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Abstract

Efficient representation of data aggregations is a fundamental problem in modern big data
applications, where network topologies and deployed routing and transport mechanisms play
a fundamental role to optimize desired objectives: cost, latency, and others. We study the
design principles of routing and transport infrastructure and identify extra information that
can be used to improve implementations of compute-aggregate tasks. We build a taxonomy of
compute-aggregate services unifying aggregation design principles, propose algorithms for each
class, analyze them, and support our results with an extensive experimental study.

1 Introduction

Data centers store data at different interconnected locations. Modern big data applications are
highly distributed, and requests need to satisfy various objectives: latency, cost efficiency, etc. [2,
6, 14]. Compute-aggregate problems, where several data chunks must be aggregated in a network
sink, encompass an important class of big data applications implemented in modern data centers.
Traditionally, applications have little control over how network transport handles the data. Latency
optimization should account for properties of underlying transports in order to avoid, e.g., the incast
problem [8, 27], and optimizing latency for several compute-aggregate tasks can overload “fastest”
(and more expensive) links. We believe that more fine-grained control is required to implement
desired objectives transparently for applications.

In this work, we assume that each compute-aggregate task should conform to a budget con-
straint since different cloud tenants are able to invest different economic resources to compute their
aggregations. To avoid oversubscription of “fastest” links, they can also have different costs of
sending data over a link. The problem now divides into two completely decoupled phases: (1)
find a “cheapest” plan given a distribution of data over the network, an aggregation function (that
computes the size of aggregating two different pieces of data), and the cost of sending a unit of data
over a link; and (2) actually redistribute aggregations computed in (1) while optimizing desired
objectives. In this setting, we can solve the first phase in a serial way, independently of the proper-
ties of underlying transport protocols, while the second phase can address such problems as incast.
This is a natural generalization of traditional transports to implement efficient aggregations.

The first phase is of separate interest since it can represent various economic settings (e.g., energy
efficiency) during aggregation; this phase can also lead to better utilization of network infrastructure

∗© Springer Nature Switzerland AG 2018. The final authenticated publication is available online at https:

//doi.org/10.1007/978-3-030-01325-7_31

1

https://doi.org/10.1007/978-3-030-01325-7_31
https://doi.org/10.1007/978-3-030-01325-7_31


since the cost to send a unit of data through the links can differ for different compute-aggregate
instances. Hence, our primary goal is to identify universal properties of compute-aggregate tasks
that allow for unified design principles of “perfect” aggregations on the first phase. Incorporating
properties of aggregation functions into final decisions requires new insights on the model level and
may lead to more efficient aggregation. There is definitely room for it: the average final output
size jobs is 40.3% of the initial data sizes in Google [11], 8.2% in Yahoo, and 5.4% in Facebook [7].

In this work, we define a model for constructing an aggregation plan under budget constraints
that requires applications to specify only one aggregation property: the (approximate) size of two
data chunks after aggregation. Properties of aggregation functions can have a significant effect
on the aggregation plan. We classify compute-aggregate tasks into several categories with respect
to this property, propose algorithms for these optimization problems, and analyze their proper-
ties, proving a number of results on their performance and complexity, both positive (polynomial
algorithms with good approximation ratios) and negative (inapproximability results).

The paper is organized as follows. Section 2 summarizes prior art, Section 3 introduces the
model. In Section 4 we classify aggregate functions with regard to their effect on input data
chunks and study their computational properties, i.e., hardness and approximability of optimization
problems. Section 5 presents our experimental results, and Section 6 concludes the paper.

2 Related work

Various frameworks split computations into multiple phases: Map-Reduce-Merge [23] extends
MapReduce to implement aggregations, Camdoop [9] assumes that an aggregation’s output size
is a specific fraction of input sizes, Astrolabe [17] collects large-scale system state and provides
on-the-fly attribute aggregation, and so on. Like other data-flow systems [11, 24, 25], Naiad [16]
offers the low latency of stream processors together with the ability to perform iterative and incre-
mental computations. The work [25] introduces a distributed memory abstraction for fault-tolerant
in-memory computation on large clusters, with orders of magnitude better latency than disk ac-
cesses. Other stream processing frameworks support low-latency dataflow computations over a
static dataflow graph [1, 15, 20], while [10] explores optimal tree overlays to optimize latency of
compute-aggregate tasks under specified budget constraints.

3 Motivation and model description

Our main objective is to use a network in the best possible way for a given compute-aggregate task.
This is a problem with many variables. In this work, we leave most of them to the network transport
layer (e.g., it chooses how transmissions should be spread in time), concentrating on the aggregation
plan that defines the order of aggregation, is fully decoupled from transport implementation, and
will be formalized below.

3.1 Compute-aggregate tasks

We model a network as an undirected connected graph G = (V ,E), where V is the set of computing
nodes connected by links (edges) E. Note that since we operate on an application level, we are free to
use any overlay topology in place of G that captures only information relevant to a specific compute-
aggregate task. The task is represented as a set of initial data chunks C = { x0 , x1 , . . . , xk },
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with each chunk xi characterized by its location v( xi ) and size size( xi ). Since many compute-
aggregate tasks require the result to be fully available on a specific node (e.g., to allow low-latency
responses), we assume a special root vertex t ∈ V where all data chunks should be finally aggregated.

