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Abstract— Modern data centers face growing workloads,
putting accrued pressure on network monitoring solutions
necessary for ensuring correct and efficient operation. Advances
in network programmability have meanwhile led to yet more
monitoring data being straightforwardly collected from switches,
exacerbating bottlenecks in corresponding collection-centric ap-
proaches. This limits scalability and responsiveness, especially
when several monitoring tasks are deployed side-by-side, as is
common for network management. We present a novel and
comprehensive selection-centric solution for network monitor-
ing and management (M&M) called FARM that significantly
simplifies the development and deployment of network M&M
tasks while being effective and scalable. FARM’s main novelty
lies in its comprehensive design. Instead of focusing solely on
individual parts of network monitoring, FARM takes a global
perspective on the problem and aligns all of its components
correspondingly: a strongly decentralized software architecture,
a specifically designed programming model, and an integrated
performance optimization framework. In short, FARM performs
monitoring (re)actions locally on switches to the extent possible,
using centralized components only if and when needed, and
globally optimizes placement, considering placement constraints
intrinsically expressed through its programming model as well
as commonalities among tasks. Deployed in a production data
center, FARM shows significant gains in responsiveness (up to
3427× faster over recent generic approaches and 4× faster over
highly specialized solutions), and savings in network bandwidth
(10000×) and computational effort. Placement optimization shows
excellent scalability up to 10200 seeds across 1040 switches.

I. INTRODUCTION

To manage networks, administrators need to continuously
monitor them to detect and mitigate exceptional behavior.
Existing monitoring systems, however, exhibit many limitations
affecting their semantics, scalability, and responsiveness (cf.
resource efficiency and full accuracy dilemma [1]).

a) Limitations of existing systems: Based on early con-
strained switch designs, monitoring approaches are traditionally
collection-centric: collecting all information possible (raw
samples, simple statistics) through simple agents executing on
switches, forwarding it all to a logically centralized collector
that computes a global picture of the network state by filtering
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and analyzing data sent by all agents (e.g., sFlow [2], IPFIX [3]).
More recent approaches exploit the increasing programmability
of network devices [4] to obtain yet more information, in
particular from packet payloads. However, sending raw packets
and statistics from hundreds or thousands of switches to a
collector can quickly congest network links and overwhelm
the collector, even if implemented in a streaming fashion, as
in Marple [5], Sonata [6], or Newton [7]. While some of these
approaches aim to process raw statistics locally to switches
in order to alleviate the bottleneck introduced by a logically
centralized collector, they can only capture simple monitoring
tasks since their statefulness is confined to aggregates (e.g.,
minimum, maximum, average, count).

Moreover, such recent approaches lack abstractions to dynam-
ically adapt their behaviour once a query is satisfied. Monitoring
tasks can thus only pull information from switches but can not
perform local (re)actions [8] in response, e.g., adding a ternary
content-addressable memory (TCAM) rule or P4 [9] table
entries to quench DDoS attacks [10]. Triggering mitigating
reactions thus requires additional out-of-band mechanisms,
incurring an increased latency that can be prohibitive in many
scenarios requiring fast reaction.

In addition, many monitoring tasks need to run simultane-
ously, such as to detect different types of anomalies, e.g., heavy
hitters (HHs), DoS attacks, super-spreaders. Naïvely running
several tasks independently side-by-side can lead to transmitting
and processing the same data multiple times, exacerbating bot-
tlenecks and multiplying operational costs. Existing solutions
provide no opportunities for globally optimizing resource usage
across the network and concurrent monitoring tasks. Lastly,
many solutions are restricted to specific highly specialized HW
or SW platforms [6], [7], [11]–[13] to mitigate performance
hurdles induced by design limitations.

b) FARM: We present a novel monitoring and manage-
ment (M&M) system called FARM (framework for network
M&M) for accurate, efficient, scalable, and semantically rich
network monitoring as well as management. FARM’s main
novelty lies in its comprehensive design. Instead of focusing
solely on rethinking, innovating, or improving the efficiency
of individual parts of network monitoring while relying on
existing, non-tailored solutions for the rest, FARM takes a
global perspective on the network monitoring problem. It
integrates and aligns hardware and software architecture, a
versatile programming model, and an optimization framework
correspondingly to create a tailor-made solution that aims for
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prime performance. In short, FARM is fully selection-centric as
opposed to collection-centric by supporting expressive, strongly
decentralized, reasoning through so-called seeds deployable in
a platform-independent ([IND]) way directly on switches. Seeds
accurately poll traffic statistics, probe packets, and perform
(re)actions locally on switches; they execute in a lightweight
manner and interact among each other and with their harvester
(a global analyzer) only in specific, well-defined states, if at
all needed. FARM’s programming model exposes just enough
information for joint, dynamic seed placement optimization.
Fig. 1 shows the workflow of a M&M task in FARM.

FARM’s decentralized architecture ([DEC]) allows to run
tasks and perform actions where they belong, also management
actions. It exploits semantic knowledge from the programming
model to efficiently use resources available on network devices.
Seeds are executed on switches to get select information which
is as timely accurate as possible and to perform required
reactions directly. A seed can nonetheless communicate with a
harvester to take global decisions if needed, but does so much
more efficiently since information is fully prefiltered locally.

FARM uses a domain specific language (DSL) called
automata language for network management and monitoring
code (Almanac) to describe M&M tasks in an expressive
model ([EXP]) by leveraging the intuitive abstraction of state
machines to be executed as seeds. Almanac makes it easy to
succinctly describe M&M tasks as executable entities without
knowledge of network topology or resources. It is specialized
to define communication patterns, resource constraints and
utility, placement policies, and local (re)actions. Almanac
captures a wide spectrum of use-cases where seeds can
analyze switch statistics, packet payloads, but also TCAM
rules. Our DSL abstractions allow FARM’s runtime system to
dynamically deploy and relocate seeds across devices without
disruptions which facilitates holistic resource optimization –
continuous in time and space – of seed placement for co-
existing M&M tasks ([OPT]). To that end, FARM uses a novel,
specialized optimization framework that considers network
device resources, various overheads (e.g., seed migration), and
beneficial aggregation factors from (re)using collected data for
multiple M&M tasks deployed side-by-side.

c) Contributions and roadmap: In summary, we make
the following novel contributions:

• Decentralized M&M architecture (§ II) that facilitates
switch-local action and reaction, thus enabling network
management beyond simple monitoring and leading to
improved accuracy, responsiveness, and scalability.

