FiDe: Reliable and Fast Crash Failure Detection to Boost Datacenter Coordination

Davide Rovelli Pavel Chuprikov
Universita della Svizzera Italiana & SAP SE Télécom Paris & Institut Polytechnique de Paris
Philipp Berdesinski Ali Pahlevan Patrick Jahnke Patrick Eugster
turba SAP SE turba Universita della Svizzera Italiana
Abstract of detecting and notifying process failures to be factored out

Failure detection is one of the most fundamental primitives on
which distributed fault tolerant services and applications rely
to achieve liveness. Typical crash failure detectors resort to
using timeouts that have to take into account the unpredictabil-
ity in interaction times among remote processes, caused by
resource contention in the network and in endhost proces-
sors. While modern (gray) failure detectors have improved
in detecting a wide range of failures, the problem of pro-
hibitively large and unreliable timeouts for crash failures still
persists, hampering performance of both the failure detector
themselves and modern ps-scale services sitting on top.

We propose a novel fully reliable failure-detector (FiDe)
that can report the crash of a remote process in a datacenter
within less than 30us (7.2 faster than the current state of
the art) with extremely high reliability, thanks to a ground-up
design which provides stable end-to-end process interactions.
By reliably lowering worst-case crash detection time, FiDe
enables a class of algorithms that can be used to boost coordi-
nation services even in the absence of failures. We devise two
novel, FiDe-based, highly efficient consensus protocols and
integrate them into a key-value store and a synchronization
service, improving throughput by up to 2.23 x and reducing
latency down to 0.46x.

1 Introduction

An increasing number of user-facing services are being devel-
oped as distributed applications, many running 24/7 in cloud
datacenters leveraging cheap hardware parallelism.

Failure detection in datacenters. Alas failures are a com-
mon issue in all distributed systems, especially in cloud data-
centers. Chiefly, processes can fail due to a variety of reasons,
including hardware faults. Process failure detectors (FDs) are
thus a common building block in fault-tolerant distributed sys-
tems, which include highly available core services underlying
user-facing applications. FDs allow the cross-cutting concern

into one module, encapsulating timeouts and more, used by
various components and systems. Timeouts are at the center
of the prominent heartbeat crash FD design which has dis-
tributed processes periodically send “I am alive” messages to
each other, interpreting the absence thereof beyond a certain
time limit as indication of failure.

Limits of current timeout-based detectors. FDs are funda-
mentally limited by the systems they are built on. Distributed
systems, including datacenters, are commonly viewed as be-
ing completely asynchronous, which makes it in theory im-
possible to achieve reliable failure detection, i.e., failure de-
tection without any false suspicions. In practice, any FD must
eventually make some synchrony assumptions and resort to
heartbeats/timeouts to detect the unresponsiveness of moni-
tored processes. Timeouts can be easily set too short, leading
to premature false suspicion of processes. Inversely, setting
timeouts too large can hamper system performance by de-
laying reactions to actual failures which is unaffordable for
the growing ps-scale application market [2,46]. With several
processes failing in short time without their timely removal or
replacement, common systems relying on majority quorum
voting can block as the number of correct processes drops be-
low the necessary quorum size. Tradeoffs between safety and
liveness can not be navigated reliably by applications using an
FD built on top of standard communication and OS abstrac-
tions. A common mitigation strategy is to resort to error-prone
manual deployment and resource reservation [35, 38, 83].

Multi-level and gray failure detection. Previous fast, reli-
able FDs described in literature [7,24,44] build on the concept,
spearheaded by Falcon [45], of closely monitoring multiple
layers of a system (e.g., application process, OS, VM) through
a network of probes. Increasingly popular gray failure detec-
tors [27,49, 58] use similar techniques to very effectively
detect subtle failures (e.g. deadlocks) which harm availability
without processes crashing. While these approaches excel at
addressing a large variety of failure scenarios, they increase

software and system complexity. In the context of crash fail-
ures this leads to additional observation overhead, a conun-
drum of having to “monitor the monitor”, besides requiring
the programmer to implement failure detection logic. These
design side-effects can decrease reliability by increasing per-
formance non-determinism in applications, often compen-
sated for by actively killing monitored application/host to
back up a false failure suspicion [20,45].

FiDe. This paper proposes a different novel approach spe-
cialized for crash failure detection, based on the observation
that existing crash FDs are limited by being realized as mod-
ules, not as components, and do not fully exploit precision and
programmability of modern OSes and networking hardware.
More precisely, our approach is system-driven: leveraging cus-
tom lean system support from the ground-up, our approach,
dubbed FiDe', achieves ultra-low and ultra-stable latency pro-
cess interactions (communication and reaction) in a subset
of the system custom built for failure detection enabling re-
liable heartbeats, as opposed to prior approaches which are
at best adapted to a given system (system-tailored). In short,
this is achieved by a combination of techniques including
highly stable OS-supported send/receive pipelines and traf-
fic engineering (TE) to reserve communication resources on
switches via a centralized controller upon pre-registration by
applications. FiDe also caters for network failures, making the
probability of a false positive (i.e., a late or missed heartbeat
with no process crash) to be once in years of uptime. To be
clear, the correctness and efficiency of FiDe/FiDe-based proto-
cols depend on assuming synchrony. While all-encompassing
synchrony is unfeasible, the probability of synchrony vio-
lations in FiDe’s controlled environment is negligible for
practical purposes thanks to its reliable system substrate en-
forcing the assumption. Moreover, our approach is externally
observed: application processes are monitored by dedicated,
uninterrupted FD processes which leverage insights already
provided by the OS as opposed to burdening programmers to
modify applications to make them internally observed and in
the process making them perform non-deterministically.
The extremely high reliability and promptness of FiDe
serve two main purposes: (1) provide a foundation for devel-
oping novel, more efficient and simpler distributed coordina-
tion primitives and (2) improve crash detection accuracy and
performance of core services with high availability require-
ments as standalone or combined with a more comprehensive
(e.g. gray) failure detector. In summary, this paper presents:

¢ the design of FiDe which is system-driven and externally
observed, allowing it to be very reliable and timely, while
remaining non-invasive.