The hardest part to define is “the best possible way”: objectives are application-specific and may
include latency, throughput, or a more subtle objective such as congestion avoidance. We model
them with a single per-link parameter, the cost, a flexible way to both freely combine objectives
and keep the optimization problem clear. Formally, the cost function c : E → R+ on the topology
graph G maps each link e to its transmission cost per data unit c(e); to transmit x through e one
must pay c(e) · size( x ). A simple example of a compute-aggregate task is shown on Fig. 1a. Costs
are shown on the edges, square brackets denote chunks, and the root vertex is marked by t.

3.2 Move to root

We begin with the simplest form of an aggregation plan that we call “move to root”: bring ev-
erything to the root node t (we say that an aggregation plan moves or aggregates for simplicity;
in practice data transmission and aggregation are handled by the transport and application layers
respectively). “Move to root” can be suboptimal with regard to transmission costs. Suppose that
in the example on Fig. 1 the aggregation function chooses the best chunk, so the aggregated size
does not exceed the maximal size of initial chunks. Now “move to root” has total cost 12 (Fig. 1b:
two chunks of size 2 each moving along edges of cost 3), while on Fig. 1c one chunk moves to vertex
1 paying 2, then chunks merge, and chunk of size 2 moves to t with total cost 8.

But concerns arise even apart from transmission costs. A naive implementation of the “move to
root” plan that moves all data chunks to the root and then aggregates leads to the transport layer
directing a lot of traffic towards t, possibly overflowing ingress buffers there and increasing latency
due to the notorious TCP-incast problem. Moreover, in a low-latency application that aggregates
in RAM [5,26] storage capacity can be exhausted when all data chunks are stored at t.

This problem can be alleviated with intermediate aggregations. Data chunks can be sent to t
sequentially in some order, and in the process some arriving chunks are immediately aggregated.
Recent studies [7, 11] show that the final result of a compute-aggregate task is often only a small
fraction (usually less than half) of the total size of initial data chunks; e.g., in counting problems
the aggregation result is just a few numbers. Thus, keeping in memory a single intermediate chunk
instead of several initial data chunks can significantly reduce storage requirements.

In general, not every order can be used for intermediate aggregations because the final ag-
gregation result might depend on this order (e.g., string field concatenation), and it is undesir-
able for an aggregation plan to affect the result [22]. Fortunately, most aggregation functions
do not depend on the aggregation order, that is, they are associative: aggr( x ,aggr( y , z )) =

aggr(aggr( x , y ), z ), and commutative: aggr( x , y ) = aggr( y , x ). Below we assume that
aggregations are both associative and commutative; such systems as MapReduce already assume
this for most reduce functions and allow aggregations of intermediate data chunks with combiner
functions [11]. The TCP-incast problem, on the other hand, can be mitigated by carefully spreading
chunk transmissions in time (to reduce overlap), which requires complex synchronization on the
part of the transport layer. Low-latency in-RAM applications also have to synchronize data trans-
missions to avoid too many data chunks “in the air” at the same time that cannot be aggregated;
this is hard to implement in a distributed system, and if aggr is not commutative and associative
this leads to more constraints since transmissions must occur in a specific order.

All of the above suggests that it is hard for the “move to root” heuristic to reconcile network
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transport limitations with storage constraints and the distributed environment. Hence, in this work
we explore aggregations at intermediate nodes.

3.3 Exploiting intermediate nodes

The basic principle of data locality optimization, which lies at the heart of the Hadoop framework
[21], is to move computation to data and as a result save on data transmission. We extend this
strategy and try to move aggregation to data by allowing an aggregation plan to exploit intermediate
nodes. Formally, an aggregation plan is a sequence P of operations (o0, o1, . . . , om), where each oi
is either move( x , v), which moves a chunk x to a vertex v, or aggr( x , y ), which merges chunks

x and y located at the same vertex; the result is a new chunk xy at that vertex. After all
operations have been applied, the result must be a single data chunk z at the root: v( z ) = t.
E.g., Figs. 1b and 1c show aggregation plans for the problem on Fig. 1a. Aggregation plans are
fully decoupled from the transport layer, producing instructions and constraints that the transport
layer must satisfy.

An aggregation plan has an associated transmission cost cost(P ), which is the sum of costs of all
operations in P ; here cost(aggr( x , y )) = 0 (there is no data transmission), and cost(move( x , v)) =
size( x ) · d(v( x ), v), where d(u, v) is the total cost of the cheapest path from u to v.

