of a filter
Fj = (F1, ..., Fk) and the associated action Aj . In the most
general case, each filter field Fi in a filter Fj is a range
corresponding to a packet header field Hi.

We say that filter field Fi matches a header field Hi if
Hi belongs to the range Fi; rule Rj = (Fj , Aj) matches a
header H if every filter field Fi in the filter Fj matches the
corresponding field Hi in H. The goal of classification is to
find the action of the first matching rule in a classifier K (see
Tab. II). If there is no such rule, a default action is returned.

TABLE I: Main definitions and notation

Notation Definition Meaning

H H = (H1, ..., Hk) Packet header
H Packet header field
k k = |H| Header size
w w = |H| = |F| Header/filter field width
K K = {R1, ..., RN} Classifier
R R = (F, A) Classifier rule
F F = (F1, ..., Fk) Filter
F Filter field
A Action
E Encoding method
F(x) 02

w−x−11x Fence encoding of value x

F([s, e]) 02
w−e−1⋆e−s1s Fence encoding of range [s, e]

c Chunk size (number of bits)
MSCc(x) Most significant chunk of x
TCc(x) Tail chunks of x
r ◦ TCc(E) Reflected extension of E over r
x ⋄ E Prepend value x to encoding E

TABLE II: A sample 3-field (k=3) classifier with 3 rules R1–
R3, each field consisting of 4-bit ranges (w=4). For a packet
header H = (6, 14, 5) the classification result is the action A2

since H is matched by the rule R2.

K F1 F2 F3 Action

R1 [0,5] [3,13] [14,15] A1

R2 [6,9] [14,15] [0,7] A2

R3 [10,15] [0,2] [8,13] A3

B. Range Encoding Problem

Ternary content addressable memory (TCAM) was intro-
duced for efficient packet classification as an extension of the
classical content addressable memory (CAM). For a given
binary string B, CAM finds the memory address of the
first binary string coinciding with B using multiple parallel
searches on the hardware level. TCAM is an extension of
CAM allowing it to search over ternary strings consisting
of symbols 0, 1, or ⋆ (“don’t care”). A ternary string T
matches a binary string B if T coincides with B in all non-
⋆ positions; TCAM finds the first ternary string in memory
matching B. Below, we use the notion of a ternary string
and TCAM entry interchangeably. Searches in both CAM
and TCAM are extremely efficient as all memory cells are
compared simultaneously with a given search key.

To perform packet classification on K in TCAM, every filter
Fj in K is encoded into a set of ternary bit strings and put
in TCAM following K’s rule order, and every packet header
H is encoded into a binary string. Then, by locating the
first matching ternary string representing a filter in TCAM,
the classification process can determine the action of a first
matching rule. Formally, a filter encoding method should
encode every filter Fj into a set of ternary strings E(Fj) and
every packet header H into the binary string E(H) such that
H is matched by rule Rj iff at least one ternary string in
E(Fj) matches E(H). E.g., F2 of rule R2 in Tab. II can be
encoded into the following set of ternary strings E(F2) =



{011⋆ 111⋆ 0⋆⋆⋆, 100⋆ 111⋆ 0⋆⋆⋆}. Packet header H =
(6, 14, 5) encoded into binary string E(H) = 0110 1110 0101

matches 011⋆ 111⋆ 0⋆⋆⋆ from E(F2).
Minimizing the encoding of a classifier is crucial for effi-

cient TCAM utilization. The complex circuitry required for
high-speed searching on ternary strings significantly limits
the scalability and size of TCAM and also comes with very
high energy consumption compared to other types of memory,
e.g., CAM or static random access memory (SRAM). A large
number of ternary strings per filter translates to a larger
footprint within TCAM, limiting the size of classifiers that
can be stored and increasing energy consumption and search
time, finally impacting the overall classification performance.

Database-independent filter encoding methods are designed
to encode any filter with given field widths efficiently. Such a
method E typically encodes fields independently of each other:
for a packet header H, E encodes each field in H indepen-
dently by a binary string and then concatenates these strings
in the field order. For a filter Fj the encoding E encodes
every Fi in Fj independently into a set of ternary strings;
then, E constructs all combinations of ternary strings encoding
different fields in Fj ; for every combination, E concatenates
strings from this combination into a separate element in the
encoding E(Fj). E.g., for the encoding of filter F2 (cf. rule
R2 of Tab. II), first all fields get encoded, i.e., E(F1) =
{011⋆, 100⋆}, E(F2) = {111⋆}, and E(F3) = {0⋆⋆⋆}, and
then every combination is concatenated to create the encoding
of the filter E(F2) = {011⋆ 111⋆ 0⋆⋆⋆, 100⋆ 111⋆ 0⋆⋆⋆}.

In the worst case, the number of ternary strings representing
the filter Fj grows exponentially with the number of fields in
Fj . Thus, the efficiency of a single range encoding can have a
large influence on encoding size via exponential blowup. For
example, each field in filter F3 in Tab. II can be encoded into
2 ternary strings, leading to a total of 8 TCAM entries for this
single rule; by halving the encoding size of any field in R3

from 2 ternary strings to 1, we halve the encoding size of F3

from 8 to 4. Therefore, for the remainder of this work, we
focus on encoding individual fields represented by ranges in a
classifier. A range encoding method encodes a range r = [s, e]
(representing a field in a filter) into a set of ternary strings
E(r), and a value a (representing a header field) into a binary
string E(a) such that E(a) is matched by at least one of the
ternary strings in E(r) if and only if s ≤ a ≤ e. We define
the length |r| of range r = [s, e] as the number of values in
r, i.e., |r| = e − s + 1. In the rest of the paper, we assume
that bits in binary/ternary strings encoding values/ranges start
from the most significant bit.