 FiDe’s implementation using a high-performance system
substrate based on custom process and network isolation,

l(“Fee-deh”) Latin for “with trust”, a declination of fides = “trust”, “faith”.

traffic engineering, and network processing pipelines.

* the design and implementation of novel FiDe-based broad-
cast and consensus primitives for simple fast replication.

* the empirical evaluation of our prototype in a production
datacenter of SAP. FiDe consistently detects failure within
less than 30us outperforming the fastest state of the art
crash failure detector by 7.2 x.

* the integration of FiDe-based algorithms into the Redis
key-value store [62] and Zookeeper synchronization ser-
vice [29] to increase throughput by 1.7x and 2.23 x and
reduce latency down to 0.46x and 0.57 x respectively, in
failure-free execution.

The paper is structured as follows. § 2 presents model and
assumptions, and § 3 FiDe’s design. §4 outlines FiDe-based
algorithms. § 5 presents implementation details. § 6 evaluates
FiDe by comparison to prior art. §7 contrasts FiDe with
related work. § 8 concludes with final remarks. App. A details
FiDe-based algorithms, and App. B the TE algorithm. in detail.
App. C provides details on network failure probability.

2 Model and Scope

2.1 System and failure model

FiDe is designed primarily to detect crash-stop process fail-
ures in networked distributed systems, and for use in applica-
tions dealing with such failures. When not specified further,
a “failure” refers to when a process drops from the process
table of the underlying OS.

Gray failures [49], fail-slow [52], and partial software/pro-
cess failures [50] are not directly targeted by FiDe. However,
one of FiDe’s intended use-cases is to be used in combination
with more comprehensive failure detectors aiming to improve
their remote failure detection.

Due to the need for communication in failure detection,
and the possibility of communication failures being falsely
interpreted as process failures, FiDe has to cater for network
failures, manifesting by packet drops (i.e. generalization of
switch and link faults). We address this by exploiting 2-fold
physical redundancy in the network configuration and intro-
ducing a network failure recovery mechanism (see § 3.3).
FiDe tolerates multiple network failures unless they occur
in very quick succession within the recovery time (we de-
note such set of failures as critical compound failure). We
do not consider Byzantine failures but design FiDe to serve
as a high-performance component of FDs providing broader
coverage, i.e., gray/Byzantine failure detectors. We assume
that software bugs, which are omitted even by several works
on Byzantine fault tolerance (BFT) as corresponding bugs
would be triggered across replicas, are handled by formally
verifying FiDe-based algorithms (cf. [12]).

2.2 Properties

We revisited the FD primitive and designed FiDe from the
ground up aiming for three salient properties:

Reliability: FiDe’s primary goal is to approximate (in prac-
tice) the strong completeness and strong accuracy prop-
erties of Chandra&Toueg’s failure detector classifica-
tion [14]. In short, if a process fails all interested cor-
rect processes are notified (completeness), and only then
(accuracy).

Timeliness: FiDe explicitly aims for ps range failure detec-
tion, going beyond simple “eventual” notification of actual
failures to correct processes.

Non-intrusiveness: Unlike existing failure detectors [2,24,
45,76] that require application-specific code injection even
for crash failures to guarantee prompt detection, FiDe em-
braces the separation of concerns principle. Applications
should be able use it immediately out-of-the-box through
alean APL.

FiDe ensures reliability and timeliness by establishing sta-
ble, end-to-end timely interaction among its processes. The
key to achieving this is minimizing interference at both pro-
cess and network level: FiDe reduces maximum jitter to a
point where it becomes consistently so small relative to the
latency, that, in practice, it can be assumed to be bounded. We
acknowledge that, in general, all-encompassing synchrony
is unfeasible and that there is a probability that a series of
failures (i.e. critical compound failure) and delays could break
FiDe’s model assumptions and reliability property. FiDe is
explicitly designed and system-driven to make such probabil-
ity negligible for a “slice” of the datacenter (FiDe domain).
We show an estimate of this probability to be once in years
of uptime, orders of magnitude less likely than failures in
commonly-believed reliable services such as TCP.

2.3 Targeted services

We target core services with high availability requirements,
like replicated storage or databases and increasingly relevant
us-scale services [2,10,24,38]. FiDe’s primary goal is to boost
common fault-tolerant coordination protocols, e.g., consen-
sus, underlying such services, through reliable and fast crash
failure detection (§4). While we could use the reliable system
substrate provided by our design to support more complex ser-
vices, we choose to specifically support only failure detection
in order to preserve modularity, allowing FiDe to be tailored to
custom coordination protocols and failover mechanisms. Our
solution requires a minimal setup time, which is negligible
compared to its uptime, and acceptable for such services. We
assume that a number of resources can be dedicated to FiDe,
which is the case for modern over-provisioned datacenters
and is commonly enforced manually in current practice when

D Host ﬁ SDN switch D FiDe process
Controller API call A FiDe controller
-" FiDe multicast trees O Application process

Figure 1: Simplified datacenter fat-tree topology showing
FiDe’s architecture and process interactions.

deploying critical services [19, 83]. Our primarily targeted
services are in practice limited in scale, with replication clus-
ters typically around 3 to 5 nodes (e.g. Zookeeper advises 5
nodes for exceptional maintenance [83]), almost never above
9 as shown in previous work [2,6,24,34,39]. While FiDe’s
design does not prevent it from larger scale deployment as in
blockchains, this paper does not explore that angle.

3 System Design

3.1 Architecture

Components. Fig. | illustrates the architecture of a typical
FiDe deployment. It consists of a set of client processes (sim-
ply called FiDe processes), deployed alongside a distributed
application, and a FiDe controller which dynamically con-
figures the switches of a software-defined network (SDN)
using our custom traffic engineering (TE) techniques (§ 3.3).
FiDe processes are at most one per host, where they monitor
one or more local application processes (§3.4). At the same
time, each FiDe process can monitor and/or be monitored by
other FiDe processes. Monitoring in a FiDe cluster need not
be symmetrical, allowing for more flexibility and efficiency,
covering application use cases where not all hosts play the
same role (e.g. clients monitoring servers but not vice-versa).

