Planning in Compute-Aggregate Problems as
Optimization Problems on Graphs

Pavel Chuprikov*f, Alex Davydow*, Kirill Kogan', Sergey I. Nikolenko*, Alexander V. Sirotkin*
*Steklov Institute of Mathematics at St. Petersburg, St. Petersburg, Russia
fIMDEA Networks Institute, Madrid, Spain
INational Research University Higher School of Economics, St. Petersburg, Russia

Abstract—Efficient representation of data aggregations is a
fundamental problem in modern big data applications. We present
a formalization of compute-aggregate planning parameterized by
the aggregation function.

Various frameworks split computations into multiple phases:
Map-Reduce-Merge [1] extends MapReduce to implement
aggregations, Camdoop [2] assumes that an aggregation’s
output size is a specific fraction of input sizes, Astrolabe [3]]
collects large-scale system state and provides on-the-fly at-
tribute aggregation, and so on. Other stream processing frame-
works support low-latency dataflow computations over a static
dataflow graph [4], while [S]] explores optimal tree overlays
to optimize latency of compute-aggregate tasks. Applications
usually have little control over how network transport handles
the data, but more fine-grained control may be required in order
to avoid, e.g., the incast problem [6l]. Suppose also that each
compute-aggregate task should conform to a budget constraint.
The problem thus divides into two: (1) find a “cheapest” plan
given network parameters and (2) redistribute aggregations
computed in (1) while optimizing desired objectives. In this
setting, we can solve the first phase independently of the
underlying transport protocols, while the second phase can
address such problems as incast. The first phase is also of
separate interest since it can represent various economic settings
(e.g., energy efficiency) during aggregation and lead to better
utilization of network infrastructure. Our primary goal is
to identify universal properties of compute-aggregate tasks,
leading to unified design principles. We define a model that
needs to know only one property: the (approximate) size of
two data chunks after aggregation.

We model a network as an undirected connected graph
G = (V, E), where V is the set of computing nodes connected
by links (edges) E. Since we operate on an application level, we
are free to use any overlay topology in place of G that captures
only information relevant to a specific compute-aggregate task.
The task is represented as a set of initial data chunks C' =

{[®0), (%1}, ..., [Tk]}, each characterized by its location
v([®:)) and size size([Z]). Since many compute-aggregate
tasks require the result to be fully available on a specific node

© 2017 IEEE. Personal use of this material is permitted. Permission from
IEEE must be obtained for all other uses, in any current or future media,
including reprinting/republishing this material for advertising or promotional
purposes, creating new collective works, for resale or redistribution to servers
or lists, or reuse of any copyrighted component of this work in other works.
https://doi.org/10.1109/ICNP.2017.8117579

[2]

T

(c)

Fig. 1: A sample compute-aggregate task with three vertices
t (target), u, and v: (a) the problem; (b) “move to root” plan
with cost 12; (c) optimal aggregation plan with cost 8.

(e.g., to allow low-latency responses), we assume a special
root vertex ¢ € V where all data chunks should be finally
aggregated. The cost function ¢ : £ — R on G associates
with each link e its transmission cost per data unit c(e); to
transmit () through e one must pay c(e) - size([z]). A simple
three-node example of a compute-aggregate task is presented
on Fig. [Th. Costs are shown on the edges, square brackets
denote chunks, and the root vertex is marked by ¢.

The simplest form of an aggregation plan is “move to root”:
bring everything to the root node ¢. It can be suboptimal: assume
that on Fig. (1] the aggregation function chooses the best chunk,
so the aggregated size does not exceed the maximal size of
initial chunks. Then “move to root” has total cost 12 (Fig. [Tp:
two chunks of size 2 each moving along edges of cost 3), while
on Fig. [Tk one chunk moves to vertex 1 paying 2, then the
chunks merge, and the resulting chunk of size 2 moves to ¢ with
total cost 8. Besides, “move to root” can overload the links near
the root. This leads to the idea of intermediate aggregations:
aggregate data chunks en route to ¢. Recent studies [[7], [8I]
show that the final result of a compute-aggregate task is often
only a small fraction (usually less than half) of the total size
of the initial data chunks; thus, reducing several chunks to one
can significantly reduce storage requirements.

We introduce the function aggr defined on data chunks,
assuming it to be associative: aggr([z],aggr([¥], z])) =
aggr(aggr((z), [¥)), (2)), and commutative: aggr([(z), [U]) =
aggr([Y), (z]). The basic principle of data locality optimiza-
tion, which lies at the heart of the Hadoop framework [9],
is to move computation to data and as a result save on
data transmission. We extend this strategy and try to move
aggregation to data by allowing an aggregation plan to exploit
intermediate nodes. An aggregation plan is a sequence of
operations P = (og,01,...,0m,), Where each o; is either

https://doi.org/10.1109/ICNP.2017.8117579

Fig. 2: Different p lead to different plans: (a) a sample task;
(b) optimal plan for u(a,b) = a + b; (c) optimal plan for
u(a, b) = max(a,b); (d) optimal plan for p(a,b) = min(a,b).

move([x),v), move a chunk z to a vertex v, or aggr([(z], (¥)),
merge chunks and located at the same vertex; the
result is a new chunk at that vertex. After all operations
have been applied, the result must be a single data chunk
at the root: v([z]) = t; e.g., Figs. and show
aggregation plans for the problem on Fig. [lp. Aggregation
plans are fully decoupled from the transport layer, producing
instructions and constraints that the transport layer must
satisfy. An aggregation plan has an associated transmission cost
cost(P), which is the sum of costs of all operations in P; here
cost(aggr([z], [¥]))) = O (there is no data transmission), and
cost(move((z],v)) = size([z)) - d(v([z]),v), where d(u,v)
is the total cost of the cheapest path from u to v.