C. Encoding Techniques for Natural Numbers and Ranges

1) Prefix expansion: this is a straightforward approach to
represent range-based rules in TCAMs that encodes values of
header fields by their direct binary representations on w bits.
Prefix expansion decomposes a range into multiple subranges
such that each subrange can be encoded by a single ternary
bit string containing ⋆ only after all 0s and 1s; we call such
ternary strings prefixes. Fig. 1 shows the prefix tree for bit
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Fig. 1: Binary and Gray encodings for w = 4 and sample
binary prefix and SRGE encodings for [1, 6] for w = 3.

length w = 3 and the table of binary encodings for w = 4.
For w = 3, prefix encoding decomposes the range [1, 6]
into 4 subranges {[1, 1], [2, 3], [4, 5], [6, 6]} and encodes these
subranges by 4 prefixes {001, 01⋆, 10⋆, 110} respectively.
This also showcases the worst-case expansion for a range rule
with prefix expansion, which is 2w − 2. To achieve a more
compact representation, different ways of encoding ranges and
consequently different ways of encoding natural numbers need
to be explored. Two such techniques are particularly relevant
to our new approach: Gray codes and fence encoding.

2) Gray codes: Gray code, or reflected binary code, en-
codes numbers by binary strings such that encodings of any
two adjacent numbers x and x + 1 differ in one bit. This
minimal change between sequential values is crucial in certain
applications such as error correction. The Gray code of a
number x can be obtained from its binary representation as
follows: (1) find positions of all 1’s in the binary representation
of x; (2) for each position t found on step (1), flip the value of
the (t+1)th bit in x. E.g., for the value 12 on w = 4 bits, the
Gray code 1010 differs from the binary representation 1100
in the second and third positions. Fig. 1 shows the conversion
of decimal numbers to binary and Gray codes for w = 4 and
highlights the differing bits in the prefix tree for w = 3.

The main advantage of Gray codes for range encoding is
their reflectivity as described in SRGE [13] and RENE [16].
In particular, we can look at SRGE as the extension of prefix
expansion using the reflectivity of Gray codes to reduce the
number of TCAM entries. The Gray code of value 2w−1−x on
w bits always coincides with the Gray code of value 2w−1 +
x−1 in all positions but the first. E.g., for w = 4 bits, the Gray
code of 6 = 23−2 is 0101 and the Gray code of 9 = 23+2−1
is 1101. Thus, to encode a range [2w−1−x, 2w−1+x− 1], it
is sufficient for SRGE to encode [2w−1 − x, 2w−1], and then
replace the first bit in every ternary string in the encoding by
⋆. For w = 3, SRGE encodings of ranges [1, 3] and [1, 6] are
{001,01⋆} and {⋆01, ⋆1⋆}, respectively. Observe that for r =
[1, 6] on w = 3 bits, prefix expansion produces two times more
ternary strings than SRGE. Also SRGE encodes every range
of length 2 with one ternary string, while prefix expansion
produces two ternary strings in 50% of cases.

Similarly to prefix expansion, SRGE decomposes a range



Fig. 2: DIRPE and CGFE encodings of values on w = 4 bits
split into c = 2-bit chunks; shaded regions show differences.

r into subranges corresponding to single prefixes. But, unlike
prefix expansion, SRGE can encode multiple subranges by
a single ternary string using the reflectivity of Gray codes.
E.g., prefix expansion decomposes range [1, 13] on w = 4
bits into 5 subranges [1, 1], [2, 3], [4, 7], [8, 11], [12, 13], then
encodes each subrange by a single prefix; SRGE encodes pairs
of subranges ([2, 3], [12, 13]) and ([4, 7], [8, 11]) by one ternary
string per pair due to Gray code reflectivity.

3) Fence encoding: Fence encoding is a special type of
unary coding proposed by Lakshminarayanan et al. [11]. It
encodes a w-bit number x as a binary string 02

w−x−11x,
i.e., zero-to-many 0s followed by zero-to-many 1s. In the
following, the fence encoding of a value x is denoted F(x).
E.g., F(4) = 0001111 for 3-bit value 4. This allows a
single ternary string to represent any w-bit range [s, e] by
02

w−e−1⋆e−s1s. E.g., the 3-bit range [3, 5] is encoded as
00⋆⋆111. However, a significant drawback of this approach is
the exponential growth in the length of encoded values with
the number of bits w. This makes it highly impractical: e.g.,
65536 bits are needed for a w = 16-bit port number.

Lakshminarayanan et al. [11] addressed this issue with
database-independent range pre-encoding (DIRPE) that uses
a chunking approach inspired by multibit tries known from
IP address lookup, trading some efficiency for practicality. To
balance the pros and cons of fence encoding, DIRPE splits
a binary string of length w into chunks, encodes each chunk
separately by fence encoding, and concatenates the results.
E.g., to encode the binary value x = 010011102:
(1) split x into 2-bit chunks, i.e., 01, 00, 11, 10,
(2) encode each chunk with fence encoding, i.e., 001, 000,

111, 011, and finally
(3) concatenate all the chunk encodings into the resulting

binary string 001000111011.
The DIRPE encoding of numbers in w = 4 bits with a

chunk size of c = 2 is illustrated in Fig. 2. Similarly to
prefix expansion, DIRPE decomposes a range into multiple
subranges, encoding each by a single ternary string with the
following structure: (1) every chunk in the ternary string is a

fence encoding of the range of values for the corresponding
chunk in the header field encoding; (2) if a chunk in a ternary
string encodes a range with at least two values, the succeeding
chunks consist of only ⋆. E.g., for uniform chunk size of c =
2 bits, DIRPE encodes subrange [36, 43] on w = 6 bits by
single ternary string {011 0⋆1 ⋆⋆⋆}; first chunk is a fence
encoding of value 2 = 012, second chunk is a fence encoding
2-bit range [1, 2], the remaining chunk consist of only ⋆.

III. CHUNKED GRAY FENCE ENCODING (CGFE)

This section introduces chunked Gray fence encoding
(CGFE), our novel approach for efficient range rule encoding
in TCAM. CGFE leverages the strengths of the two encoding
techniques discussed above: fence encoding and Gray codes.