Communication. FiDe processes communicate via a set of
redundant directed multicast trees (cf. blue and purple lines
in Fig. 1). The FiDe controller adjusts trees dynamically with
cluster join request by allocating resources to each FiDe pro-
cess according to the network topology, capacity, and number
of monitoring processes (cf. § 3.3). The controller provisions
and monitors such resources with TE techniques that cap jitter

struct resources {
int pbsize;
int timeout;

resources monitor (int appid, resources r);
void unmonitor (int appid);

bool join (appid);

void quit ();

bool piggyback (char[] message);

B

void on_failure (int appid);
void on_piggyback_recv (char[] message);
void on_timeout_changed (int timeout);

— = —

void on_monitor_req (int appid, int pbsize);
void on_pbsize_changed (int pbsize);

— —

Listing 1: Summary of FiDe’s C API exposed to applications.

introduced by concurrent traffic. We use standard Ethernet
links while prioritizing FiDe traffic and exploiting a custom
TE-driven periodic IP-level multicast protocol, thus enabling
reliable communication (see § 3.3).

Monitoring, allocation and piggybacking. Applications
interact with FiDe through the API shown in List. 1. At a
high level, applications can join, quit and monitor another
application supplying a desired timeout value and a minimum
piggyback message size. The FiDe controller the proceeds
with the TE-driven allocation (§ 3.3), possibly relinquishing
resources for processes already in the cluster (through call-
backs on_timeout_changed and on_pbsize_changed) in case
the current network capacity is not sufficient. After registra-
tion, a FiDe process uses the on_failure upcall to notify of
a failure, which might be followed by a re-allocation find
a more optimal resource assignment for remaining applica-
tions. Monitored applications can piggyback a limited amount
of messages on FiDe’s monitoring payload. The size of the
piggyback payload (pbsize) is determined by the TE-driven
allocation process to a maximum of 1418B. FiDe declines
piggyback calls that try to exceed pbsize as it would break the
guarantees provided by TE. Piggybacking enables seamless
integration with gray/multi-level failure detectors, improv-
ing the propagation time of custom failures as we exemplify
later. When applications and FiDe processes use distinct net-
work paths, it could occur that the communication between
applications is interrupted while respective FiDe processes
monitoring such applications can still communicate, hence
resulting in a “false negative”. Piggybacking can prevent
such scenarios since it ensures that the traffic of both applica-
tion and FiDe processes goes through the same network path.
Moreover, piggybacking exposes FiDe’s reliability property
to the monitored processes, bridging the gap between mod-

ularity (i.e., using FiDe as a general-purpose reliable crash
FD module) and protocol-specific optimizations. We exploit
piggybacking to define an efficient consensus primitive in § 4.

3.2 Reactive, uninterrupted processing

Task preemption is managed by the OS kernel scheduler
which, generally, distributes running processes in a fair man-
ner across all CPU cores. This is detrimental for time-sensitive
tasks, in which preemption overhead is often the predominant
cause of high processing tail-latency, as shown in previous
work [21, 37, 53]. FiDe minimizes jitter through selective
isolation and custom reactive network processing pipelines.
We pin a FiDe process to a dedicated CPU core, set it to the
highest active power state and isolate it from OS interrupts to
provide uninterrupted execution. FiDe’s Linux kernel module
(LKM) exploits kernel space privileges to provide prompt
monitoring of application processes (§ 3.4). It also uses an
uninterrupted dedicated loop for ultra-stable periodic send-
ing of heartbeat packets, bypassing the jitter-prone network
stack. On the receiving side, we optimize packet delivery la-
tency by reserving one specific queue in the network interface
controller (NIC) to FiDe’s traffic and throwing an interrupt
request (IRQ) to FiDe’s core at packet reception. This allows
the separation of FiDe traffic and regular traffic both for re-
ception and processing, allowing to maintain timeliness and
low jitter even under heavy load. Finally, FiDe uses eXpress
Data Path (XDP) [78] to intercept its packets as early as pos-
sible in the network stack and quickly deliver them, reducing
network stack overhead on the receiving side as well. We
experimentally found that using XDP and core isolation tech-
niques account for the great majority (> 90%) of the jitter
reduction, while other techniques are used to mitigate low,
sporadic latency spikes. We fine tune low-jitter processing op-
timizations based on existing interaction latency breakdown
studies [51,82] and leave in-depth analysis contributions of
each optimization for future work.

3.3 Fast-track, redundant networking

Fast-track multicast trees. FiDe minimizes network inter-
ference by establishing “fast-track” communication between
FiDe processes, using TE techniques to manage and assign re-
sources of links and switches within the limits of availability
in order to avoid congestion upfront. This is made possible
through an software-defined network (SDN)-assisted periodic
multicast protocol. The FiDe controller enables the use of the
protocol without making any explicit bandwidth reservations
in the network, relying instead on reserving highest-priority
queues and rate limiting at endhosts. The latter is a part of
a contract between a sending FiDe process p?, a set of re-
ceiving FiDe processes {p]} e/, and the network, where we
use p; instead of p; to denote that p is a FiDe process and
not an application process. Concretely, if p; sends multicast