• Programming model for M&M tasks (§ III) expressive
enough to describe M&M tasks and, at the same time,
amenable to static analysis producing dynamic resource
constraint and utility for resource optimization.

• Holistic resource optimization framework (§ IV) for co-
existing M&M tasks, featuring two algorithms: a mixed-
integer linear program-based approach and our novel
heuristic addressing scalability constraints of the former.

• Platform-independent implementation (§ V) of FARM
on top of open-source Stratum [14] framework supporting

M&M seeds
Harvester a

Harvester b

Seeder

Almanac 
task a

M&M seeds

Almanac 
task b

Write Compile & 
place

Monitor  &
react Coordinate

Fig. 1: FARM workflow overview. M&M tasks described in
Almanac, possibly by different users, are sent to the seeder.
The seeder translates these into executable seeds and deploys
them on switches in a network-wide optimized manner. At
runtime, seeds (re)act locally and may provide information to
their harvester if/when global coordination is needed.

HW and SW solutions from most major vendors.
• Evaluation in a production data center (§ VI) of

SAP showing that: (1) FARM’s gains significantly in re-
sponsiveness (up to 3427× faster over generic approaches
and 4× faster over highly specialized solutions), precision,
and savings in network bandwidth (up to 10000×) and
computational requirements over the state of the art; (2)
commodity switches can execute dozens of (even CPU-
intensive) seeds with FARM; (3) FARM’s global optimizer
is scalable and efficient, capable of optimizing up to 10200
seeds across 1040 switches.

We pinpoint limitations of existing work in § VII, and
conclude in § VIII. For ease of presentation and positioning
w.r.t. existing work we use the well-known HH detection task –
identification of flows beyond a threshold size [11], [15]–[17].
Our technical report [18] gives a variety of other M&M tasks.

II. M&M ARCHITECTURE

We first present the complete high-level architecture of our
framework for network M&M (FARM) and its components,
which enable switch-local actions and reactions (cf. [DEC]).

A. Bird’s Eye View

FARM builds on the idea of using switch-local support for
execution of monitoring tasks (cf. Marple [5]) and extends
this idea further to switch-local management tasks including
reactions. Unlike pure monitoring, management decisions often
cannot be made without any centralized coordination. One of
the key features of the FARM design is that both monitoring
and management functionalities can be decomposed into switch-
local (distributed) components and centralized components. The
former can take advantage of their proximity to the data source
to monitor and actuate, while the latter (if needed) use a global
view of system state. Communication among the two types of
components follows a well-defined pattern expressed through
Almanac, a novel DSL.

Most reactions involve the software-defined networking
(SDN) control plane, hence, local reactions entail implementing
distributed FARM components inside the switch-local control
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Fig. 2: FARM’s architecture overview. Seeds interact via
their soil with their harvester and other seeds.

plane. FARM components are designed for generality and
seamless deployment across various HW platforms upon a well-
defined abstraction, Stratum [14]. For superior performance,
switch-local components exploit HW resources of the switch
as available, providing most accurate monitoring information
with lowest possible delay, crucial for a variety of time-
critical measurement tasks (e.g. HH, hierarchical heavy hitter
(HHH), DDoS, super-spreaders, QoS). Placement of FARM’s
decentralized components is then globally optimized through
our purpose-built heuristic (see § IV).

FARM’s design distinguishes between two types of compo-
nents, as shown in Fig. 2: (1) M&M task components executing
the logic of M&M applications (2) M&M control components
managing deployment and execution of (1).

B. Switch-local Components

State-of-the-art data center (DC) switching devices have
two main processing domains: an ASIC optimized for fast
packet processing and a management system with a common
CPU responsible for communication with control devices,
e.g., an SDN controller, and, following either local or global
management decisions, updating the forwarding rules of the
ASIC (i.e., reacting). FARM components run at the manage-
ment system, but continuously poll packet processing statistics,
including from P4 programs, or sample packets. To optimize
usage of shared switch resources, e.g. polling bandwidth, by
multiple M&M tasks, we introduce two types of switch-local
components – an execution unit and a “hypervisor”.

a) Seed: The M&M seeds – seeds for short – of an M&M
task collect monitoring data (e.g., sampled packets, statistics),
filter it, and analyze it with the goal of performing local
management (re)actions (e.g., change its state, update TCAM
rules, deploy new P4 table entries) immediately in response
without requiring remote intervention. Seeds are stateful and
run as lightweight instances (processes or threads) in the
switch control plane. They may interact with other seeds and

their harvester (a centralized M&M task-specific coordinator,
cf. Fig. 1 and § II-C) if and when needed for the M&M task.
A seed definition, written in Almanac as detailed shortly in
§ III, forms the core of an M&M algorithm. It includes an
abstract description of where the corresponding seed instance(s)
will execute in the network. As the seed behavior itself may
need to change as part of local reaction, we introduce explicit
states to its definition, where every state may listen to events
and perform actions of its own choosing. Because of the high
dynamics of FARM, a seed can also change its polling rate
dynamically to reduce the switch resources required, which is
important to optimize M&M tasks globally (see § IV).

b) Soil: The M&M seed foundation layer (soil) manages
the execution of the seeds, tracks their switch resource usage,
and optimizes/aggregates communication with the ASIC over a
PCIe bus, thus serving as abstraction layer between seeds and
the switch. Resources tracked include three ASIC-specific types
– bus bandwidth for probing, statistics polling capacity, and
TCAM space for tracking specific flows and/or implementing
various forms of local reaction. It employs its own communica-
tion service to establish and optimize its communication with
remote components (i.e., centralized components or seeds or
soil on other switches). The soil can aggregate polling when
multiple seeds that execute different M&M tasks poll the same
data from the switch. In such case, it is possible to poll the
data only once for all seeds to minimize communication to the
ASIC and avoid contention. Such opportunities are statically
analyzed and leveraged for aggregation benefits (see § IV) by
the M&M centralized control instance (seeder). Note that the
soil carefully divides the ASICs’ TCAM between monitoring
and packet forwarding such that the switching behavior is not
affected when rearranging the TCAM due to FARM operation.
This approach draws inspiration from iSTAMP’s [16] TCAM
division, used for fine-grained monitoring, and extends it with
an accurate polling mechanism between TCAM and seeds.