A. Overview

CGFE bridges the gap between DIRPE and SRGE by
transforming fence encoding in a way that gives it the re-
flectivity property of Gray codes. As a result, CGFE is able
to outperform both techniques. While Gray codes excel at
efficiently representing short ranges due to their minimal bit
difference property, fence encoding offers broader applicability
across various range lengths. CGFE gets the best of both
worlds, achieving efficiency of to Gray codes for short ranges
and maintaining the flexibility of fence encoding for longer
ranges. In §III-E we prove that CGFE uses the same or smaller
number of TCAM entries than both methods across all ranges.

B. Encoding a Single Number

Similar to DIRPE, CGFE splits a packet field’s original
binary representation into chunks, encodes each chunk sepa-
rately with fence encoding, and concatenates the results. Both
DIRPE and CGFE work with heterogeneous chunk sizes, but
for ease of exposition we assume below that both DIRPE and
CGFE split every value x into c-bit chunks and the length of
every encoded binary string is divisible by c.

The key difference between DIRPE and CGFE encodings
of a value x, the latter denoted as CGFE(x), is the following:
if the value of the ith chunk is odd, then CGFE encodes the
(i+1)th chunk with the c-bit value p, by F(2c−1−p) instead
of F(p). E.g., CGFE(x) for a 8-bit value x = 010011102 and
chunk size c = 2 is as follows:
(1) split x into 2-bit chunks, i.e., 01, 00, 11, 10;
(2) encode each chunk with fence encoding, i.e., 001, 111,

111, 001; note that the second chunk 002 and the last
chunk 102 are encoded by F(3−0) = F(3) and F(3−2) =
F(1) respectively;

(3) concatenate all chunk encodings into the resulting binary
string 001111111001.

Fig. 2 compares CGFE and DIRPE for w = 4 and c = 2;
the difference is only in the inverted parts that take up half
of every second layer of the tree. Constructing the CGFE
encoding of a w-bit value takes the same number of logical
gates as DIRPE, O(w · 2c/c) [11], plus O(w) gates to negate
chunks succeeding chunks with odd values. Thus, both CGFE
and DIRPE require O(w ·2c/c) gates to encode a w-bit value.



Below, we present CGFE(x) in a recursive form matching
the presentation of CGFE range encoding later in the section.
We start with some useful notation for chunk manipulation.
For a w-bit value x, we define MSCc(x) as the most significant
chunk (of size c), i.e., the value of the chunk containing the
c most significant bits of x, and TCc(x) as the tail chunks
(assuming first chunk of size c), i.e., the (w − c)-bit value
obtained by removing x’s c most significant bits. In particular,
we have TCc(x) = x−2w−c ·MSCc(x). For a CGFE encoding
E of some w-bit value and c-bit value p, we define p ⋄E as:

p ⋄ E =

{
F(p),F(2c − 1− a), TC(E), p is odd,
F(p), E p is even.

It is not hard to check that CGFE(x) = MSC(x) ⋄
CGFE(TC(x)).

Moreover, we can easily generalize this operation to encode
ranges. For a CGFE encoding E of some w-bit range and a c-
bit value p, we define the prepend operation p⋄E that returns
an encoding of a (w + c)-bit range formed by replacing each
Ei ∈ E, MSC(Ei) = F([a, b]), with E′

i defined as

E′
i =

{
F(p),F([2c − 1− b, 2c − 1− a]), TC(Ei), p is odd,
F(p), Ei, p is even.

Observation 1. For a CGFE encoding E of an w-bit range
[s, e] and a c-bit value p, p⋄E is an encoding of the (w+c)-bit
range [p · 2w + s, p · 2w + e].

E.g., for the encoding E = {000 ⋆11, 001 ⋆⋆⋆} of
the range [2, 7] for w = 4 and c = 2, 1 ⋄ E =
{001 111 ⋆11, 001 011 ⋆⋆⋆} encodes the 6-bit range [18, 23].

C. Reflectivity of CGFE

The power of CGFE comes from its chunk-based reflectiv-
ity, whose essence is that for certain related values their CGFE
encodings differ in all but one chunk. Reflectivity integrates
very well with the fence encoding (§ II-C3) enabling efficient
CGFE encoding of ranges, for many values can be covered
with a single TCAM entry, as we show below.

To present the CGFE reflectivity property, we extend the tail
chunks notation to encodings: for an encoding E, we define
TCc(E) to be E stripped of the bits corresponding to the most-
significant c-bit chunk of input, i.e., 2c−1 bits of E for CGFE.

CGFE’s main reflective property is captured by Thm. 1.

Theorem 1. For chunk size c and w-bit values x and y,
TCc(CGFE(x)) = TCc(CGFE(y)) if (with % denoting mod-
ulo) either (1) MSCc(x)%2 = MSCc(y)%2 and TCc(x) =
TCc(y), or (2) MSCc(x)%2 ̸= MSCc(y)%2 and TCc(x) =
2w−c − 1− TC(y).

Proof: Case (1) is straightforward according to the def-
inition of CGFE. Case (2) is also straightforward but only
for values consisting of at most two chunks. For other cases,
we prove the theorem via mathematical induction. Note that
TCc(x) = 2w−c − 1 − TCc(y) = 2w−c − 1 − MSCc(TCc(y)) ·
2w−2c − TCc(TCc(y)) = (2c − 1 − MSCc(TCc(y))) · 2w−2c +
(2w−2c − 1− TCc(TCc(y))). Thus, MSCc(TCc(x)) = 2c − 1−
MSCc(TCc(y)) and TCc(TCc(x)) = 2w−2c − 1− TCc(TCc(y)).

Fig. 3: DIRPE vs CGFE encodings for ranges [6, 9] and [2, 9]
on w = 4, c = 2

Fig. 4: DIRPE vs CGFE encoding for the range [26, 36] on
w = 6 bits with c = 2.

Since MSCc(x)%2 ̸= MSCc(y)%2, CGFE either encodes
MSCc(TCc(x)) by F(MSCc(TCc(x))) and MSCc(TCc(y)) by
F(2c− 1− MSCc(TCc(y))) = F(MSCc(TCc(x))) or vice versa.
In both cases, the second chunk in CGFE encodings of x and
y will be represented by the same bits.