messages of maximum size Gmax (i,J) to the receiving pro-
cesses with the minimum period Ty, (i,J), then for every
J € J the messages experience minimum latency Amin (7, j)
with maximum jitter Smax (i, /) when delivered to p7. The pri-
oritization ensures that the guarantees hold under arbitrarily
heavy network load. TE techniques (see App. B) are used
to compute and assign such parameters to a set of directed
(single-source) multicast trees, each tree representing one-to-
many network connections from a single sending process to
a set of receiving processes. The trees in the set are vertex-
disjoint (in internal nodes) providing redundancy. The TE
algorithm takes as input i, J, Gmax (i,J), and the lower bound
on Tyin (i,J), and then constructs the new multicast tree set
in such a way as to minimize the sum of maximum latencies
among all trees, taking into account and possibly changing
protocol parameters of already existing trees. The algorithm
makes a crucial use of regularity of datacenter networks in
tackling the challenge of vertex-disjoint tree set construc-
tion. We use the periodic multicast properties given by TE
to determine the timeouts. FiDe exploits this within a sim-
ple heartbeat mechanism, where the heartbeat interval HB;
of every monitored FiDe process p; is larger than or equal
to the period Ty, (i,J) assigned by TE to the corresponding
set of multicast trees. Given a monitored application process
Di» an application process p; monitoring p; can set a time-
out TO(i, j) to TO(i, j) = HBy + Amin (', j') + 2 - Smax (', J),
where pj is a FiDe process at p;’s host, and p7 is a FiDe
process at p;’s host. Note, this ensures that all heartbeats sent
by p; are delivered to p; before p;’s timeout expires. Our TE
can be configured to use at most a given fraction of network
bandwidth and queue capacity, or to restrict FiDe interaction
to a desired subset of network links.

Redundancy and tree recovery. Network failures may
cause a monitoring process to miss a heartbeat message, lead-
ing to a false positive. FiDe uses twofold physical redundancy
with a tree recovery mechanism to increase robustness to such
failures. First, the FiDe controller builds a pair of redundant
trees for every cluster. A monitoring process detects a network
failure (including slowdowns or suboptimal trees) when it re-
ceives a single heartbeat. It then informs the FiDe controller
which computes an alternative tree to substitute the faulty
one, contacts relevant switches to reserve priority queues and
change routing tables. FiDe can be configured for the case
when no alternative tree is available. One option is to sim-
ply notify the application and carry on, which might lead to
compromising FiDe’s properties (cf. § 2.2) upon (additional)
network failures. FiDe can be configured to also terminate
gracefully without compromising reliability guarantees, by
discontuing operation, which can for instance further involve
the option of terminating protocols relying on FiDe before
FiDe processes. This mechanism prevents any number of net-
work failures from affecting reliability unless two or more
affect both trees within the recovery time, i.e., in case of a

critical compound failure. We give an estimated probability
bound on such event occurring in §6.5.

Deployment notes. The simplest and most efficient deploy-
ment option is having all FiDe processes as close as possible
while still maintaining redundancy (e.g. nodes linked to 2
ToR switches via redundant multicast trees of depth 1). This
allows for minimal latency, network utilization/reservation
as well as maximal network fault tolerance since the number
of links and devices that can fail is minimal. FiDe can how-
ever be deployed over a larger topology if desirable, e.g., to
follow application constraints, differentiate power supply or
resources. In such deployments, FiDe continues to rely on
the tree recovery mechanism to mitigate the probability of
additional network failures. We evaluate the impact of de-
ployments over larger networks in § 6.5. Moreover, since the
number of priority queues at the switches is limited, it can be
desirable to share them with other services. FiDe TE can also
account for these services and adjust periodic multicast prop-
erties accordingly, making use of the fact that high-priority
queues often correspond to near real-time or control traffic,
both of which are likely rate-limited already.

3.4 Failure detection

Domains. Distributed applications relying on a failure de-
tector (e.g., replicated key-value stores or relational databases)
are typically deployed as ordinary processes and therefore
use system resources in the usual best-effort manner. We
make no changes to this behavior and only focus on shielding
FiDe from jitter sources. The resulting system, illustrated in
Fig. 2, is split into two domains. We call “best-effort domain’
the application environment where network and endhost re-
sources are shared with other processes and “FiDe domain”
FiDe’s privileged system substrate. This system-driven de-
sign allows FiDe to achieve unprecedented timing consistency
and differentiates it from previous performance-enhancing
approaches (e.g. systems based on data plane development kit
(DPDK), remote direct memory access (RDMA) and kernel-
bypass [2, 17,24, 80]).

bl

Workflow. Fig. 2 shows the flow of events following differ-
ent types of failures in our model. In passive failure detection
(used to detect all failures that render the system unusable), a
host fails causing both the FiDe process and the application
process p; to fail as well (D. The periodic sending of heart-
beat messages containing monotonically increasing values
is therefore interrupted). Remote FiDe processes poll an
extended Berkeley packet filter (eBPF) map containing the
heartbeat value of each monitored process at every timeout
interval and triggers a failure notification upcall 3) when they
read the same value twice. Note that the scenario, where a
FiDe process fails but its monitored application process does
not, is prevented by the fact that FiDe runs in the kernel and is

@ * Best-effort

. domain

| (2
FiDe
domain

O Appl. process
] FiDe process

(1)

Async comm.
,_: _— —) Stable comm.
API | APL BT ..@ Watchdog
5 fr.;lBaIl’)I; E fnzzl: ------- Domain split
- XDP @ 3 XDP & Heartbeat

3 Failure

Passive detection

© Notification

Active detection

Figure 2: Failure detection flow in different scenarios. FiDe uses passive detection (left) when a FiDe process (i.e. the whole
host) fails and active detection (right) when only an application process fails.

designed to not be subject to partial OS failures. In active fail-
ure detection (right scenario), an application process p; fails
(D and becomes unresponsive to other applications. FiDe’s
LKM detects this promptly @) using a watchdog and imme-
diately sends a failure notification 3) to all monitoring FiDe
processes. Remote XDP hooks trigger the failure notification
upcall @ to the application.

Prompt detection with OS watchdog. FiDe uses an OS
watchdog to monitor applications. The watchdog is imple-
mented inside the LKM and uses a kprobe [47] registered on
Linux’s do_exit function. Every time the process id of the
failed (i.e. exiting) process matches one of the application
process ids monitored by FiDe, the OS watchdog logic in the
kprobe pre-handler is executed just before the process actually
fails. This design grants accurate detection, as the OS watch-
dog only reports a failure when it is officially “registered” by
the system, prompt detection (technically negative latency)
and solely relies on a single external observer.