We detail the seed programming abstraction in § III, but
we would like to highlight here that this abstraction is more
generic than query operations used in several prior approaches
(e.g., Sonata [6], Marple [5]). This allows FARM to support
altering local behavior, e.g., reacting to some stimuli, quickly,
without the need to involve a centralized entity for decision
making and/or seed redeployment (e.g., Newton [7]).

C. Centralized Components

Switch-local components may still require centralized com-
ponents to partake in some M&M tasks by taking centralized
decisions based on data received from distributed seeds, and
coordinate the placement and maximize joint utility of deployed
seeds. FARM thus uses, respectively:

a) Harvester: Each M&M task can use its own specific
centralized component, called a harvester, that collects (or
harvests) and takes global management actions for it when
seed-local decision-making is insufficient.

b) Seeder: The M&M centralized control instance, called
a seeder, optimizes the resource utilization of all co-deployed
M&M tasks. It dynamically (un)installs and (re)positions the



program pg ::= strdec fundec ma
machine ma ::= machine mname [extends mname ] md
m. def. md ::={pl ; xd ; st}
var. dec. xd ::= [external] typ x [= ex ] | tty y [= ex ]
state st ::= state sname {xd ; [ut ] ev}
type typ ::= bool | int | long | string | list | packet

| action | filter | ...
trig t. tty ::= time | probe | poll | ...
utility ut ::= util (x){ac}

place pl ::= place (all | any) [ex | ra ]
range ra ::= [sender | receiver] [midpoint] [ex ]

range op ex

filter fil ::= dstIP ex | srcIP ex | port ex | ...
event ev ::= when (trg ) do{ac;}
trigger trg ::= rec | y [as x] | enter | exit | realloc
receipt rec ::= recv pat from (mname [@dst ] | harvester)
operator op ::= and | or | + |- | * | / | <= | >= | == | <>
expr. ex ::= v | y | x | fil | not ex | ex op ex | ...
action ac ::= y = ex ; | x = ex ; | transit ex ;

| if(ex ) then{ac} [else{ac} ]
| while(ex ){ac} |return ex ;
| send ex to (mname [@dst ] | harvester);

Fig. 3: Core Almanac syntax. z denotes several instances of z,
[z] that z is optional. Blue highlights keywords representing
state machine constructs, orange seed-specific primitives. Back-
ground marks constructs with a common purpose: placement
(red), resource allocation (green), event handling (purple).

seeds following a global placement optimization algorithm (see
§ IV). The seeder also establishes the interface for seeds to
communicate with each other either via the seeder or directly
by requesting a seed’s network location.

III. M&M SEED PROGRAMMING MODEL

This section introduces our expressive ([EXP]) automata
language for network management and monitoring code
(Almanac)2 and illustrates it through HH detection.

A. Language Overview

Almanac is centered around the concept of seeds, which are
patterned after the well-known state machine abstraction. It
draws inspiration from a variety of more generic languages and
models (e.g., Esterel [19], IO-Automata [20]) based on state
machines due to programmers’ familiarity with that abstraction
in the space of networking (cf. [21]), adding features and
actions specific to M&M (e.g., packet filter expressions). Fig. 3
presents a subset of the C-like syntax for expressing state
machines in Almanac. Following, z represents several instances
of z, and [z] means that z is optional. Blue highlighted keywords
represent common state machine constructs; orange highlights
seed-specific primitives.

a) Machines: A seed state machine machine has a name
mname , representing a seed type rather than a single seed
instance. A state machine includes a set of variable declarations
xd , a set of placement constraints pl , and a set of declarations
of explicit states for the machine. Variables marked as external
are customizable at deployment, providing a way to customize

2An almanac is a calendar with agricultural and seasonal advice.

seed behavior. Optionally, a machine extends another machine
with Almanac currently implementing a simple form of single
inheritance: states can be overridden in child machines, but
variables cannot be overridden or shadowed. More advanced
mechanisms, e.g. [22], are under investigation. Note that trigger
variables y are special kinds of variables used for triggering
events. They are assigned one of the trigger types tty – time,
poll, and probe. Variables of type time or poll both denote
events strictly periodic in time, but the latter represent polling
data from the ASIC and contain filter information fil needed for
seed placement optimization (see § IV). Type probe variables
carry similar information to poll but are used to set up packet
probing (sampling). The period provided for probe is only a
lower bound and actual rate depends on the traffic. Semantics
of placement constraints are explained in § III-B.

b) States: Each discrete state state of a machine has a
name sname and a definition including a set of local variables
xd (external is disallowed), a set of events ev that can affect
the machine in the given state, and a callback function ut
estimating the seed’s utility in a given state when supplied
with resource allocation bound to variable x. Note that as
syntactic sugar (not shown for brevity), events can also be
described at the machine level, applying to all states, with the
possibility of overriding such global definitions.

c) Events: Each event is defined by a trigger trg for
executing it and a set of actions acs performed in response. The
trigger can be entering (enter) or exiting (exit) the state, the
reception (recv) of a message from another machine (instance)
or the harvester, a trigger variable reaching its triggering
condition possibly assigning event data to a variable with as x
(e.g., polled statistics, packet sample), or a resource reallocation
(realloc) event due to placement (re)optimization (see § IV).
Receptions use pattern matching on messages, constraining the
source (mname ) at a given destination (dst ), which can be a
seed, a group of seeds, other switches, or a harvester. A simple
and common pattern is a formal argument; if the received
message has the same type as the argument, the corresponding
value will be assigned implicitly.

d) Actions: The body of an event handler includes a
sequence of actions — assignments of expressions to trigger
variables (e.g., to modify polling rates) or regular variables,
common control structures (if, while), sending (send) of
messages to another machine mname at a given host dst
or broadcast to all hosts (no dst ), and explicit transitions
(transit) to states. Logic without state machine-related oper-
ations can be modularized into common auxiliary functions
(fundec , omitted in the syntax for brevity), e.g. to filter TCAM
rules, match regular expressions. These can return values.

e) Runtime library: The soil’ runtime support library
(see List. 1 excerpt), includes definitions for types Probe and
Poll expected by respective trigger variables. The library
also allows for querying resource information, e.g., res()

returns a Resources structure containing amounts of allocated
resources of each type. In addition, the forwarding rules in
TCAM can be modified through the API using addTCAMRule(),
deleteTCAMRule(), and getTCAMRule(). Finally, exec() runs