Since MSCc(TCc(x)) + MSCc(TCc(y)) = 2c − 1,
MSCc(TCc(x))%2 ̸= MSCc(TCc(y))%2. Thus, the conditions
from the case (2) of the theorem are also satisfied for TCc(x)
and TCc(y). By induction, the theorem is correct for TCc(x)
and TCc(y) implying that bits representing TCc(TCc(x)) and
TCc(TCc(y)) in CGFE encodings of TCc(x) and TCc(y) are
the same. Since the first chunk affects only the encoding of
the second chunk, CGFE encodings of x and y also coincide
at chunks corresponding to TCc(TCc(x)) and TCc(TCc(y)).

Thm. 1 can be checked via Fig. 2, e.g., CGFE(7) =
001 000 and CGFE(8) = 011 000 in Fig. 2 differ only in the
first chunk since MSC(7) = 2, MSC(8) = 3, TC(7) + TC(8) =
3; similarly, CGFE(5) = 001 011 and CGFE(13) = 111 011

since MSC(5) = 1, MSC(13) = 3 and TC(5) = TC(13) = 1.
The reflective property reduces the size of range encoding.

Take the range r = [6, 9] from Fig. 3, as an example.
Following Thm. 1, TC(CGFE(6)) = TC(CGFE(9)) = 001

and TC(CGFE(7)) = TC(CGFE(8)) = 000. Consequently,
if an encoding E can be found for the interval [6, 7] we
can adapt the first chunk of this encoding (in this case by
replacing the first chunk 001 by F([MSC(6), MSC(9)]) = 0⋆1)
to additionally cover the interval [8, 9].

Formally, to encode the range [k ·2w−c−x−1, k ·2w−c+x],
where 1 ≤ k ≤ 2c − 1, it is sufficient for CGFE to encode
the range [k · 2w−c − x − 1, k · 2w−c − 1] as E, remove the



first chunk of every string in E getting TC(E), and prepend
F([k − 1, k]). Note that DIRPE has to encode two ranges:
[k·2w−c−x−1, k·2w−c−1] and [k·2w−c, k·2w−c+x] leading to
two times larger encoding than CGFE. If we denote the above
operation of prepending F(r), for a range r, to E′ as r◦E′, the
result can be concisely described as [k−1, k]◦TC(E). We call
r ◦ TC(E) a reflected extension of E and will usually denote
it as Eext. Reflected extensions are key to CGFE encoding.

CGFE, as DIRPE, uses a chunk-based approach for the
encoding of a range r to encode bigger subranges of r by
single ternary strings. Similarly to SRGE, CGFE exploits
its reflectivity to reuse encoding of some subranges of r
to encode values from other subranges of r. For example,
DIRPE splits range r = [2, 9] in Fig. 3 into three subranges
{[2, 3], [4, 7], [8, 9]}, and then encodes each subrange by a
single ternary string; at the same time, CGFE encodes sub-
ranges [2, 3] and [8, 9] by a single ternary string each, and
then constructs the encoding of r containing only reflected
extensions [MSC(2), MSC(5)] ◦ TC(CGFE([2, 3])) = 00⋆ ⋆11
and [MSC(6), MSC(9)] ◦ TC(CGFE([8, 9])) = 0⋆1 00⋆ since
these reflected extensions also encode all values in [4, 7].
Note that CGFE can encode multiple subranges by a single
ternary string even if most significant chunks of the values
in these subranges differ by more than one. E.g., CGFE in
Fig. 4 encodes [27, 27] ∪ [36, 36] as a reflected extension
[MSC(27), MSC(36)] ◦ TC(CGFE([27, 27])) = 0⋆1 001 111.

D. Range Encoding

We now present the CGFE encoding algorithm (Alg. 1).
To encode a w-bit range [s, e] with MSC(s) = MSC(e),

we call such a range local, CGFE recursively constructs the
encoding E of the (w − c)-bit range [TC(s), TC(e)] and then
returns MSC(s) ⋄ E (line 3). Hence, in the following, we
assume that MSC(s) ̸= MSC(e) in a given range [s, e].

1) Encoding of middle ranges: We say that a w-bit range
[s, e] is a middle range if TC(s) = 0 and TC(e) = 2w−c − 1.
CGFE encodes such a range [s, e] by a single ternary string:
[MSC(s), MSC(e)] ◦ ⋆w−c (line 5).

2) Encoding of top and bottom ranges: We say that a w-
bit range [s, e] is a bottom range if TC(s) = 0 and TC(e) ̸=
2w−c−1. To encode such a range, CGFE splits [s, e] into two
ranges r1 = [s, x − 1] and r2 = [x, e], where x = MSC(e) ·
2w−c. CGFE encodes r1 and r2 independently: r1 is a middle
range encoded with [MSC(s), MSC(e)−1]◦⋆w−c (line 7); since
MSC(x) = MSC(e), r2 is local and can be encoded recursively
as MSC(e) ⋄ CGFE([0, TC(e)]) (line 8). We say that a w-bit
range [s, e] is a top range if TC(s) ̸= 0 and TC(e) = 2w−c−1.
The encoding of top ranges is symmetrical to the encoding of
bottom ranges. Bottom and top ranges can be encoded with
fewer entries if some of their values is known to be already
covered by other entries. We call such a reduced encoding
partial and describe it later in § III-D4.

3) Encoding regular ranges: Now consider a w-bit regular
range [s, e], where TC(s) > 0, TC(e) < 2w−c − 1. It can be
represented as a union of local range r1 = [s, (MSC(s) + 1) ·
2w−c − 1], middle range r2 = [(MSC(s) +1) · 2w−c, MSC(e) ·

(a) Case: MSC (e) − MSC (s) is odd,
i.e., in this case 1 or 3 respectively.
Note that the reflected extension of
E1 partially covers the bottom range
r3, so E3 is a partial encoding.