External vs internal observation. Reliability and timeli-
ness of a failure detector are often associated with its fine
granularity: monitoring of as many as possible system com-
ponents at multiple levels, from network nodes to application
threads. This has been a common design principle in sev-
eral systems [4, 50, 55], among which we find Falcon [45]
of particular relevance, as it constitutes the base of several
other systems [24,27,43,44,58,76]. Such multi-level, system-
tailored failure detectors are implemented by placing several
probes (also called hooks or spies) in the software stack, a
technique that we refer to as internal observation. This ap-
proach provides higher specificity: programmers can tailor
detection probes to detect custom failures - including gray and
partial failures - inside the application. However, this comes
at the cost of increased complexity and intrusiveness for crash
failures. system-tailored FDs have to take into account the
failure of the probes themselves through a network of probes-

monitoring-probes, introducing observation overhead which
is often compensated for by selective killing and/or unre-
liable timeouts. Additionally, internal observation requires
hundreds of lines of application-specific code for every moni-
toring probe [27,43,45,49]. Thanks to its external observation
approach which uses a single, external, timely observer (§3.4)
on top of stable interactions, FiDe instead achieves reliable
and non-intrusive detection of crash failures, trading off cov-
erage for improved performance in order to boost services
running on top (including gray FDs).

4 FiDe-based Novel Fast Services

4.1 Boosting consensus

A core contribution of this work is exploiting the extremely
high reliability and speed of FiDe to improve the efficiency
and simplicity of distributed services in failure-free execu-
tions. We use FiDe as a practical approximation of Chan-
dra and Toueg’s perfect failure detector P [14] to devise
three novel algorithms: one reliable broadcast and two uni-
form consensus primitives which achieve consistent repli-
cation more efficiently than classical, quorum-based alter-
natives (Tab. 1). We give a concise overview of the algo-
rithms below, please refer to App. A for in-depth specifi-
cation and description. The algorithms were specified with
TLA+ [74] and their correctness verified with TLC [79].
Algorithm TLA specifications and Redis implementation
will be submitted to artifact evaluation can be found at:
https://github.com/swystems/fide-fd.

Optimistic stabilizing reliable broadcast (OSRB). We
start by introducing OSRB: a novel broadcast primitive which
we later use in HSUC. OSRB optimistically implements
BROADCAST using a multi-send, DELIVERs and buffers re-
ceived messages, which it may need to retransmit later upon
detecting a process failure. Classical lazy reliable broadcast

https://github.com/swystems/fide-fd

primitives require messages to be buffered infinitely because
they might need to be re-transmitted eventually [13]. Since
buffering in long-running applications can result in a pro-
hibitively large memory footprint and possibly buffer over-
flow, OSRB introduces a novel performance improvement
via an additional downcall called STABILIZE, which takes a
message id as an argument. STABILIZE gives the possibility to
apply a stabilization criterion to limit the messages buffered
for lazy message relay upon failure. Ensuring that the sta-
bilization criterion is satisfied is responsibility of a OSRB
user, i.e., the protocol/application using OSRB must call STA-
BILIZE only when every correct process has RECEIVEd a
message (cf. App. A); otherwise, the agreement property of
RB can be violated.

Hierarchical stabilizing uniform consensus. The first al-
gorithm, hierarchical stabilizing uniform consensus (HSUC),
solves uniform consensus (see [13] for specification) using a
hierarchy among the processes and FiDe as a reliable failure
detector. Processes that participate in consensus (e.g., key-
value store replicas) are given an id to establish a hierarchy, in
which the process with the highest ID corresponds to the first
leader. During normal execution, a client sends a write request
to the leader which starts the consensus instance, adopts the
request as its proposal and multi-sends it to all other processes.
Processes which receive the proposal from the leader adopt
it as theirs and send an acknowledgment (ACK) to the leader.
Once the leader collects ACKs from all processes, it dissemi-
nates its decision using OSRB and DELIVERs itself. Replicas
also DELIVER once they receive the leader’s decision. OSRB
guarantees Termination, i.e., that the decision is delivered by
all processes. Upon leader failure, FiDe notifies every process
so that the next leader in the hierarchy can proceed with the
algorithm. FiDe’s accuracy enables an important algorithmic
optimization: unlike quorum-based asynchronous algorithms
which tolerate only a minority of crash process failures, HSUC
can tolerate N-1 failures with same message complexity (cf.
Tab. 1). The reception of the next round’s decision defines
the stabilization criterion of OSRB. Once this phase of the
algorithm is reached, HSUC can safely call STABILIZE so that
the message from the previous consensus will not be retrans-
mitted by OSRB upon future failure detections, limiting the
number of messages to be relayed to 2.

Fail-consistent uniform reliable broadcast We abstract
FiDe’s piggyback feature, i.e., the mechanism that allows
applications to add a message into FiDe’s heartbeats, into
a primitive called fail-consistent uniform reliable broadcast
(FCURB). FiDe’s heartbeats have two important properties.
First, every correct process either receives a heartbeat from a
given process or no process does since multicast, redundancy
and tree recovery guarantee uniformity (unless an extremely
rare critical compound failure occurs, cf. §3.3, §6.5). Second,
for any two FiDe processes p;, p; in a cluster, all heartbeats

Table 1: Complexity of FiDe-based algorithms in comparison
with Raft and Zab in the failure-free (best) case. Note that
Raft and Zab also tolerate process slowdowns.

Message Message Tolerated process

delays complexity failures

Raft 2 O(N) _NT_” (crash/slow)
Zab 3 O(N) LNT_IJ (crash/slow)
HSUC 3 O(N) N —1 (crash only)
HUC 2 O(N) N —1 (crash only)

sent by p; are delivered to p; before p; detects the failure of
pi. This is due to FiDe’s upper-bounded interaction latency
and the choice of large-enough timeouts (see TO(i, j) in §3.3).
Note that this order applies for both (1) passive failure detec-
tion since a crashed FiDe process is unable to send further
heartbeats and (2) active failure detection since a FiDe process
stops sending heartbeats after detecting a failed application
(note that messages are not piggybacked into active notifica-
tions). Hence, applications using FCURB are guaranteed that
all processes deliver a message before failure notifications.
We call this property fail-consistency (refer to App. A for a
formal specification).