1 // Triggers
2 struct Probe { int ival; filter what; }
3 struct Poll { int ival; filter what; }
4 // Resource monitoring
5 struct Resources { float vCPU; int TCAM; ...}
6 Resources res() { ... }
7 // Dataplane
8 struct Rule { filter pattern; action act; }
9 void addTCAMRule(Rule rule) { ... }

10 void removeTCAMRule(filter pattern) { ... }
11 Rule getTCAMRule(filter pattern) { ... }
12 // Running external code
13 void exec(string command) { ... }

List. 1: Excerpt of runtime library’s API.

external code (cf. ML example in § VI).
f) Utility callback function: Every state comes with a

partial callback function util which takes resource amounts as
argument and returns a floating point value. To keep placement
efficient, we impose a range of syntactic restrictions on util’s
body: 1. the allowed acs are if-then-else and return; 2. the
allowed ops are and, or, ==, <=, >=, +, -, *, and /; 3. function
calls are forbidden except for min and max.

B. From Almanac to Tasks and Seeds

A network operator creates a task t by supplying the seeder
with a set M t of machines and, for each m ∈ M t, the
assignment of values to m’s external variables. The seeder’s
first step for that task is to use the SDN controller to resolve
place directives for each machine m, producing: the set of
seeds Sm, and for each seed s ∈ Sm the non-empty set of
switches Ns, at exactly one of which s must be placed. The
seeder’s second step is to analyze util to determine each s’s
resource constraints Cs(ri) and utility function us(ri), where
ri is a sequence of variables representing allocated resource
amounts. In essence, Cs(ri) reflects util’s domain, and us(ri)
util’s return value; both are represented as explicit polynomials
making them suitable for placement optimization (see § IV).
Finally, to infer aggregation opportunities, as the third step,
for every seed, the seeder derives the set of poll variables Y s,
and for each y ∈ Y s: the polling subject y.what, and interval
function y.ival(ri), which can depend on allocated resources.
Formal definitions and further details are given in [18].

a) Placement constraints: To find Sm and then Ns for
each s ∈ Sm, the seeder considers a sequence of pl directives
Π1, . . . ,Πk from m’s Almanac description with each ex inside
Πi fully evaluated to constants. So Πi = place qi pci, where qi
is either all or any quantifier, and pci is an optional placement
constraint. Then, Sm is simply a union of seed sets πJqi pciK
corresponding to individual Πi, where πJ·K is the placement
interpretation function. πJqi pciK has three main cases: (a) pc
is empty: qi refers to all switches (e.g., πJallK = N and
πJallK = {{n} : n ∈ N}; (b) pc is ex , ex is evaluate to
switch ids: qi is restricted to those specific switches, otherwise
similar to (a); (c) pc is ra : qi refers to paths encoded by [ex ]
(all paths if omitted), the remaining part of pc specifies a set
of nodes on each path. The last case relies on two auxiliary
helper functions: φsJ·K and φpath(·). For a bool expression ex ,
φsJex K evaluates all variables referenced in ex based on seed
s’s state and returns a closed boolean formula with fil as atomic

TABLE I: 16 well-known network monitoring and attack
examples implemented in FARM with numbers of lines of code.
The numbers include all code, e.g., also abstracted functions.

Use case Seed Harv. Use case Seed Harv.

Heavy hitter (HH) 29 12 Link failure [23] 31 8
Hier. HH [24]

(inherited)
21 26 Traffic change [25] 7 5

Flow size distr. [26] 30 15
Hier. HH [24] 38 26 Superspreader [13] 58 21
DDoS [10] 71 30 SSH brute force [27] 34 9
New TCP conn. [28] 19 5 Port scan [29] 44 23
TCP SYN flood [28] 63 18 DNS reflection [30] 83 22
Partial TCP flow [28] 73 18 Entropy estim. [31] 67 15
Slowloris [32] 44 29 FloodDefender [33] 126 35

propositions. Then, for such a closed formula ex c, φpath(ex c)
represents the result of seeder retrieving a set of paths matching
ex c from the SDN controller. As an example, consider ex c =
srcIP "10.1.1.4" and dstIP "10.0.1.0/24". If

φpath(srcIP "10.1.1.4" and dstIP "10.0.1.0/24")

= {(1, 2, 5, 3, 4), (1, 2, 6, 3, 4), (1, 2, 7, 8, 9)}
then

πJany receiver ex range == 1K = {{3, 8}}
πJall midpoint ex range == 0K = {{5}, {6}, {7}}}

πJany receiver ex range <= 1K = {{3, 4}, {3, 4}, {8, 9}
b) Resource constraints and utility: For understanding

util block, the simplest case is a single if statement whose
condition does not use or. First, the condition is converted
by constraint interpretation function κsJ·K to a set Cs of
polynomials over ri, each of which must be non-negative
for the resource constraints to hold. For example,

κsJres.vCPU >= 1 and res.RAM >= 100K = {r1−1, r2−100}
Second, the return expression under if is converted by

an expression interpretation function ϵsJ·K to a polynomial
us(ri). Supporting or operators or several if is also possible,
but uses instead of a set Cs and a function us sets {Cs

i}ki=1

and {us
i}ki=1 of those, meaning that utility is us

i (ri) once
Cs

i (ri) ≥ 0. For placement optimization (see § IV) that would
amount to splitting the seed into several copies, at most one
is to be placed.

c) Polling aggregation: For polling aggregation the seeder
must know to what extent the two filters x1 .what and x2
.what for poll variables x1 and x2 share polling subjects, e.g.,
the same TCAM entries or the same logical interfaces. To
determine that, we use φsJ·K again to evaluate the expression
into a boolean formula over fil with constants. A single filter
may require polling multiple statistics from the ASIC (e.g.,
from several TCAM rules) so the precise sharing depends
on the actual filter encoding. We assume a filter encoding
function φenc that returns a set of polling subjects given an
output of φsJ·K. Finally, since the seed programmer may choose
y.ival to depend on actual resource amount (encouraging
allocation with util), we capture that dependency as well.
For a seed s with poll variables Y s and for each y ∈ Y s

defined as poll y=Poll{.ival=ex 1,.what=ex 2} , we derive
y.ival(ri) = ϵsJex 1K and y.what = φenc(φ

sJex 2K).