(b) Case: MSC (e) − MSC (s) is even,
i.e., in this case 2 for both examples.
In the lower example, the reflected ex-
tensions of E1 and E3 are not enough
to fully cover the middle chunk so an
additional encoding E2 is needed.

Fig. 5: Illustration of how CGFE encodes regular ranges for a
chunk size of c = 2 which produces quarters for every chunk.
Dashed areas indicate reflected extension.

2w−c − 1] (empty if MSC(e) − MSC(s) = 1), and local range
r3 = [MSC(e)·2w−c, e]. Two cases are distinguished by CGFE:

(1) MSC(e)−MSC(s) is odd: in this case we assume w.l.o.g.
that |r1| ≤ |r3| (the other case is symmetric). First, CGFE
encodes r1 as E1 = CGFE(r1) (line 17) and constructs
its a reflected extension Eext

1 = [MSC(s), MSC(e)] ◦
TC(E1) (line 18). Note, Eext

1 encodes a range that covers
r′ = [MSC(e) · 2w−c, MSC(e) · 2w−c+ |r1|] that intersects
with r3. If |r1| < |r3| the bottom range r3 is still not fully
covered and CGFE constructs its partial encoding, E3,
assuming that first |r1| values of r3 are already covered
by other entries (cf line 19). If |r2| = 0, no additional
encoding is needed. Otherwise, CGFE adds an additional
ternary string E2 = [MSC(s)+1, MSC(e)−1]◦⋆w−c that
encodes r2 (line 20).

(2) MSC(e) − MSC(s) is even: in this case, CGFE con-
structs encodings E1 and E3 of r1 and r3, respectively,
(line 23-24). If |r1| + |r3| ≥ 2w−c, reflected extensions
Eext

1 = [MSC(s), MSC(e) − 1] ◦ TC(E1) of E1 and
Eext

3 = [MSC(s) + 1, MSC(e)] ◦ TC(E3) of E3 encode
ranges whose union cover r2 (line 26-27). Hence in this
case, CGFE simply returns Eext

1 ∪Eext
3 . Otherwise, CGFE

returns E1∪E3∪ [MSC(s)+1, MSC(e)−1]◦⋆w−c, where
the last ternary string encodes r2 (line 30-31).

This encoding of regular ranges by CGFE is illustrated in
Fig. 5 for the example of a chunk size of c = 2.

4) Partial encoding of bottom and top ranges: Now sup-
pose that the encoding of values in a subrange r′ = [s, e1−1]
of a given bottom range r = [s, e] is not necessary, that is,
we are allowed to encode any range [s1, e] such that s1 < e1,
choosing s1 to minimize the encoding size (partial encoding
of top range is symmetrical). Such partial encodings are used
by CGFE encoding of regular ranges.

If e1 > e, CGFE returns ∅. If MSC(e1) = MSC(e),
the resulting encoding E1 may not cover any value x with
MSC(x) < MSC(e1) = MSC(e). Hence, in this case CGFE re-
cursively finds the encoding E1 of a (w−c)-bit range [0, TC(e)]
under the assumption that encoding values in [0, TC(e1) − 1]
is not necessary, and then returns MSC(e) ⋄E1. If MSC(e1) <
MSC(e), the given range r can be represented as a union of
ranges r1 = [0, e1−1], r2 = [e1, x−1], and r3 = [x, e], where



Algorithm 1 CGFE encoding with homogeneous chunk size
c; we abstract partial encoding in CGFE PARTIAL (§ III-D4).

Input: a range r = [s, e] where s and e are w-bit values
Output: a set of TCAM entries that covers the range r

1: function CGFE([s, e])
2: if MSC (s) = MSC (e) then // local range
3: return MSC (s) ⋄ CGFE([TC (s), TC (e)])
4: else if TC (s) = 0 and TC (e) = 2w−c − 1 then
5: return [MSC (s), MSC (e)] ◦ ⋆w−c // middle range
6: else if TC (s) = 0 then // bottom range
7: return [MSC (s), MSC (e) − 1] ◦ ⋆w−c

8: ∪ MSC (e) ⋄ CGFE([0, TC (e)])
9: else if TC (e) = 2w−c − 1 then // top range

10: // symmetric to bottom range
11: else // regular range
12: r1 ← [s, (MSC (s) + 1) · 2w−c − 1]
13: r2 ← [(MSC (s) + 1) · 2w−c, MSC (e) · 2w−c − 1]
14: r3 ← [MSC (e) · 2w−c, e]
15: if MSC (e) − MSC (s) is odd then
16: // assuming |r1| ≤ |r3|, the other case is symmetric
17: E1 ← CGFE(r1)
18: Eext

1 ← [MSC (s), MSC (e)] ◦ TC (E1)
19: E3 ← CGFE PARTIAL(r3, |r1|)
20: E2 ← [MSC (s) + 1, MSC (e) − 1] ◦ ⋆w−c

21: return Eext
1 ∪ E2 ∪ E3

22: else // MSC (e) − MSC (s) is even
23: E1 ← CGFE(r1)
24: E3 ← CGFE(r3)
25: if |r1|+ |r3| ≥ 2w−c then
26: Eext

1 ← [MSC (s), MSC (e) − 1] ◦ TC (E1)
27: Eext

3 ← [MSC (s) + 1, MSC (e)] ◦ TC (E3)
28: return Eext

1 ∪ Eext
3

29: else
30: E13 ← CGFE(r1) ∪ CGFE(r3)
31: return E13 ∪ [MSC (s) + 1, MSC (e) − 1] ◦ ⋆w−c

x = MSC(e) · 2w−c. Let E3 = CGFE(r3). If |r3| ≥ |r2|, the
reflected extension Eext

3 = [0, MSC(e)] ◦ TC(E3) of E3 also
covers r2, so in this case CGFE returns Eext

3 . If |r3| < |r2|,
CGFE constructs the encoding of r covering all its values.