This approach of “moving aggregation to data” has some important advantages over “move to
root”. First, the TCP-incast problem becomes less pronounced because inbound traffic is spread
among different nodes, and fewer nodes need to be synchronized. Moreover, the total number of
transmitted bits is reduced due to earlier aggregations (we usually expect an aggregation result to
be smaller than the total input size). Second, storage capacity is now less of a constraint since
less data has to be collected per node. Last but not least, data transmission cost is also reduced
(cf. examples on Fig. 1). Note, however, that in practice not all nodes may be used for data
aggregation. For example, we may be restricted to nodes where initial data chunks reside because
it is expensive to allocate additional compute nodes; or it can be a security concern to perform
computation on intermediate nodes (e.g., initial nodes belong to a private cloud, and the rest are
transit nodes). This question must be carefully answered, and in what follows we assume that the
overlay graph G reflects this answer and maps aggr operations to appropriate nodes.

3.4 Aggregation size function

In order to formally define the optimization problem for aggregation, we have to know the following:
given x and y , what is the size of their aggregation result xy ? This directly affects the cost of
an aggregation plan, and different aggregation result sizes can lead to very different solutions. For
example, if on Fig. 1 we assumed that the task is, e.g., sorting, where the size of an aggregated
chunk is the sum of input sizes, the cost of the first plan would still equal 12, but the plan on
Fig. 1c would now cost 14 and become suboptimal.

Unfortunately, the size of an aggregation result is application-specific, and in most cases the
exact value depends on the actual content of x and y ; moreover, to determine this value we
may need to actually perform aggregation (e.g., the number of key-value pairs in the counting
problem cannot be predicted exactly unless we actually count). This is clearly infeasible since an
aggregation plan must be constructed (and its cost evaluated) before the application performs any
aggregations and the transport layer transmits any data. Therefore, we require each application to
supply the aggregation size function µ : R+ × R+ → R+ that would estimate this size using only
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sizes of the inputs, so that for the purposes of optimization size( xy ) = µ(size( x ), size( y )). We
do not expect these functions to be exactly correct, but they should provide the correct order of
magnitude in order for the optimal solution to be actually good in practice. Since aggr is assumed
to be associative and commutative, µ should also have these properties. Some examples of µ for
practical problems include: µ(a, b) = const for finding the top k elements in data with respect
to some criterion; µ(a, b) = min(a, b) or µ(a, b) = max(a, b) for choosing the best data chunk;
µ(a, b) = a+ b for concatenation or sorting; max(a, b) ≤ µ(a, b) ≤ a+ b for set union (word count).

Fig. 2 shows how the choice of µ can affect the optimal aggregation plan. Fig. 2a shows chunks of
size 1 at vertex 1, of size 4 at vertex 2, and of size 6 at vertex 3, and the goal is to aggregate them at
vertex 0. For µ(a, b) = a+b, the optimal plan is to move each chunk to the root separately (Fig. 2b).
For µ(a, b) = max(a, b), it is cheaper to first move the chunk of size 4 along edge 2→ 3 and merge
it, then move the resulting chunk of size 6 to the root (Fig. 2c). Finally, for µ(a, b) = min(a, b)
the optimal plan is to traverse the whole graph with the smallest chunk, merging larger ones along
the way (Fig. 2d). Thus, even in a simple example the aggregation plan can change drastically
depending on µ. We get the following optimization problem.

Problem 3.1 (cam — compute-aggregate minimization). Given an undirected connected graph
G = (V ,E), cost function c, a target vertex t, a set of initial data chunks C, and an aggregation
size function µ, the cam[µ] problem is to find an aggregation plan P such that cost(P ) is minimized.

Interestingly, unless both the aggregation size function is well-behaved and there are constraints
on the graph structure, there is not much we could do in the worst case.

Theorem 1. Unless P = NP , there is no polynomial time constant approximation algorithm for
cam without associativity constraint on µ even if G is restricted to two vertices.

Proof. We can encode an NP-hard problem in choosing the correct order of merging for a non-
associative µ. For example, consider an instance of the knapsack problem with weights w1, . . . ,wn,
unit values, and knapsack size W ; then we have n chunks of size w1, . . . ,wn, and µ is defined as
follows: if either x = 0, y = 0, or x+ y = W then µ(x, y) = 0; else µ(x, y) = x+ y. This way, if we
can fill the knapsack exactly the total resulting weight will be zero, and if not, it will be greater than
zero, leading to unbounded approximation ratio unless we can solve the knapsack problem.

In this work, we investigate two main degrees of freedom that the cam problem has: network
topology graph G and aggregation size function µ. Let us begin with µ.

4 A Taxonomy of Aggregation Functions

There are different types of big data applications, a large variation in data-center network topologies,
and countless data distributions, which collectively define constraints for a compute-aggregate task.
Handling each and every variation of these constraints separately does not scale, so a generalized
decision procedure should be used to construct an aggregation plan. In this section, we present
such a procedure and show worst-case guarantees for every choice.

Intuitively, stricter constraints may lead to better decisions, both in terms of the cost of an
aggregation plan, which is our primary objective, and in terms of performance (running time).
E.g., if the network graph is a tree, it might be possible to construct an aggregation plan in linear
time; or a better (in terms of the resulting cost) algorithm can be chosen under certain constraints
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on the aggregation size function. Thus, a possible solution may have to account for network
topology, aggregation size function, and initial chunk distribution. Chunk distribution varies from
one problem instance to another, and is unlikely to provide useful information since it is expected
to be roughly uniform (big data storage systems try to achieve even load distribution). Although
there are common network topologies, such as hypercube, fat-tree, or jellyfish, there are plenty
of variations and exceptions. So, while algorithms specifically tailored for, e.g., the hyper-cube
topology [9] remain a valid topic for future study, in this work we mostly consider the aggregation
size function, with only two special cases.