Heartbeat uniform consensus. The second algorithm,
heartbeat uniform consensus (HUC), is shown in Alg. 1. Here,
all processes send proposal to a designated leader (line 5-7).
The leader waits to collect proposals from all correct pro-
cesses, i.e., all processes which are not signaled by FiDe,
DETerministically chooses one of the proposals (line 12) and
then broadcasts the decision using FCURB (line 11). Failures
are detected by FiDe (line 15) causing HUC to update the
correct set (line 16) and possibly triggering a new leader elec-
tion in case the failed process is a leader (lines 18-21). FiDe’s
accuracy (cf. §2.2) guarantees that all processes consistently
detect the failure of a leader, i.e., no two processes can have
different leaders at one time. Unlike HSUC, HUC does not
need an explicit ACK-ing round before calling DECIDE as the
moment a proposal is sent to a new leader (line 21 or 7) it
is already known that no decision from an earlier leader will
ever be delivered. This is due to FCURB. To send a proposal
to a newly elected leader, a process must first receive crash
notifications from all previous leaders without receiving any
decisions. Hence due to uniformity (all processes receive a
message or no process does) and fail-consistency (messages
are delivered before failure notifications) of FCURB, no other
process will ever receive a decision from a previous leader.
The lack of the ACK-ing round gives HUC an advantage over
HSUC, Raft and other asynchronous consensus algorithms, as
we will discuss shortly. Note that the throughput is limited by
FiDe’s periodic multicast protocol and the limit in message
size imposed by the piggyback buffer, but as we show shortly,
these limits are ample in practice.

Algorithm 1: Heartbeat uniform consensus (HUC).
Uses fail-consistent uniform reliable broadcast
(FCURB). Executed by every process p;

correct < {1,2...N}
leader < MIN(correct)
proposals < [LN
acks <0

W N -

5 to PROPOSE(val)
6 proposals[i] « val
7 SEND(val) to pieader

8 upon RECEIVE(val) from p;
9 proposals|j] < val
10 | acks < acksU{j}

11 upon acks O correct

12 val <~DET(proposals)
13 acks < @

14 BROADCAST(val)

15 upon CRASH(j) from FiDe
16 correct < correct \ {j}
17 proposals[j] + L
18 if j = leader then

19 leader <—MIN(correct)
20 if proposals[i] # L then
21 L SEND(proposals[i]) t0 preader

22 upon DELIVER(val)
23 LDECIDE(Val)

4.2 Advantages over traditional approaches

Simple and efficient crash-tolerant services. The advan-
tages of using FiDe as a building block for fault-tolerant
services are both improved performance and improved sim-
plicity, a byproduct of FiDe’s reliability and timeliness (§2.2).
Tab. 1 compares complexity of the FiDe-based algorithms
with Raft in the failure free case. Our algorithms can toler-
ate more crash failures with less resources and have same or
comparable performance to Raft and Zab (Zookeeper Atomic
Broadcast) [36], as we showcase in the evaluation shortly (§
6). Traditional consensus algorithms are often so complex
that they are hard to implement and verify (e.g. Raft was con-
ceived as a simpler version of Paxos [41]). Such complexity
often comes at the cost of safety which can be harmed by
incorrect implementations and optimizations. FiDe provides
a way of building and reasoning about simpler algorithms
without compromising safety and performance.

Consensus and slow processes. By default, asynchronous
consensus algorithms like Raft and Zab treat process slow-
downs and crashes interchangeably. For instance, followers

might time out on a leader process whether it is crashed or
is simply delayed in computation, elect a new one, and carry
on with the consensus execution given a majority of active
processes. In comparison, HSUC and HUC do not cater for
slowdowns and require participation of every non-crashed
process, meaning that consensus execution will stall until a
process recovers or crashes (and is detected by FiDe). The
integration of FiDe with gray failure detectors (cf. § 6.6) is an
effective strategy to improve HSUC and HUC reactiveness to
slow processes in such scenarios, while maintaining their per-
formance and simplicity improvements. It is important to note
that, while Raft and Zab-like algorithms tolerate slowdowns,
they do not actively evict or replace faulty processes (whether
slow or crashed) since they assume that process interactions
can be arbitrarily delayed. This can degrade performance as
the number of undetected faulty processes increases, result-
ing in a stall when a majority fails. Therefore, employing a
gray failure detector is essential for improving the availability
of both traditional and FiDe-based consensus algorithms. In
addition, the use of formal verification is a good practice to
effectively prevent software bugs such as deadlocks when
developing critical consensus-based services.

S Implementation Details

FiDe was implemented in 4032 lines of C code, split into
LKM, XDP (eBPF) hooks and userspace API. We use the
1ibbpf library (v0.5.0) and Linux kernel eBPF support as of
v5.9.8 for XDP (Mellanox NIC m1x4 driver). HSUC and HUC
are implemented as Redis modules using the API version 1
in 910 and 810 lines of code respectively. Zookeeper variants
were tested modifying configuration parameters according to
the algorithmic complexity, without requiring internal mod-
ification. Both algorithms use a batch optimization to send
multiple messages for a single consensus instance.
Fine-tuning is crucial to ensure stable communication; be-
low we list some of the most relevant measures and settings.
We isolate FiDe’s core by assigning it to isolcpus kernel boot
parameter and shielding the core from standard IRQ by set-
ting their smp_affinity on other cores only, and from inter-
processor interrupt IRQs by using local irq save() [51].
We maximize the power state of FiDe cores to avoid costly
sleeping periods by setting them to the maximum C-state
(CO0). During testing, we found paging to be another source of
jitter, which we addressed by using hugepages for our buffers.
We also disable detrimental read-copy-update (RCU) stall
detector warnings from kernel boot options to prevent the OS
from interfering with the FiDe core which loop with interrupts
disabled [51]. FiDe uses custom network processing pipelines
to accelerate and stabilize packet transmission and delivery.
The LKM manages its own socket kernel buffers (SKBs) [68]
and uses an active pacemaker loop bound to FiDe’s uninter-
rupted core to send heartbeat messages (and active notifica-
tions) at as precise time as possible. On the receiving side,

FiDe uses XDP hooks to bypass the network stack. These use
eBPF maps of type BPF_MAP_TYPE_ARRAY for device mmaping,
allowing for efficient communication between kernel and user
space. XDP was chosen over other kernel bypass methods for
its superior stability in tests. We measure time using POSIX’s
clock_gettime (), with CLOCK_MONOTONIC parameter.