1 machine HH {
2 place all; Sm = {s1, . . . , s|N|}; ∀i. Nsi = {ni}
3 poll pollStats = Poll {
4 .ival = 10/res().PCIe, .what = port ANY
5 }; y.ival(r1, r2, r3) = 10/r3; y.what = {eth0, eth1, . . .}
6 long threshold;
7 action hitterAction;
8 list hitters;
9 state observe {

10 util (res) {
11 if (res.vCPU>=1 and res.RAM>=100) then {
12 return min(res.vCPU, res.PCIe);
13 } us(r1, r2, r3) = min(r1, r3);
14 } Cs(r1, r2, r3) = {r1 − 1, r2 − 100}
15 when (pollStats as stats) do {
16 hitters = getHH(stats, threshold);
17 if (not is_list_empty(hitters)) then {
18 transit HHdetected;
19 }
20 }
21 }
22 state HHdetected {
23 util (res) { return 100; }
24 when (enter) do {
25 send hitters to harvester;
26 setHitterRules(hitters, hitterAction);
27 transit observe;
28 }
29 } us(r1, r2, r3) = 100; Cs(r1, r2, r3) = ∅
30 when (recv long newTh from harvester)
31 do { threshold = newTh; }
32 when (recv action hitAct from harvester)
33 do { hitterAction = hitAct; }
34 }

List. 2: Heavy hitter (HH) seed example.

C. Illustration

Tab. I shows scenarios implemented with Almanac. We detail
heavy hitter (HH) detection (see List. 2) for illustration. HHs
are flows with sizes larger than a given threshold. The example
has two states: In the (1) observe state, none of the observed
ports are identified as an HH; as soon as a port’s transmitted
bytes reach the defined threshold, a state transition to (2)
HHdetected occurs. In state (2) the current port list is sent to
the HH harvester, enabling reaction to the HHs in the network.
In addition, local reaction is triggered to install TCAM rules
through auxiliary functions (abstracted in setHitterRules) for
the detected flows altering QoS policy for respective packets.
The two events for receiving messages are defined outside of (1)
and (2), applying to both. The harvester sets up the threshold
for a HH and can dynamically change it based on the overall
network load. If the network policy changes, the harvester can
also modify the action that seeds apply locally to detected
HHs. Auxiliary function getHH uses common programming
constructs to determine which flows are HHs and is abstracted
(thus italicized) for brevity. See [18] for seed code for all Tab. I
examples including hierarchical HH (HHH) detection.

IV. M&M SEED PLACEMENT

This section formulates FARM’s seed placement problem
and discusses our algorithmic solution, which fulfills our
network monitoring requirements of optimization ([OPT]).

A. Rationale and Overview

As introduced in § II and § III, FARM enables the description
of switch-local tasks and their deployment in a distributed

TABLE II: Elements and notation of optimization model.

Description Element Set Description Element Set

poll variables y Y Seeds s S
Poll subjects p P Resource types r R
M&M tasks t T Switches n N

TABLE III: Functions and variables of the optimization model.

Optimization input description Notation Source

Set of seeds that belong to t St place
Set of switches where s can be placed Ns place
Polling interval function for variable y y.ival poll
Polling subject for variable y y.what poll
Utility function for seed s us util
Set of resource constraints for seed s Cs util
Available resources of type r on n ares(n, r) soil

Optimization variable description Function

Returns 1 if all t’s seeds are placed, else 0 tplc(t)
Returns 1 if s is placed on n ∈ Ns , else 0 plc(s, n)
Returns 1 if s is being migrated migr(s, n)
Amount of type r res. assigned to s at n ∈ Ns res(s, n, r)
Amount of type rpoll res. assigned to p at n pollres(n, p)

manner as seeds on switches. Seeds St =
⋃

m∈Mt Sm of a
task t may be positioned on different switches, seed s on
exactly one of Ns. A seed may also be migrated; either due to
placement constraint for the seed not being satisfied anymore
or due to a new seed with a higher utility needing the same
switch. Migration induces extra resource usage due to a seed’s
own inner state being synchronized between different nodes.
The polling periods of a seed can depend on the actual resource
allocation. Also, certain seeds can benefit from aggregation as
they consider the same data. Considering the best performance
for tasks and the many parameters and options available, in
§ IV-D we propose a heuristic algorithm to optimize seed
placement in FARM. Tab. II summarizes notation. Lowercase
letters represent specific elements, while the corresponding
uppercase letter denotes the entire set of elements of that kind.
E.g., n denotes a switch, N denotes the set of all switches.

B. Monitoring Utility

The optimization model for seed placement is captured below.
The goal of optimization is to maximize the monitoring utility
(MU), which reflects the monitoring quality for the entire
system based on the resources assigned to each seed. The
monitoring utility is defined as the sum over all seeds s ∈ S and
all switches n ∈ N , values returned by s’s util callback with
every resource r ∈ R set to the assigned resources res(s, n, r)
(Tab. III lists helper functions and variables):

maximize
∑

s∈S

∑
n∈Ns plc(s, n) · us(res(s, n, ri)) (MU)

a) Migration overhead: While seed migration can gen-
erally optimize the seed layout, it incurs costs that must
be considered. Migrating a seed consists of installing its
description on the target switch and transferring its state over
from the source switch. As the state is being transferred, and
before it is deleted on the source switch, the seed resource
utilization is temporarily doubled. Below, migr(s, n) checks



for all s ∈ S and n ∈ S if seed s is migrating from n. We
use plc’(s, n) to denote the known value of plc(s, n) from the
previous placement run, i.e., current placement:

migr(s, n) = plc′(s, n) ·
∑

n′∈Ns\{n} plc(s, n′)

b) Aggregation benefits: Aggregating seeds at the same
switch can reduce data polling cost. Let rpoll ∈ R be
the resource type reflecting polling capacity. Our key as-
sumption is that the demand for rpoll arising from trigger
variable y is inversely proportional to the polling interval
y.ival(res(s, n, ri)) with coefficient αpoll(n), which may
depend on switch n’s architecture. As the demand is shared
among s’s poll variables having the same polling subject, we
introduce a single variable pollres(n, p) for the amount rpoll
consumed by a given polling subject p, s.t., y.what = p, at n:

pollres(n, p) ≥ αpoll(n) · plc(s, n)/y.ival(res(s, n, ri))