First, a tree is a topology that is both widespread and has a high potential for better algorithmic
solutions; we call the cam problem where G is a tree tcam (tree cam). Second, sometimes it is
reasonable to limit aggregation to only those nodes that contain data chunks initially, either for
security reasons or due to the need for additional resource provisioning on intermediate nodes that
may significantly increase latency, while nodes with initial chunks usually already have computing
resources for a preprocessing stage. If either security or provisioning impose the aforementioned
restriction then a network graph G can be reduced to a complete graph over the nodes that contain
chunks, and we call this special case ccam (complete cam). Our theoretical results are summarized
in Fig. 3; the horizontal axis corresponds to how fast µ grows, and each small tree of results shows
approximation ratios for cam, tcam, and ccam, referring to specific theorems below.

4.1 General case

In this subsection we assume no constraint on the behavior of an aggregation size function µ. As
an example, consider a simpler setting where all chunks have size x, and µ(x,x) = x. In this case,
when paths of two chunks intersect, it always better to merge at the intersection. Thus an optimal
aggregation plan always proceeds along a tree subgraph of G, and the weight of that tree multiplied
by x equals the aggregation plan cost since µ does not change weights. Thus, the problem reduces to
finding a minimum weight tree that connects a given set of vertices, which is a well-studied minimum
Steiner tree problem [13], MStT, that has many constant approximation algorithms. Using one of
those we build our first aggregation plan construction algorithm steiner rec (Alg. 2). If there is
a polynomial α-approximate algorithm for MStT, then steiner rec provides an α-approximation
for the special case when size(x) = S for any x ∈ C, and µ(S,S) = S. The steiner rec algorithm
has a number of interesting properties; e.g., it does not require any knowledge of µ or even chunk
sizes. The infrastructure can run steiner rec even before preprocessing (in map-reduce terminol-
ogy, before a map phase). It turns out that in the general case, the price of using steiner rec

does not exceed the ratio between the largest and smallest intermediate chunk. We denote by WC [µ]
the maximal aggregate size of a subset of chunks from the set C, WC [µ] = maxC′⊆C{µ(C ′)}; it is
well defined since µ is associative and commutative. We also denote by wC [µ] the corresponding
minimal aggregate size, wC [µ] = minC′⊆C{µ(C ′)}.
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Algorithm 1 steiner(G,V ′ ⊆ V (G))
1: if G is a tree then
2: return unique subtree TV ′ covering V ′

3: else if V (G) = {v(x) : x ∈ C} then
4: return min spanning tree(G)
5: else
6: return steiner tree approx(G, {v(x) : x ∈ C})

Algorithm 2 steiner rec(G, t,C)

1: P ← ();T ← steiner(G, {v(x) : x ∈ C})
2: for v ∈ T in decreasing order of depth(v) do
3: . Denote C(v) = {x ∈ C : v(x) = v}
4: while |C(v)| > 1 do
5: P .append(aggr(x, y)), where x, y ∈ C(v)
6: C.update(aggr(x, y))

7: if ∃ x ∈ C(v) and ∃ parent(v) then
8: P .append(move(x, parent(v)))
9: C.update(move(x, parent(v)))

10: return P

Theorem 2. If there exists a polynomial α-approximate algorithm for MStT, then there exists a
polynomial algorithm that solves cam[µ] with approximation factor αWC [µ]

wC [µ] .

Proof. First, note that any algorithm, even optimal, has to traverse at least the Steiner tree of
G in total size, and has to carry at least weight wc over each edge. The approximate algorithm
begins by constructing the approximate Steiner tree with approximation ratio α, and then carries
all chunks along this tree to the root, merging the chunks at first opportunity; in this process, the
maximal possible chunk size is Wc, and it is carried over at most α times longer distance than in
the actual Steiner tree, getting the approximation bound.

There is a well-known 2-approximation to MStT based on a minimum spanning tree (MST)
of the distance closure G∗ of G; a much more involved construction leads to the best known
approximation ratio of ln 4 + ε ≤ 1.39 [4]. Although steiner rec does not depend on either µ or
chunk sizes, the approximation factor in Theorem 2 includes both. This result improves for special
cases of tcam and ccam.

Theorem 3. If every vertex in G contains a data chunk, then MStT can be solved exactly in
polynomial time.

Proof. In this case, MStT is equivalent to MST.

Theorem 4. If G is a tree, then MStT can be solved exactly in polynomial time.

Proof. There is only one subtree in G that connects a given set of vertices, and it can be found in
polynomial time.

Theorem 3 and Theorem 4 essentially say that in these special cases we have 1-approximation
algorithms for MStT. Theorem 2 and this observation together imply the following.