E. Provable Properties of CGFE

The following theorems show that the number of ternary
strings in CGFE does not exceed the corresponding number
for SRGE, DIRPE, and prefix expansion for every range:

Theorem 2. For every w-bit range r, the number of ternary
strings in the CGFE encoding of r, does not exceed the number
of ternary strings in the DIRPE encoding of r, under the same
chunk size.

Proof: CGFE, as DIRPE, uses fence encoding and
splits binary strings into chunks. Therefore, CGFE maintains
DIRPE’s efficiency on every range. The reflectivity of CGFE
is an additional property that DIRPE lacks, which makes it
possible to improve on DIRPE.

Corollary 1. The number of ternary strings in the CGFE
encoding of a w-bit range is at most 2w

c − 1.

Note that the runtime of the CGFE encoding construction
linearly depends on the encoding size.

Theorem 3. For every w-bit range r, the number of ternary
strings in the CGFE encoding of r, does not exceed the number
of ternary strings in the SRGE encoding of r.

Proof: CGFE with c = 1 is equivalent to SRGE for any w.
Any sequence of chunk sizes can be transformed into chunks
of size 1 by repeatedly splitting the first chunk of size c > 1
into chunks of size 1 and c− 1, e.g., [1, 3, 2] gets transformed
into [1, 1, 1, 1, 1, 1] via [1, 1, 2, 2] and [1, 1, 1, 1, 2]. The proof
(see Appendix) shows by case analysis that for any such split
and any range r the size of CGFE encoding of r before the
split is at most the size of one after the split.

Corollary 2. For every w-bit range r, the number of ternary
strings in the CGFE encoding of r, does not exceed the number
of ternary strings in the prefix expansion of r.

Lemma 1. CGFE with chunk size c > 1, c = o(w), can reduce
the number of ternary strings in the encoding of a filter with
k range fields on w bits by O(wk) ternary strings in absolute
values and by 2k − o(1) times in relative values compared to
DIRPE, SRGE and prefix expansion.

Proof: To prove the theorem it is sufficient to show it for
k = 1. Range [1, 2w − 2] reaches the desired reduction.

IV. EVALUATION

We evaluate the efficiency of CGFE in representing packet
classifiers with range-based rules. We compare CGFE to state-
of-the-art methods w.r.t encoding size – the average number
of ternary strings required to express ranges/packet classifiers
with same properties. We address four research questions:
RQ1: How does the range length influence encoding size of

CGFE comparing to other methods?
RQ2: How does the number of range fields in a rule affect the

encoding size of classifier for CGFE and other methods?
RQ3: How do chunk sizes affect the differences in encoding

sizes of DIRPE and CGFE?
RQ4: How do CGFE’s encoding size savings translate to

reduced energy consumption per TCAM search operation?
Methodology. We compare CGFE’s performance against

prefix expansion, DIRPE, and SRGE. We employ synthetic
datasets with controlled properties to systematically evaluate
CGFE’s performance across different range lengths, numbers
of range fields in rules, and chunk sizes, to show CGFE’s
benefits across different scenarios and types of ranges. Our
experiments focus on rules containing 1 and 2 range fields with
bit-width w = 16, aligning with typical applications classify-
ing traffic by source and destination port ranges (experiments
with different values for w, omitted for space reasons).We
define expansion reduction of a range encoding method as a
percent reduction of its encoding size compared to the baseline
(bigger values correspond to more efficient methods).

RQ1. In line with related work [13], Fig. 6 shows the
expansion reduction of different encoding methods, consid-
ering prefix expansion as a baseline, for rules having one and
two range fields with range length |r| ≤ x, where x varies
from 2 to 216; DIRPE and CGFE both use a homogeneous



(a) (b)
Fig. 6: Average reduction (higher is better) in encoding sizes
of different range encoding methods vs prefix expansion w.r.t.
range length for rules having (a) 1 and (b) 2 range fields.

Fig. 7: Avg. reduction in
encoding size of CGFE vs
DIRPE w.r.t. range length for
rules with 2 range fields.

Fig. 8: Energy savings per
search (higher is better), in %
of prefix expansion for rules
with 2 range fields.

chunk size of c = 2. While SRGE excels for short ranges,
its efficiency drops quickly with longer ranges. DIRPE has
a lower initial reduction but remains stable, even improving
slightly for longer ranges. CGFE clearly achieves consistently
higher reduction than both SRGE and DIRPE across all ranges.
In the case of one 16-bit range field in a rule with range
length bounded by x = 64, CGFE reduces the number of
ternary strings in the filter encoding by 30.0%, 19.1%, 14.2%
on average compared to prefix encoding, SRGE, and DIRPE,
respectively; for all range lengths, the reduction is 28.7%,
22.5%, 4.8% on average, respectively.

RQ2 Comparison of Fig. 6a and Fig. 6b shows how the
impact of the range encoding method on the classifier encoding
size increases rapidly with the growth of the number of range
fields in a rule. For example in Fig. 6, expansion reduction
of CGFE on two ranges is at least 1.66× higher than for
CGFE on one range for every range length bound x. Moreover,
the differences in encoding sizes of CGFE and other range
encoding methods are bigger for rules with 2 range fields than
for those with 1 range field. In particular, for rules with two 16-
bit ranges, CGFE reduces the number of ternary strings in the
filter encoding by 49.0%, 40.8%, 9.3% on average compared
to prefix encoding, SRGE, and DIRPE, respectively. In the
general case, CGFE savings in the encoding size exponentially
depend on the number of range fields in a rule.

RQ3 Fig. 7 hones in on expansion reduction of CGFE,
with DIRPE as baseline, for rules having two 16-bit ranges
of length |r| ≤ x and x varying from 2 to 216. Larger chunks
significantly improve efficiency for both methods, but require
more extra bits. For instance, encoding two 16-bit fields with
eight 2-bit chunks each takes 16 extra bits in total, whereas
encoding the same fields with four 4-bit chunks each requires
a significantly higher 88 extra bits in total but can lead up
to taking only half the ternary strings in the encoding. Fig. 7
shows that CGFE maintains an advantage over DIRPE under
the same chunk size with expansion reduction varying from 5
to 35% percent depending on chunk size and range length.