6 Evaluation

We evaluate FiDe by comparison with state-of-the-art services
and applications, addressing four research questions:

RQ1: How stable is FiDe’s underlying remote process inter-
action (cf. Reliability)?

RQ2: How quickly can FiDe detect failures (cf. Timeliness)?

RQ3: How well does FiDe scale in a real-world application
(cf. Reliability, Timeliness)?

RQ4: By how much can FiDe accelerate replication (cf.
Timeliness)?

RQ5: How do network faults and deployment impact FiDe
(cf. Reliability, Timeliness)?

Finally, we discuss the impact of FiDe on the underlying
system in terms of integration cost (cf. Non-intrusiveness),
and overheads of processing and network.

6.1 Benchmark setup

Datacenter. We ran all our evaluation on 6 servers of a
production datacenter of SAP hosting Arista 7280CR-48 [8]
switches and servers with Intel Xeon E5-2680 v4 at 2.40GHz
(28 cores, 56 threads), 1 TB RAM, Mellanox ConnectX-4
4x10 GbE [54] and Intel XL710 4x10 GbE [32] as commod-
ity NIC, Ethernet interconnects. All the servers are connected
via two redundant physical paths organized in a mini fat-tree
topology. Every node runs our own customized version of
Ubuntu 20.04 [75]. Our tests compare against a service/appli-
cation that uses RDMA due to the relevance of the technology
in modern systems and literature. For such applications we use
RDMA over converged Ethernet (RoCE) [65]. While RDMA
performs better on Infiniband networks we compare against
RoCE as the majority of existing datacenters still relies on Eth-
ernet. For multi-switch evaluation we use an additional cluster
of 2 Cloudlab’s [18] x1170 server, connecting its ConnectX-5
NICs to a number of Dell-s4048 type switches.

Comparison. We compare against three services chosen
for their relevance in research and practice, and diversity:

Falcon [45], the seminal multi-level reliable FD (cf. § 3.4);

=-=--FiDe max timeout Falcon +---- RDMA
——FiDe ——=-=X-Lane

") ” -

2

S

= L B O e — [—

QJ _————TT T e

ke R (P A

é r...-.ﬂ..'_'.'.;.'.'_ """"

= 10! | | e |

0 20 40 60 200 225
Billion packets

Figure 3: Maximum peer-to-peer latency evolution of the
compared approached over 2.3 trillion packets

X-Lane [35], a state-of-the-art system designed to achieve
ultra-latency and ultra-low relative jitter in datacenter in-
teraction, used to build a passive FD;

uKharon [24], a state-of-the-art group membership protocol
using RDMA and a Falcon-like multi-level FD. We com-
pare against its FD only, referred to as uKharon-FD.

uKharon-FD can be seen as a re-implementation of Falcon
on RDMA,; to our knowledge, it reports the fastest failure de-
tection in literature, as “within few tens of microseconds” [24]
(without exact quantification). We compare FiDe primarily
against uKharon-FD and X-Lane for performance, and use a
re-implemented version of Falcon on commodity hardware
as baseline. Note that, since Falcon can be customized to de-
tect more complex types of (gray) failures whose detection
is inherently slower, we compare only against Falcon’s crash
detection mechanism. We compare integrations of FiDe into
Redis and Zookeeper against the originals. For Redis, we also
compare against RedisRaft [64], an official module developed
by RedisLabs using Raft for state machine replication (SMR).

6.2 Interaction stability (RQ1)

Our first experiments evaluate the possibility of achieving
stable, bounded interaction latency (§ 3.2) in practice.

Methodology. We test FiDe’s heartbeat mechanism by run-
ning a simple ping-pong protocol over several weeks with con-
current real-life traffic and logging the peer-to-peer latency
for every packet. The dataset size amounts to 2.3 trillion con-
secutive packets which is 10x the amount used in previous
work evaluating stable interactions [35] and over 1000 the
amount used in works focusing on performance (vs. stabil-
ity), e.g. [30, 60]. We found 20us to be the lowest possible
interval that provides stability with maximal throughput. All
other works were tested with > 100us sending interval, fa-
voring them over FiDe in terms of expected jitter. We use
stress-ng [70] and iPerf [33] to generate periodic spikes of
maximum CPU and network utilization. Priority queues are

--=--min TX interval Falcon =---- uKharon-FD

——FiDe = ==X-Lane
5]
= 10° 4 :
w 3 " ‘e,
E 10 b femiefobniodefants e '\
'a' 101 1 .-\.‘
(@]) \
;‘10‘1- -
= Y S A W S rrer—
10° 10 102 103

RIS
Timeout in us (lower is better)

Figure 4: Failure detection accuracy for application crashes:
false positives per minute (lower is better) at increasing time-
out values. Timeout is meant as maximum time to wait before
declaring a remote process unresponsive: a suitable value
should yield no false positives (i.e., strong accuracy)

reserved for FiDe. In this benchmark, we tested Falcon’s com-
munication between its client library and the spies in isolation
(i.e., without failure detection logic). The same was done for
uKharon-FD, that we refer to as “RDMA” since we consider
only the communication and the packet processing layer.