Corollary 5. There exist polynomial algorithms that solve ccam[µ] and tcam[µ] on a set of chunks

C with approximation factor WC [µ]
wC [µ] .

However, for many µ, including important ones (e.g., set union), Theorem 2 and Corollary 5
provide rather weak approximations; in particular, we would like to have approximation ratios
independent of chunk sizes and specific values of µ since in practice WC

wC
may be very high. Unfor-

tunately, it is impossible even for a restricted class of functions µ that reduce the weights, that is,
for functions smaller than min; proof of Theorem 6 is given in the Appendix
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Theorem 6. There exists an aggregation size function µ such that ∀a, b µ(a, b) ≤ min(a, b), and no
polynomial time constant approximation algorithm for ccam[µ] or tcam[µ] exists unless P = NP .

Since ccam is a strict subset of cam, there is no constant-approximation solution for cam either.

4.2 Range-bounded aggregation size functions

Depending on the application, the value of µ may be known to lie in a certain range. For example,
if aggr represents set union then µ(x, y) ∈ [max{x, y},x + y], and if aggr represents outer join
then µ(x, y) is likely to be always larger than x+y. We show a taxonomy of algorithms for different
µ. Theorem 6 showed that aggregation size functions that reduce size too much are provably hard.
On the other side of the spectrum, where µ(x, y) ≥ x + y, there is an optimal solution: bring all
chunks to the sink; the formal proof of Theorem 7 is shown in the Appendix.

Theorem 7. If µ(a, b) ≥ a + b for all a, b then there exists a polynomial optimal algorithm for
cam[µ], ccam[µ], and tcam[µ]; for tcam[µ] the running time is O(|C|+ |G|).

We have found that for µ(x, y) ∈ (−∞, min{x, y}] the problem is inapproximable (Theorem 6),
and for µ(x, y) ∈ [x + y,∞) there is an optimal algorithm (Theorem 7). We split the remaining
range [min{x, y},x + y] at max{x, y} for two reasons. First, in practice max is a valid bound for
many applications: set intersection, set union, outer join (symmetric or asymmetric); thus, the in-
frastructure often knows on which side of max µ lies. Second, theoretic results below show that max
is an interesting demarcation line for worst-case guarantees: below max chunk sizes are a primary
factor, and above max the graph structure starts to dominate. If µ(x, y) ∈ [min(x, y), max(x, y)],
we can replace the ratio WC [µ]/wc[µ] (Theorem 2), which depends on µ, with a simpler one that
depends only on chunk sizes. In the next theorem WC = maxx∈C{size(x)}, wc = minx∈C{size(x)}.

Theorem 8. If min{a, b} ≤ µ(a, b) ≤ max{a, b} for all a, b and there exists a polynomial α-
approximate algorithm for MStT, then there exists a polynomial algorithm that solves cam[µ] with
approximation factor αWC

wC
.

Corollary 9. If min{a, b} ≤ µ(a, b) ≤ max{a, b} then there exist polynomial algorithms that solves
ccam[µ] and tcam[µ] with approximation factor WC

wC
.

For µ(x, y) ∈ [max{x, y},x + y], the last remaining range, we employ a mix of SPT and
steiner rec: merge chunks above a certain threshold with steiner rec; below, with SPT.

Theorem 10. If for all a and b max(a, b) ≤ µ(a, b) ≤ a + b, then there is an 2NV 1/2
√
α cmax
cmin

-

approximate polynomial algorithm for cam[µ], which we call RECH MStTSplit, where V is the num-
ber of vertices in G, N is the number of chunks, cmax is the cost of the most expensive edge in G,
cmin, of the cheapest edge, and α is an approximation factor for MStT.

Proof. The idea of the algorithm is as follows. We split all chunks C into two sets: chunks with
weight at least δM go into set C1 and chunks with weight smaller than δM go into C2, where M
is the weight of the maximal chunk and δ is a constant to be defined later, so C = C1 ∪ C2. Next
we solve two separate cam problems. For C1 we run the general algorithm from Theorem 2, and
for C2 we run the algorithm from Theorem 7 that we used for µ such that µ(a, b) ≥ a + b. The
first algorithm yields an αN

δ -approximate solution, and the total weight of the second solution does
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not exceed δMV Ncmax, where N is the number of chunks. Let W be the weight of the optimal
solution. Now, since max(a, b) ≤ µ(a, b), and W is at least the weight of the optimal solution for C1,
we can conclude that the weight of the solution for C1 is at most αV

δ W . On the other hand, since

W ≥Mcmin, the weight of the solution for C2 is at most δV 2 cmax
cmin

W . Now if we choose δ =
√
acmin

V 1/2√cmax

to minimize the total result, the total weight of both solutions will be 2NV 1/2
√
α cmax
cmin

W .

To improve the above theorem we cannot apply Theorem 3 to get rid of α for ccam or tcam
since it uses Steiner tree only for a subset of chunks. But, remarkably, we can do better for tcam:
the following theorem proves that between max and “+” steiner rec is optimal for tcam. The
algorithm is similar to Theorem 2; the proof is shown in the Appendix.