+αpoll(n) · migr(s, n) /y.ival(res′(s, n, ri))
C. Constraints

Several constraints have to be taken into account when
optimizing monitoring seed placement, we present them below
as (C1)–(C4).

a) Every seed is placed at one switch at most.: For any
task t ∈ T , if one of t’s seeds is placed, then every seed s ∈ St

must be placed at exactly one switch n ∈ Ns:∑
n∈Ns plc(s, n) = tplc(t) (C1)

b) Resources assigned for placed seeds: The amount of
type r ∈ R resources assigned to s ∈ S on n ∈ Ns, res(s, n, r),
shall satisfy s’s util callback function’s domain:

plc(s, n) · c(res(s, n, ri)) ≥ 0 (C2)
c) Only placed seeds consume resources: A seed s ∈ S

on a switch n ∈ Ns can get at most the total amount of type
r ∈ R resources available at n, but only if s is placed on n:

res(s, n, r) ≤ ares(n, r) · plc(s, n) (C3)
d) Switch resource limit for all seeds: The total of type

r resources assigned to seeds at n cannot exceed the available
amount at switch n with a special account for aggregated rpoll:∑

s, Ns∋n res(s, n, r) + migr(s, n) · res′(s, n, r)

≤ ares(n, r) ∀ n ∈ N, r ∈ R \ {rpoll}∑
p∈P pollres(n, p) ≤ ares(n, rpoll) ∀ n ∈ N

(C4)

D. Placement Optimization Algorithm

If us and Cs, and inverse of y.ival are linear, then
we almost have the mixed-integer linear program (MILP)
formulation. Unfortunately, in equation (MU), inequality for
pollres(n, p), and in (C2), there is an occurrence of plc(s, n) ·
f(res(s, n, ri)) term where f is linear, but the expression as a
whole violates linearity. Fortunately, thanks to (C3) we know
that plc(s, n) = 0, implies res(s, n, r) = 0 for any r, hence we
can rewrite the term as f(res(s, n, ri))− (1− plc(s, n)) · f(0).

Optimal assignment of seeds to switches is an NP-hard
problem [18]. To maintain scalability in larger deployments,
we propose a heuristic in Alg. 1: it places seeds greedily with
minimum utility and no migration, redistributes resources with
linear programming, and only then migrates placed seeds.

Algorithm 1 FARM seed placement optimization heuristic.
1) Sort tasks T by decreasing minimum utility as t1, t2, . . ., tk.
2) For every t = t1, t2, . . . , tk

a) Repeat while possible: among s ∈ St choose and place
such s that adds the most to the utility without unnecessary
migration (for existing seeds with valid placement).

b) If there remains s /∈ St, remove St from the placement.
3) Redistribute resources using linear programming formulation.
4) For every seed s and every switch n ∈ Ns compute the

migration benefit as the increase in utility when s is migrated
to n (expressible as a linear program).

5) Migrate the seeds in the order of decreasing migration benefit.

V. IMPLEMENTATION

We elaborate on the platform-independent ([IND]) implemen-
tation of FARM touching on Almanac and the seed placement.

A. FARM Components

a) Switch integration: FARM implements two drivers
for the communication between the CPU and the ASIC via
the PCIe bus, one for Stratum [14] and one for Arista’s
EOSSDK [34]. Stratum is an OS module that abstracts the HW
layer of major ASICs to provide common interfaces. FARM is
thus deployable on all ASICs supported by Stratum and Arista
EOS switches. We ensured that communication over the PCIe
bus between the (i) CPU running the soil and seeds and (ii)
ASIC can be scheduled to fully exploit the bus’ capabilities.

b) Switch-local components: seeds and soil are optimized
to execute directly on swiches. Seeds can run as isolated
processes or as threads of the soil process. They communicate
over a generic interface supporting 1. gRPC [35] and 2. a tailor-
fitted shared memory buffer usable when seeds are implemented
as threads of the soil. gRPC’s poor performance motivated the
development of 2. We evaluate both seed execution models
and communication schemes in § VI-E.

c) Centralized components: FARM’s centralized compo-
nents, the seeder and harvesters, are implemented in Python
and contain a communication service to interact with the soils’
communication service to exchange data with both soils and the
seeds they support. Communication between seeder / harvesters
and soils is performed via RabbitMQ [36].

d) Almanac: Seeds’ state machines are described in
Almanac, compiled by the seeder into XML, and transformed
from XML to one or more seeds by each switch’s soil. XML
is used for interoperability and portability across OSs. The
ttypes in Almanac (cf. § III) are used by the soil to optimize
communication with the ASIC over all running seeds.

B. Placement

The M&M placement function optimizes network resource
utility using defined heuristics (§ IV), considering the switches,
their topology, local resource consumption, current seed place-
ment, and seed resource consumption. The function outputs
the new seed placement and allocated resources, i.e., period
for probing packets and polling statistics. We implemented the
function in Rust [37] using a MILP library [38] and compare
its performance to Gurobi [39] in § VI-D.



The seeder calls the placement optimization algorithm every
time an input parameter of the M&M placement function
changes, e.g., when a switch’s soil notifies the seeder that its
resources are depleting. The seeder takes the actions necessary
to realize the optimizer’s output, e.g., by migrating seeds. When
migrating a seed, the seeder first deploys the seed’s description
to its new location, then transfers its state there; seed execution
resumes once the state is migrated.

VI. EVALUATION

We evaluate FARM in a production DC of SAP w.r.t. four
research questions:
§ VI-B How does FARM compare to state-of-the-art solutions

w.r.t. responsiveness, network load, and switch CPU load?
§ VI-C How does FARM’s monitoring accuracy (which affects

responsiveness) scale with a large number of – possibly
CPU-intensive – seeds executed concurrently?

§ VI-D How does FARM’s placement algorithm scale in terms
of monitoring utility and runtime?

§ VI-E How efficient is FARM’s implementation?