RQ4 Building upon the reduced TCAM requirements, we
now analyze the energy consumption per search operation; as

discussed earlier, TCAM energy consumption scales directly
with the number of entries stored. To confirm that lower
TCAM footprint of CGFE translates to significant energy
savings, we generate classifiers and determine consumption
per search operation with the TCAM power model from [27].
Every classifier consists of 10,000 IPv4 5-tuple rules contain-
ing two 16-bit range fields each, with maximum lengths ≤
16, 1024, and 65536. As in TCAM architectures the size of
each entry is preconfigured and typically falls into specific
values such as 72, 144, 288, or 576 bits [28], we use an entry
size of 144 bits with all methods since it is the minimum size
needed for an IPv4 5-tuple and yet has enough space for the
extra bits of CGFE and DIRPE with chunk size c = 2. Fig. 8
shows energy reduction of CGFE, DIRPE and SRGE vs prefix
encoding. As expected, CGFE consistently exhibits lowest
energy consumption per search. W.r.t. prefix expansion, CGFE
reduces energy by 51.7%, 49.8%, and 53.2% for maximum
range lengths of 16, 1024, and 65536 respectively.

V. RELATED WORK

Several works explore redesigning TCAM circuits [29, 30,
31, 32, 33] or combining TCAMs with other hardware [2, 34]
to improve efficiency; they are promising in terms of resource
utilization and reducing energy consumption but are hard to
implement on tens of millions of already deployed network
devices. Another research direction focuses on compressing
the classifier itself [35, 36, 37], looking for an equivalent
classifier using less TCAM space; this approach, is hard
to extend to dynamic rule updates since re-compressing the
entire classifier leads to high update latency. Representations
proposed in [10, 26, 38] use structural properties of classifiers,
e.g., order-independence of rules, to reduce the number of
fields or field width. These representations can be combined
with CGFE or any other range encoding method. Other prior
works focus on representing range rules with the least TCAM
entries. These approaches are compatible with existing rule
set compression techniques or future hardware changes and
fall into two classes: (1) data-dependent encoding techniques
tailor the encoding scheme to a specific rule set and the



ranges inside, potentially achieving higher efficiency [14,
39]; they usually use extra bits as a bitmap, assigning one
bit to each range; (2) data-independent approaches such as
CGFE are more versatile. Prefix expansion [12] represents
ranges as a set of prefixes, leading to a worst-case expansion
of 2w − 2 entries for a w-bit field. DIRPE [11] utilizes
hierarchical fence encoding to reduce the number of entries
but introduces additional bits for fences. SRGE [13] leverages
reflective Gray coding, efficient for short ranges without extra
bits. However, longer ranges might require more entries w.r.t.
DIRPE. RENE [16] also uses reflective Gray coding, adds
additional bits to achieve no range expansion at all, but its
applicability is limited to short ranges. Negation rules [40,
41] allow to define the opposite of a range via the opposite
action (e.g., “deny” vs “accept”), so they are only applicable
in specific scenarios.

VI. CONCLUSIONS

In this work, we introduce CGFE, a novel range encoding
technique for TCAMs that combines the strengths of DIRPE
and SRGE. CGFE achieves superior efficiency in encoding
ranges of all sizes, significantly reducing the number of TCAM
entries required compared to existing methods. This reduction
directly translates to improved resource utilization and lower
energy consumption, making CGFE an efficient solution for
high-performance packet classification. Comprehensive analy-
sis, including proofs of different CGFE properties and simu-
lations, confirm the efficiency of CGFE across scenarios. In
future research, we plan to explore enhancements to CGFE
such as dynamic adjustment of chunk sizes, applications to
more diverse network environments, and integration with other
network optimization techniques to fully leverage its potential.
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APPENDIX
PROOF OF THM. 3

Proof: For a sequence of chunk sizes σ and range r we
denote the CGFE encoding of r with chunk sizes σ as σ(r).
For sequences σ and σ′ we say σ ≺ σ′ holds iff |σ(r)| ≤
|σ′(r)| holds for all r. Thm. 3 is equivalent to for all σ, σ ≺
[1]w, where σ’s total size is w and [1]w is a sequence of w
chunks of size 1. The proof is by induction. Induction step
takes the first chunk that has size greater than 1 and detaches
one bit from the left, i.e., [1]i[c1, c2, . . . , ck] ≺ [1]i+1[c1 −
1, c2, . . . , ck]. The induction step can be further reduced to
[c1, c2, . . . , ck] ≺ [1, c1 − 1, c2, . . . , ck] as adding [1]i prefix
can be shown to be monotonous w.r.t. ≺ due to chunk-by-
chunk CGFE definition.

To prove the above, we assume an arbitrary range r =
[s, e] letting σ∗ = [c1, . . . , ck], σ = [v]σ∗, σ′ = [1, v −
1]σ∗, σ′′ = [v − 1]σ∗, and w = v +

∑
i ci. We need

to show |σ(r)| ≤ |σ′′(r)|. We consider all possible cases

for σ′. The case MSC1(s) = MSC1(e) is straightforward
since σ′([TC1(s), TC1(e)]) follows essentially the same steps
as σ([s, e]). Henceforth, we assume MSC1(s) = 0 and
MSC1(e) = 1. It is also straightforward if σ hits a mid-
dle range, i.e., TCv (s) = 0, TCv (e) = 2w−v − 1 and
σ(r) = [MSCv (s), MSCv (e)]◦σ∗([. . .]), where [. . .] is the range
covering all possible values, hence σ(r) = 1 ≤ σ′(r). We look
now at cases for s′′ = TC1(s) and e′′ = TC1(e).