Theorem 11. There exists a polynomial optimal algorithm for the tcam[µ] problem for any µ
such that ∀a, b max(a, b) ≤ µ(a, b) ≤ a+ b.

4.3 Specific aggregation size functions

Sometimes we can improve performance further if we know µ exactly. This is especially interesting
for the “junction points” between previous results; Theorem 7 covers sum, here we concentrate on
min and max; proof of the next theorem is shown in the Appendix.

Theorem 12. If there exists a polynomial α-approximate algorithm for MStT, then there exists
a polynomial 2α-approximate algorithm for cam[min].

Corollary 13. There exists a polynomial 2-approximate algorithm for ccam[min].

tcam[min] can be solved in polynomial time with dynamic programming; see Appendix for the
formal proof.

Theorem 14. There is an optimal algorithm for tcam[min] running in polynomial time.

Our second approximate algorithm, for cam[max], is also based on the MStT problem, but
with a different construction.

Theorem 15. If there exists a polynomial α-approximate algorithm for MStT, then there exists
a polynomial 4α-approximate algorithm for cam[max], which we call RECH MStTMax.

Proof. Let the maximal chunk size be equal to M . We separate data chunks into several subsets:
the first with chunks with sizes in (M/2,M ], the second in (M/4,M/2], and so on. The idea is to
build an approximate solution for the first subset, extend it to a solution for the first two subsets,
and so on. First, we build a Steiner tree for the root and chunks in the first subset and solve the
problem on this tree. This solution is at least 2α-competitive, where α is the MStT approximation
factor: edges used by a different solution must connect every chunk to the root, so their total cost
is at least the cost of a minimum Steiner tree, and their sizes are at least M/2. Next, we merge
the tree obtained on the first iteration into a single vertex, throw away the first subset, build a
Steiner tree for the second subset, solve the problem for this tree, and so on. Suppose that there
were k such subsets. Since we move chunks of size at most M/2i−1, and merging vertices does not
increase the weight of a Steiner tree, the cost of the ith subset does not exceed M/2i−1αST(i, i−1),
where ST(i, j) is the optimal Steiner tree weight for chunks with sizes in (M/2i,M/2j ]. Thus, the
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total cost does not exceed 2αM
∑k

i=1 ST(i, i− 1)/2i. For the lower bound, we count the cost of all
data movements across every edge. The total cost of all edges with chunks of mass at least M/2
moved along them is bounded by ST(1, 0), so the cost is bounded by M

2 ST(1, 0); repeating the

process for M
4 , M

8 and so on, we get in total M
∑k

i=1 ST(i, 0)/2i. Some of the edges are counted
more than once: an edge with the largest chunk of size M/2j moved along it has been counted
once with a factor of M/2j , once with M/2j+1, and so on, but the real lower bound for this edge
is M/2j . Thus for every edge we have an extra factor of 1 + 1/2 + 1/4 + . . . ≤ 2, and the optimal
cost is at least M/2

∑k
i=1 ST(i, 0)/2i. Since ST(i, 0) ≥ ST(i, i− 1), the total approximation factor

is 2αM
M/2 = 4α.

Theorem 11 implies that tcam[max] has an optimal solution since max{x, y} lies trivially in
[max{x, y},x+ y]. However, results for cam[min] and cam[max] cannot be significantly improved
because both are NP-hard; proofs of Theorems 16 and 17 are given in the Appendix.

Theorem 16. If there exists a > 0 s.t. µ(a, a) = a then cam[µ] is NP-hard and does not have less
than 19

18 -approximate polynomial algorithms even if all edge weights are equal, unless P=NP.

Theorem 17. The cam[min] problem is NP-hard even if all edge weights are equal, and each vertex
is required to contain a data chunk.

5 Evaluation

To evaluate the relative performance of the proposed heuristics, we have compared them in practical
settings on network topologies generated by the topobench library [12]. We analyzed topologies that
can serve for both server adjacency and switch adjacency, namely JellyFish [19], Hypercube, and
Small World Datacenter Ring (SWDC Ring) [18]. We compare seven algorithms: CAMH, a greedy
algorithm that on every step chooses a pair of chunks x and y and vertex v such that after x

and y are merged at v the cost of moving all resulting chunks along shortest paths plus the cost of

moving x and y to v is minimized; MCAMH, a variation of CAMH where v ∈ {v( x ), v( y )}; MCAMH≤,
a restriction of MCAMH where we always move the smaller chunk; RECH MST, a variation of Alg. 2
that merges along the minimum spanning tree; RECH MStT (Alg. 2); RECH SPT, another variation of
Alg. 2 that uses a tree of shortest paths; RECH MStTMax (Thm. 15); RECH MStTSplit (Thm. 10).
An implementation of all algorithms and sample topologies can be found at [3]. Selected results are
shown on Fig. 5; the plots show the number of data chunks nC = |C|, maximal edge weight W , and
range s of chunk sizes, s = [savg−∆s, savg + ∆s]. To generate a cam instance for a given topology,
we uniformly select weights from 1 to W and uniformly place nC data chunks in the vertices, each
of size chosen uniformly from s. We used three aggregation functions: µ(x, y) = exp(log |x| +
log |y|) (Fig. 5a-c), which roughly estimates joining two dictionaries, WordCount, aggr(x, y) =
SetUnion(x, y) (Fig. 5d-i), and aggr(x, y) = ChooseBest(x, y) (Fig. 5j-o), which compares the
(random) priorities of two chunks. For each point, we averaged 1000 random experiments.