This approach of “moving aggregation to data” has important
advantages over “move to root”: the TCP-incast problem
becomes less pronounced because inbound traffic is spread
among different nodes, the total number of transmitted bits is
reduced due to earlier aggregations, storage capacity is now
less of a constraint since less data has to be collected per node,
and data transmission cost is also reduced (cf. examples on
Fig. [I). In order to formally define the optimization problem
for aggregation, however, we have to know, given and
(Y], the size of their aggregation result [Zy]. Therefore, we
require each application to supply the aggregation size function
w: Ry xRy — Ry that would estimate this size using only
sizes of the inputs, so that for the purposes of optimization
size([®Y)) = u(size((z]), size((¥))). We do not expect these
functions to be exactly correct, but they should provide the
correct order of magnitude in order for the optimal solution
to be actually good in practice. Since aggr is assumed to be
associative and commutative, every aggregation size function
should also have these properties. Some examples of o for
practical problems include:

e u(a,b) = const for finding the top k elements in data
with respect to some criterion;

e u(a,b) = min(a,b) or u(a,b) = max(a,b) for choosing
the best data chunk;

e u(a,b) = a+ b for concatenation or sorting;

e max(a,b) < p(a,b) < a—+ b for set union (word count).

Fig. 2] shows how the choice of p can affect the optimal
aggregation plan. Fig. 2 shows chunks of size 1 at vertex 1,
of size 4 at vertex 2, and of size 6 at vertex 3, and the goal is
to aggregate them at vertex 0. For u(a, b) = a + b, the optimal
plan is to move each chunk to the root separately (Fig. 2b).

For p(a,b) = max(a,b), it is cheaper to first move along edge
2 — 3 and merge, then move the resulting chunk of size 6 to
the root (Fig. [2k). Finally, for z(a,b) = min(a, b) it is best to
leave large chunks in place and traverse the graph with the
smallest chunk (Fig. 2jd). Thus, even in a simple example the
aggregation plan can change drastically depending on p. We
get the following optimization problem.

Problem 1 (CAM — compute-aggregate minimization). Given
an undirected connected graph G = (V, E), cost function
¢, a target vertex t, a set of initial data chunks C, and an
aggregation size function i, the CAM[u] problem is to find an
aggregation plan P such that cost(P) is minimized.

Interestingly, unless both the aggregation size function is
well-behaved and there are constraints on the graph structure,
there is not much we could do in the worst case.

Theorem 1. Unless P = N P, there is no polynomial time con-
stant approximation algorithm for CAM without associativity
constraint on | even if G is restricted to two vertices.

Proof: We can encode an NP-hard problem in choosing the
correct order of merging for a non-associative p. For example,
consider an instance of the knapsack problem with weights
w1, ..., Wy, unit values, and knapsack size WW; then we have
n chunks of size wy,...,w,, and u is defined as follows: if
either z =0,y =0, or x +y = W then u(x,y) = 0; else
w(z,y) = x +y. This way, if we can fill the knapsack exactly
the total resulting weight will be zero, and if not, it will be
greater than zero, leading to unbounded approximation ratio
unless we can solve the knapsack problem. []

We have introduced a model to find a schedule of aggre-
gations that satisfies constraints rather than directly optimizes
desired objectives, formulated the basic optimization problem
and pinpointed how it depends on the aggregation function
u. We believe that this approach will allow to decouple
optimization problems from underlying transports and provide
fine-grained control to exploit network infrastructure.

Acknowledgments: This work was supported by the Rus-
sian Science Foundation grant no. 17-11-01276, “Networking
and distributed systems and algorithms and related fundamental
problems”.

REFERENCES

[1] H. Yang, A. Dasdan, R. Hsiao, and D. S. P. Jr., “Map-reduce-merge:
simplified relational data processing on large clusters,” in SIGMOD, 2007,
pp. 1029-1040.

[2] P. Costa, A. Donnelly, A. I. T. Rowstron, and G. O’Shea, “Camdoop:
Exploiting in-network aggregation for big data applications,” in NSDI,
2012, pp. 29-42.

[3] R. van Renesse, K. P. Birman, and W. Vogels, “Astrolabe: A robust and

scalable technology for distributed system monitoring, management, and

data mining,” ACM Trans. Comp. Syst., vol. 21, no. 2, pp. 164-206, 2003.

G. Malewicz, M. H. Austern, A. J. C. Bik, J. C. Dehnert, I. Horn, N. Leiser,

and G. Czajkowski, “Pregel: a system for large-scale graph processing,”

in SIGMOD, 2010, pp. 135-146.

[5] W. Culhane, K. Kogan, C. Jayalath, and P. Eugster, “Optimal commu-
nication structures for big data aggregation,” in INFOCOM, 2015, pp.
1643-1651.

[6] Y. Zhang and N. Ansari, “On architecture design, congestion notification,
TCP incast and power consumption in data centers,” IEEE Communications
Surveys and Tutorials, vol. 15, no. 1, pp. 39-64, 2013.

[4

—

[7] J. Dean and S. Ghemawat, “Mapreduce: simplified data processing on
large clusters,” Commun. ACM, vol. 51, no. 1, pp. 107-113, 2008.

[8] Y. Chen, A. Ganapathi, R. Griffith, and R. H. Katz, “The case for evaluating
mapreduce performance using workload suites,” in MASCOTS, 2011, pp.
390-399.

[9] T. White, Hadoop: The Definitive Guide. O’Reilly Media, Inc., 2009.

	References