Case s′′ = 0 and e′′ = 2w−1 − 1: σ’s middle range.
Case s′′ = 0 and e′′ < 2w−1−1: as we already covered σ’s

middle range, we can assume TCv (e) < 2w−v−1. Both σ and
σ′ hit bottom range: σ′(r) = σ′(r′1)∪σ′(r′2) with r′1 = [s, x−
1], r′2 = [x, e], x = 2w−1 while σ(r) = [0,MSC[v]e − 1] ◦
σ∗([. . .])∪MSCv (e)⋄σ−([0, TCv (e)]). As the first part of σ(r)
has only one entry, we only need |σ−([0, TCv (e)])| ≤ |σ′(r′2)|
for σ′(r′2) = 1⋄σ′′(r′′2 ), r

′′
2 = [0, e′′]. If MSCv−1(e′′) = 0 then

σ′′(r′′2 ) = 0⋄σ∗([0, TCv (e)]), else σ′′(r′′2 ) = [0, MSCv−1(e′′)−
1] ◦ σ∗([. . .]) ∪ MSCv−1(e′′) ⋄ σ∗([0, TCv (e)]) (bottom range).

Case s′′ > 0 and e′′ = 2w−1 − 1: symmetric.
Case s′′ > 0 and e′′ < 2w−1−1: σ′ has a regular range with

an odd MSC1(e) − MSC1(s) and splits into r′1 = [s, 2w−1 − 1]
and r′3 = [2w−1, e]. Assuming wlog. |r′1| ≤ |r′3|, σ′(r) =
[0, 1] ◦ TC(0 ⋄ σ′′(r′′1 )) ∪ 1 ⋄ σ′′(r̂′′2 ), where r′′1 = [s′′, . . .]
covers all values ≥ s′′ and r̂′′2 = [0 . . . e′′1 , e

′′] is partial for
r′′2 = [0, e′′] with the non-covered start e′′1 = 2w−1 − s′′.
Now, we let r∗1 = [TCv (s), . . .], r∗3 = [0, TCv (e)] and focus on
σ′′(r̂′′2 ) (§ III-D4).

Subcase e′′1 > e′′: σ′′(r̂′′2 ) = ∅ |r′1| ≤ |r′3| im-
plies e′′1 = e′′ + 1, |r′1| = |r′3|, |r∗1 | = |r∗3 |, and odd
MSCv (e) − MSCv (s). TCv (s) = 0 and |r∗1 | = |r∗3 | im-
ply σ’s middle range (covered), so let TCv (s) > 0. If
MSCv−1(s′′) = 2v−1−1 then σ′′(r′′1 ) = MSCv−1(s′′) ⋄σ∗(r∗1)
and σ(r) = [MSCv (s), MSCv (e)] ◦ TC(MSCv (s) ⋄ σ∗(r∗1))
and we are done. If MSCv−1(s′′) < 2v−1 − 1, σ′′(r′′1 ) =
MSCv−1(s′′) ⋄ σ∗(r∗1) ∪ [MSCv−1(s′′) + 1, . . .] ◦ σ∗([. . .]),
while σ(r) = [MSCv (s), MSCv (e)] ◦ TC(MSCv (s) ⋄ σ∗(r∗1)) ∪
[MSCv (s) +1, MSCv (e) − 1] ◦σ∗([. . .]), and we are also done.

Subcase MSCv−1(e′′1 ) = MSCv−1(e′′): σ′′(r̂′′2 ) =
MSCv−1(e′′) ⋄σ∗([0 . . . , TCv−1(e′′1 ), TCv−1(e′′)]) and here we
have two further options: TCv−1(e′′1 ) = 0 and TCv−1(e′′1 ) >
0. In the former case, σ∗([0 . . . TCv−1(e′′1 ), TCv−1(e′′)]) =
σ∗(r∗3), σ

′′(r′′1 ) = [MSCv−1(s′′), . . .] ◦σ∗([. . .]), while σ(r) =
[MSCv (s), MSCv (e) − 1] ◦σ∗([. . .])∪ MSCv (e) ⋄σ∗(r∗3), so we
are done. In the latter case, σ′′(r′′1 ) = MSCv−1(s′′) ⋄ σ∗(r∗1)∪
[MSCv−1(s′′)+1, . . .]◦σ∗([. . .]) and |r∗1 | < |r∗3 |, which implies
that either σ(r) = MSCv (s)◦σ∗(r∗1)∪[MSCv (s)+1, MSCv (e)]◦
σ∗([. . .]) (top range) or σ(r) = MSCv (s)⋄σ∗(r∗1)∪[MSCv (s)+
1, MSCv (e) − 1] ◦ MSCv (e) ⋄ σ∗([0 . . . TCv−1(e′′1 ), TCv−1(e′′)])
(regular range); in either case we are done.

Subcase MSCv−1(e′′1 ) < MSCv−1(e′′): let us introduce
r′′ = [e′′1 , x

′′], x′′ = MSCv−1(e′′) · 2w−v − 1. If |r∗3 | ≥
|r′′|, σ′′(r̂′′2 ) = [0, MSCv−1(e′′)] ◦ TC(MSCv−1(e′′) ⋄ σ∗(r∗3)),
otherwise σ′′(r̂′′2 ) = σ′′(r′′2 ). In the latter case, σ′(r) =
[0, 1] ◦ TC(0 ⋄ σ′′(r′′1 )) ∪ 1 ⋄ σ′′(r′′2 ), i.e., σ′ encodes each
part separately and it is easy to show that |σ(r)| ≤ |σ′(r)|. In
the remaining |r∗3 | ≥ |r′′| case, we must have MSCv−1(e′′1 ) =



MSCv−1(e′′)−1, implying MSCv (e)−MSCv (s) is even, |r∗1 | <
2w−v and |r′′| = 2w−v − |r∗1 |, and the latter implies σ′(r′1) =
MSCv−1(s′′) ⋄ σ∗(r∗1) ∪ [MSCv−1(s′′) + 1, . . .] ◦ σ∗([. . .]).
The above implies |r∗3 | + |r∗1 | ≥ 2w−v which then implies
σ(r) = [MSCv (s), MSCv (e) − 1] ◦ TC(MSCv (s) ⋄ σ∗(r∗1)) ∪
[MSCv (s) + 1, MSCv (e)] ◦ TC(MSCv (e) ⋄ σ∗(r∗3)).
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