The results show that among tree-based heuristics, the best are RECH MStT, RECH MStTMax, and
RECH MStTSplit. This is expected: unlike RECH MST, RECH MStT works on the local level and does
not optimize the part of the tree not directly invloved in aggregation, but also does not optimize
every chunk separately as RECH STP does. Among potential-based heuristics, CAMH clearly wins for
WordCount (it is even better than RECH STP) but fares much worse for SetUnion and ChooseBest.
CAMH, MCAMH, and MCAMH≤ use the value of µ, so their behaviour changes significantly between
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SetUnion and ChooseBest: the latter can bring a larger improvement if we get lucky and get a light
high-priority chunk. The relative performance of other algorithms does not change significantly
with aggregation function. CAMH, MCAMH, and MCAMH≤ represent a tradeoff between expressivity
(larger search space) and a higher chance to end up in a worse solution. MCAMH serves as the middle
ground and takes the leading place almost everywhere among these three heuristics; CAMH wins
on WordCount, where merges are more regular and predictable, and the local behavior of aggr
does not mislead CAMH. In general, heuristics based on Steiner trees are the best throughout all
experiments, with RECH MStT, RECH MStTMax, and RECH MStTSplit occupying the top three places
almost everywhere, even though they do not pay that much attention to aggr. RECH MStTMax starts
losing for the ChooseBest aggregation function since it was designed specifically for aggr = max,
and ChooseBest is very different. As the number of chunks grows, RECH MST becomes closer to
RECH MStT and its variations: chunks cover more vertices, and Steiner trees become more similar to
spanning trees. RECH SPT is worse than RECH MstT, as expected; it even loses to MCAMH and MCAMH≤
in many cases but regains some ground for more chunks. Interestingly, RECH SPT works better on
SWDC Ring; this may be because this topology is bounded (it is a cycle with four random chords
coming out of each vertex), so the tree of shortest paths covers most edges in the cycle and more
chunks.

There are two main conclusions to be drawn from the evaluation study. First, for a given
topology heuristics designed for specific aggregation functions perform significantly better in their
own domain. Second, heuristics designed for the same range of aggregation functions for a specific
topology perform better than more general heuristics independent from network topologies. This
confirms analytic results from Section 4 and allows designers of compute-aggregate infrastructures
to extend the taxonomy proposed in Fig. 3 if better performance is needed. This demonstrates a
fundamental tradeoff between simplicity of infrastructure and its performance.

6 Conclusion

In this work, we have introduced a model to find a schedule of aggregations that satisfies budget
constraints rather than directly optimizing desired objectives such as latency or throughput. We
believe that this approach will allow to decouple optimization problems from underlying transports
and provide fine-grained control to exploit network infrastructure. Our primary contribution is a
classification of aggregation functions with a theoretical and practical analysis that together lead
to unified design principles of “perfect” aggregations.
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Figures

Figure 1: A sample compute-aggregate task with three vertices t (target), u, and v: (a) the problem;
(b) “move to root” plan with cost 12; (c) optimal aggregation plan with cost 11. Transmission cost
of every edge is specified near the middle of the edge (e.g., c(u, v) = 1).

Figure 2: Different µ lead to different plans: (a) a sample task; (b) optimal plan for µ(a, b) = a+ b;
(c) optimal plan for µ(a, b) = max(a, b); (d) optimal plan for µ(a, b) = min(a, b).

Figure 3: The structure of our results in relation to aggregation size function µ and problem instance
(cam, tcam, ccam).
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Figure 4: Sample solution from Theorem 12. Steiner tree approximation is shown with bold lines,
and the resulting path of the smallest chunk is shown by a dotted arrow. Note that this chunk
never visits one edge more than twice.
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Figure 5: Compute-aggregation costs for different aggregation functions: (a-c) µ(x, y) = exp(log x+
log y); (d-i) aggr(x, y) = SetUnion(x, y); (j-o) aggr(x, y) = ChooseBest(x, y). Labels show the X-
axis value, topology, and parameters.
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Appendix