A. Setup

a) Platforms: We used (i) APS BF2556X-1T, (ii) Accton
AS5712, (iii) Accton AS7712, and (iv) Arista 7280QRA-C36S
switches. (i) run Open Network Linux (ONL) with a 2.0 Tbps
Intel Tofino ASIC and an Intel Xeon 8-core 2.6 GHz x86
processor with 32 GB SO-DIMM DDR4 RAM with ECC. (ii)
run ONL and have an Intel Atom C2538 quad-core 2.4 GHz
x86 processor with 8 GB SO-DIMM DDR3 RAM with ECC.
(iii) are like (ii) with twice the RAM. (iv) run EOS and have an
AMD GX-424CC SOC quad-core 2.4 GHz with 8 GB DRAM.

b) Topology: We deployed FARM on a cluster with a
spine-leaf topology in a production DC of SAP. As FARM is
undergoing a long-term evaluation period before being globally
rolled out we report performance results on 20 switches.

c) Scenarios: We first investigate the HH detection task
of § III-C deploying one seed per port on all switches.
Additionally, we assess FARM with a CPU-intensive task
using machine learning (ML) to directly react to events on
switches. Leveraging ML for prediction is a budding field in
networks [40]–[42] and adding support for prediction thus a
need often stated for monitoring [43]. The ML task relies on
support vector regression [44] using matrix-matrix multiplica-
tions with 1000×1000 matrices. The Python implementation
is executed via exec(), parameterized by the polled statistics.

B. Scalability

Identifying HHs serves various purposes (e.g., DoS detection,
traffic engineering). While it doesn’t show FARM’s full
potential, its widespread use in literature allows the best
comparison (responsiveness, network and CPU load) against
existing systems, including HH detection specific ones. We
evaluate in detail against sFlow [2] and Sonata [6] (and
Newton [7], which extends Sonata with dynamic loading),
two representatives of generic collector- and stream-based
approaches. Other recent approaches show promising results,

but have the same conceptual limitations as sFlow or Sonata,
and are not publicly available.

a) Responsiveness: Tab. 4 compares the time needed to
recognize an HH with FARM also to the more specialized
Planck [11] (using specialized HW) and Helios [17] systems.
FARM shows great speedups while being at least as generic
(sFlow) or more (Planck, Helios, Sonata). Transitively, FARM
also greatly reduces mitigation time. Note that Sonata only
computes a switch-local HH (cf. § VII). FARM achieves such
speedups by analyzing traffic directly on switches while the
other solutions send simpler statistics and data to centralized
instances. Another advantage of FARM is the ability to react
on a switch when recognizing an HH, e.g., to install a rate
limit for HHs, an action can be described with Almanac. Both
HH recognition and mitigation happen within 1 ms.

b) Network load: Fig. 4 depicts network load for HH
detection, showcasing FARM’s benefits over sFlow and Sonata.
We chose HH parameters based on observations in our
production DC – HHs usually affect 1% of network ports,
10% at worst, and the HH ratio changes up to once a minute.
sFlow periodically sends packets to probe every port in the
network. We thus run it with a 1 ms probing period to achieve
a similar detection time as FARM, and with a 10 ms period to
reduce load since it increases linearly with network size with
collector-based solutions. Assuming Sonata could aggregate
over several switches to compute HHs, the raw statistics issued
by the switches to the Spark system deployed by Sonata would
still create further network load. We run Sonata assuming an
aggregation factor of 75%, the best achievable with an HH
ratio changing up to once a minute. Further decentralizing
aggregation with more levels would only add yet more traffic.
In comparison, FARM’s bandwidth consumption increases by
only 1 packet per minute for every 100 additional ports. As
shown in Fig. 4, FARM exhibits a lower linear gradient than
sFlow, with reduced total volume and slope. It consumes less
bandwidth and is over 1000× more computationally efficient
than the centralized collector. Importantly, FARM promptly
detects changes in the HH ratio, which is especially valuable
when changes occur frequently.

c) CPU load: Fig. 5 depicts FARM’s and sFlow’s CPU
loads as they poll statistics from multiple flow rules with equal
monitoring accuracy. We don’t compare against Sonata as it
mirrors the traffic and thus its bottleneck is the sampling rate
of the PCIe bus (cf. § VI-E). Its number of individual instances
is not meaningful due to the lack of samples. sFlow’s CPU
load is always higher than FARM’s except with 100 flows.
sFlow’s CPU load is stable since it is a (locally) lightweight
approach that samples packets and forwards them to its collector
without filtering. On the other hand, FARM analyzes the data
and manages its own state, thus CPU load increases with the
number of monitored ports. Yet, as long as not all ports are
affected, the SDN control plane is not congested with FARM
unlike with sFlow (cf. Fig. 4).



Tab. 4: HH detect times of generic
(G) systems FARM, sFlow, Sonata,
and specialized (S) link utiliza-
tion monitoring systems Planck
(10 Gbps) and Helios.

System Type Time
FARM G 1 ms
Planck S 4 ms
Helios S 77 ms
sFlow G 100 ms
Sonata G 3427 ms
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Fig. 4: Network load of FARM with 1 and 10%
HH ratios, the sFlow collector with 1 and 10 ms
accuracies, and similarly Sonata/Newton.
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Fig. 7: FARM’s global seed placement optimization algorithm
(cf. Eq. MU) is close in utility to Gurobi with 10 min timeout
and as fast as Gurobi with 1 s timeout.
C. Accuracy vs CPU Load

We evaluate the effect of running many collocated seeds
on the same switch, specifically from the angle of monitoring
accuracy (i.e., polling period) and its impact on CPU load.
Fig. 6a and Fig. 6b show CPU load with various numbers
of seeds with every seed polling statistics from multiple flow
rules every 1 and 10 ms respectively for the HH task. It incurs
only light CPU load and easily scales to more than a hundred
of seeds per switch with a 10 ms accuracy.

Due to their complexity we run ML seeds with a 1 ms
accuracy in parallel (cf. Fig. 6c), and a 10 ms accuracy
with statistics polling once but executing 10 iterations of the
algorithm (cf. Fig. 6d) reducing the parallel seed count by a
factor of 10. Fig. 6c shows the CPU load is ≈ 150% higher for

the ML task with 1 ms accuracy than for the HH task, leading
the CPU being unable to handle all seeds in parallel due to
the many context switches. By dividing the seed into partitions
(cf. Fig. 6d), the CPU load decreases and the system scales
well up to 250 seeds of this ML task.