Proof of Theorem 6. Consider a complete graph G where the root r contains an infinitely large
chunk, all non-root vertices are terminals, edges between two terminal vertices cost 1, and edges
between a terminal vertex and the root cost ∞. Given an instance of Set Cover, where a set S
must be covered with a minimal number of m subsets Si ⊆ S, we define n(Si) as the number with
binary representation equivalent to S \ Si (for some fixed order of elements in the set). We encode
S by a chunk of size 0 and any other subset A ⊂ S by a chunk of size n(A) + 4n × 2|S|. The
aggregation size function for two chunks corresponding to subsets A and B produces a chunk of
size n(A ∪ B). Now, if there exists a set cover Si1 ,Si2 , · · · ,Sik then there is a solution to cam[µ]
of size k × 4n× 2|S| + c, where c ≤ n× 2|S| (we can aggregate Sij in any order and then aggregate
the rest with a zero chunk we obtained). On the other hand, if there exists a solution to cam[µ]
of size g × 4n× 2|S| + c, where c ≤ n× 2|S|, then there exists a solution to Set Cover of size g (to
achieve this solution of cam[µ] we have to obtain 0 in at most g agregations). Thus, a constant
approximation for cam[µ] implies a constant approximation of Set Cover which is impossible unless
P = NP . For tcam[µ], consider the following transformation of G to a tree TG: remove all the
edges; introduce a new vertex c; connect c with r by an edge of weight ∞ and with the rest of
G’s vertices by edges of weight 1. Changing G to TG does not increase cost more than twice (we
traverse two edges now). Thus, the transformation preserves approximations, which again implies
that tcam[µ] does not have constant approximations unless P = NP .

Proof of Theorem 7. In this case, it does not make sense to merge chunks at all; the optimal
algorithm is to bring all chunks separately to the sink. Formally, consider an optimal aggregation
plan for cam that merges two chunks not at the sink. Next, consider a transformed plan that carries
both chunks separately and treats them separately until the final vertex. Since µ(a, b) ≥ a+ b, the
total cost will not increase in this transformation, and we can sequentially get a plan without any
merging without increasing the costs. The optimal strategy without merging is to move all chunks
to the root along shortest paths, which can be computed in polynomial time. Because tcam and
ccam are strict subsets of cam, SPT is optimal for them too. For tcam there is no need to calculate
shortest paths since paths are unique, and the running time becomes linear.

Proof of Theorem 11. The algorithm is similar to Theorem 2: move chunks towards the vertex t,
merging them in intermediate nodes. Consider an arbitrary subtree T of G. All data chunks from
T have to be eventually moved upwards using parent edge e (if T 6= G). Minimal cost of this
operation is clearly ≤ sT , where sT is the size of the aggregation result of all chunks from C|T .
Can it be less? Assume the opposite: there is a set of data chunks X that will be moved upwards
through e s.t. CT ⊆ X∗ =

⋃
x∈X x

∗ and
∑

x∈X size(x) < sT , where x∗ is the set of initial chunks
that contributed to x. If CT ( X∗, we can throw away X∗ \ CT without any increase in the cost
because µ is at least max. Also, since µ does not exceed the sum, we can aggregate X with no cost
increase. The resulting chunk has size sT , which is a contradiction: by construction, each upward
edge e from a subtree T will add exactly sT .

Proof of Theorem 12. Given an instance (G, t,C) of the cam[min] problem, first we find an α-
approximation T to the MStT instance (G,V ′ = {t} ∪ {v(x) : x ∈ C}). Then, we construct an
aggregation schedule by taking a data chunk with the smallest size and walking it through T . The
resulting cost does not exceed 2m · w(T ), where m is the size of the smallest chunk. Similar to
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Theorem 16, an aggregation schedule defines a subgraph H ⊇ V ′, and so incurs the cost of at least
m · w(H). A sample solution for this algorithm is shown on Fig. 4.

Proof of Theorem 14. The optimal algorithm uses dynamic programming. Consider an instance
(G = (V ,E), t,C) of the tcam[min] problem, where G is a tree with a root t. For every vertex
v ∈ V we compute mc(v), the size of the smallest chunk in a subtree Tv rooted at v, and for every
c ∈ C we compute dp(v, size(c)), an optimal solution for Tv with an additional chunk of size size(c) at
v. We can find mc(v) for every vertex in linear time by running depth first search. If dp(v, size(c))
are known for every u ∈ children(v) then dp(v, size(c)) can be computed as dp(v, size(c)) =∑

u∈ch(v) min{2 · size(c) · d(v,u) + dp(u, size(c)), mc(u) · d(v,u) + dp(u, mc(u))}. Now dp(t, mc(t))
contains the cost of an optimal aggregation plan, which can be found with backtracking.

Proof of Theorem 16. The proof is by the reduction from the MStT problem. Given a MStT
instance (G,w,V ′ ⊆ V ), we place data chunks of size a in each vertex of V ′ except one, which
becomes the sink. Any aggregation schedule defines a connected subgraph H of G that contains all
vertices from V ′. The minimal cost is a ·w(H), where w(H) =

∑
e∈E(H)w(e), since all transmitted

data chunks have size a, and we can always avoid transmitting more than one chunk across one
link. Any spanning tree of H defines a Steiner tree for V ′, and vice versa, any Steiner tree T defines
an aggregation schedule with cost a · w(T ).

Proof of Theorem 17. This time we reduce the Hamiltonian cycle problem. Given a Hamiltonian
cycle problem instance G, we choose the sink arbitrarily, place a chunk of size 1 in the sink and
chunks of size |V |2 in every other vertex. The optimal solution travels with weight 1 along a
Hamiltonian cycle.
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