D. Global Seed Placement Optimization

To evaluate FARM’s global placement optimization algo-
rithm, we compare it against a commodity MILP solver using
Gurobi [39] (used by Sonata). Two timeouts are used for
Gurobi: 1 s to get runtime similar to FARM (at the expense of
utility), and 10 min as an absolute practical upper bound (to
get similar utility). Testing involves up to 10 different tasks
(cf. Tab. I) comprising up to 10200 seeds and deploying them
on 1040 switches. For each seed count, we conduct 10 runs
with varying resource and placement needs for M&M tasks.
Fig. 7a shows the average monitoring utility (cf. Eq. MU)
and Fig. 7b the average time needed to find a corresponding
solution. FARM’s placement optimization algorithm achieves
similar utility as Gurobi but much faster, which is crucial with
a large number of tasks and seeds to deploy.

E. Implementation Microbenchmarks

We show via a series of microbenchmarks the need for
the optimizations implemented in FARM (cf. § V-A), e.g.,
that FARM performs best with seeds executing as threads
within the soil process and using a shared buffer for soil-seeds
communication. We used this implementation for the rest of
FARM’s evaluation. We deploy the ML task to benchmark
switch HW utilization and identify HW bottlenecks. We use
Accton AS5712 and AS7712 switches for the benchmarks and
plot the averaged (similar) results.

a) PCIe bus capacity: Fig. 8 shows that the main
bottleneck M&M tasks is the PCIe bus, quickly congesting
as seeds poll the ASIC’s TCAM. The PCIe bus capacity for
polling traffic statistics is limited to 8 Mbps on both tested
switches while their ASICs support 100 Gbps (i.e., a 1:12500
ratio). To circumvent the PCIe bus bottleneck, FARM enables,
in addition to data sample polling, the soil to aggregate the
seeds’ requests before sending them over the PCIe bus.

b) Aggregation cost: Aggregating seeds’ requests requires
the soil, thus trading PCIe bandwidth for CPU load. The latter
is only noticeable when seeds run as processes, while thread-
based seeds in the soil perform equally well regardless of
aggregation, even with more than 100 seeds (Fig. 9).
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c) Latency overhead: Fig. 10 shows that gRPC scales
linearly with deployed seed count, becoming the latency
bottleneck. As a fix we implemented a lightweight soil-seed
communication scheme based on a shared buffer where seeds
run as threads within the soil. Fig. 10 shows a marginal latency
overhead of the shared buffer scheme even with 150 seeds.

VII. RELATED WORK

This section discusses related work on generic monitor-
ing systems summarizing their shortcomings with respect
to features and requirements introduced in § I. From the
many specialized solutions introduced for specific monitoring
scenarios (e.g., HH detection [11], [15]–[17], DoS detection
[33]), we refer to a few later for comparison or influence on
FARM’s design. Note, dynamic deployment (migration), which
we view as a prerequisite to global optimization, has not been
attempted in conjunction with optimizing across concurrent
monitoring tasks, as done by FARM, by any prior work.

sFLow [2] is a network traffic standard encompassing:
sFlow agents implementing traffic sampling mechanisms; and
a centralized ([DEC]) sFlow collector analyzing samples or
statistics. sFlow uses minimal switch-local processing or triage,
performing all analysis on (2). This hampers latency as all
statistical data has to be transferred there, and limits scalability.
sFlow is not an IETF standard (cf. RFC 3176), but a golden
standard widely deployed on many switch types of many
vendors; thus we include it in our evaluation (§ VI).

Sonata [6] emphasizes “stream processing-like” network
telemetry [45]. It’s partially implemented in the data plane via
P4 [9], offloading complex query parts to Spark Streaming [46].
The state of monitoring tasks is, however, limited to that of
simple aggregation operations hampering ([EXP]). Moreover,
Sonata does not support merging of streams from several
switches, and hence can not be used in many standard scenarios
like global HH detection.3 Sonata optimizes switch data plane
resources for queries via a MILP using the Gurobi solver out
of the box [39], limiting scalability.

Newton [7] inherits Sonata’s P4-based streaming approach,
but allows dynamic deployment of monitoring tasks and query
updates without switch rebooting. It can also merge streams
from several switches, yet despite ideas to reduce streaming

3Several of the authors propose a separate system for HH [47] where they
propose to adapt their work in the future “to detect network-wide heavy hitters
[...] for inclusion in [...] a general network telemetry system.”

overhead, processing remains logically centralized ([DEC]),
leading to scalability and responsiveness akin to Sonata’s.

OmniMon [1] tackles the collector bottleneck by separating
tasks on end hosts and switches directly. Nevertheless, a central-
ized controller has to synchronize all hosts and switches, and
share a global state. It lacks resource utilization optimization
([OPT]) across monitoring tasks and a generic abstraction; all
evaluated tasks are individually designed.

Beaucoup [48] abstracts hardware design similarly to FARM.
The authors implement a memory-efficient, performant coupon
system upon the TCAM over queries similar to Sonata and
Newton. It focuses on monitoring tasks solvable with a
probabilistic distinct-counting limiting ([EXP]).

Marple [5] pioneered stream-based monitoring but, unlike
other systems, supports data aggregation directly using local
state on programmable switches if available ([IND]). However,
this support comes with a very limited set of aggregation
primitives ([EXP]), which suffice for basic statistics but not for
advanced scenarios like HHs. In addition, Marple relies on a
specific key-value store design implemented in switch HW.

Recent literature explores monitoring in the data plane using
sketches [49]–[51], offering accuracy guarantees but relying
on a programmable data plane with strict resource limitations.
Sketches are complementary to FARM’s holistic perspective.

VIII. CONCLUSIONS

We introduced FARM, a novel comprehensive solution for
large-scale DC network monitoring and management (M&M).
FARM relies on the Almanac programming framework to
describe autonomous seeds that execute M&M tasks directly
on switches; it uses a custom-designed scalable heuristic
to optimize their placement, considering heterogeneous HW
resources, aggregation benefits, and migration overhead.

We evaluated the accuracy and scalability of FARM against
existing generic systems (e.g., sFlow, Sonata) and specialized
link utilization/HH detectors (e.g., Planck) showing reduced
bandwidth requirements of centralized instances compared to
collector-based approaches, and benefits of reacting directly to
anomalies on the switch with predefined actions.

Avenues for future work include fault tolerance, extensions to
Almanac (e.g., advanced inheritance, combined implementation
of seeds and harvester à-la tierless programming [52]), and the
integration of sketches into FARM.



TABLE V: Features of generic M&M solutions.
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