Results. Fig. 3 shows that FiDe achieves upper-bounded in-
teraction latency at < 45ps (black dotted line), outperforming
other approaches by over 5.4x. RDMA’s latency is the clos-
est to FiDe in terms of magnitude quickly reaching ~ 50us
but peaking at 243ps after 70 billion packets. Regular “jumps’
in latency including this last one suggest that despite having
excellent average performance, RDMA by itself is not suf-
ficient for stable interactions. We attribute the cause of this
instability to network and process interference which FiDe
actively aims to minimize. X-Lane shows better stability with
latency ranging from 100us to 550us which is above the val-
ues reported [35], most likely because it was tested at much
higher throughputs. Lastly, Falcon shows the most unstable
latency, showcasing the importance of reactive processing (§
3.2) which Falcon does not optimize. In fact, jumps in la-
tency often correspond to an increase in the CPU load of the
involved nodes. The graph line was cropped for readability.

1

6.3 Application failure detection (RQ2)

We define failure detection latency as the time between (1) an
application process crash and (2) a failure notification delivery
on a remote monitoring node. As (1) are (2) occur on different
nodes, we divide latency into segments which are relative to
each node to account for clock mismatch.

Methodology. We use optimal sending intervals and same
settings as § 6.2. Since multi-level FDs such as Falcon and
uKharon-FD have different detection “modes”, we compare
against the fastest of each.

107 1 / -
2 10]
E Falcon
A 10—7_] [X-Lane
[uKharon-FD
I FiDe
10_10' T T T T T T
0 250 500 750 0 250 500 750

Failure detection time (us)

Figure 5: Failure detection empirical density distributions.
The left plot shows the PDF (thinner is better) while the right
plot shows the CDF. Each approach uses 107 datapoints taken
from the respective empirical distributions.

Failure detection timeouts. Fig. 4 shows the failure detec-
tion accuracy in terms of number of false positives per minute.
Every FD monitors an application and is set to send regular
heartbeats at the smallest interval possible. False positives are
obtained by counting how many times a local FD instance in-
correctly signals a remote application process failure (i.e., no
heartbeat) at a given timeout which is strictly larger than the
heartbeat interval. Results show that FiDe can use timeouts
larger than 48us which is ca. 16x faster than uKharon-FD and
X-Lane which reach perfect accuracy only at around 800ps.

Average and maximum failure detection times. The sec-
ond requirement set for our design is low failure detection
time (§ 2.2) which is required for fast process recovery in
critical scenarios in production systems. Since we do not have
access to a global clock in our system, we measure crash fail-
ure detection time based on the empirical joint distribution of
the latency of the 3 steps involved in a successful failure noti-
fication delivery: (1) time from the manually injected crash to
when it is picked up by the local FD instance; (2) communica-
tion latency from the local FD instance to the remote node; (3)
latency for “delivery” from message reception at the remote
FD instance to the remote monitoring application. We mea-
sure the inspector-enforcer crash detection latency for Falcon
which consists in the time between the detection of an appli-
cation crash and its communication to the local monitoring
process trough inter-process communication (IPC).

Fig. 5 shows the empirical density distributions. The CDF
in the right plot shows two almost vertical lines which flatten
at the very top for FiDe and uKharon-FD, indicating that the
vast majority of failures will be detected close to the average
latency, with increases only around the 99.999th percentile.
The PDF plot on the left of the figure provides a smoothed
view of the same data which further highlights the differences
between the two approaches. FiDe’s failure detection is more
deterministic and reliable, showing a low number of modest
outliers contained in the narrow base of the curve. Tab. 2

Table 2: Summary of evaluated + state-of-the-art failure de-
tectors, considering crash failures of A = application, OS =
operating system, C = catastrophic (worst-case timeout). All
values are in ps. Slanted numbers are taken from respective
publications and blank values were not addressed.

ApproaCh Aavg Amax oS Ct imeout
FiDe 4.58 26.54 45.00 45.00
uKharon 17.39 193.56 30.00 1000.00
X-Lane 354.75 718.54 600.00 600.00
Falcon 496.29 169000.00 204000.00 3.00x 108
Zookeeper 3000.00 12000.00

Panorama 2000.00 8000.00

summarizes average and maximum failure detection latencies
of the compared approaches. FiDe achieves us-range average
failure detection outperforming the state-of-the-art uKharon-
FD by 3.8 on average and by 7.2x at maximum (worst-
case) latency, and X-Lane by 77x and 27 x respectively. The
table reports timeouts used to detect OS and catastrophic
failures which uKharon-FD and Falcon address using specific
probes. FiDe can use a general, worst-case timeout as low as
45us, orders of magnitude below other approaches apart from
uKharon-FD’s OS timeout, reported as 30us [24]. We believe
that a much higher timeout would be needed in our (non-
Infiniband) setup as suggested by previous measurements.
Tab. 2 includes statistics from Panorama [27], a state-of-the-
art gray failure detector, and Zookeeper’s FD for reference.

6.4 FiDe for key-value stores and distributed
synchronization (RQ3, RQ4)

FiDe’s main goal is to be used as a reliable building block
for efficient and simpler coordination protocols. To showcase
the benefit of using FiDe beyond failure detection, we eval-
uate our novel algorithms proposed in § 4 integrated into
Redis and Zookeeper. We refer to our variants as Redis-
FiDe (RedisFiDe)-HSUC/HUC and Zookeeper-HSUC/HUC
respectively. We evaluate the SET request latency and through-
put performance to address RQ3 and RQ4. We do not evaluate
GET requests since all approaches would simply return the
requested value, adding no overhead to native performance.

Methodology. We use the official redis-benchmark [63]
utility for Redis and custom Zookeeper native client [83] with
the following settings: 50 concurrent clients, for a total of 1
million SET requests. For every approach, all requests are sent
to the leader which is the only possible option for both Red-
isFiDe and RedisRaft. The latter uses batch optimization. In
Zookeeper, we use Oracle quorum setting [83] and configure
the ensemble to reproduce the complexity of our algorithms
substituting Zab’s atomic broadcast with consensus instances
ordered by the leader. In HUC’s implementations, the leader

Redis —v— RedisFiDe-HUC
--®-- RedisRaft —&—Zookeeper
—8—RedisFiDe-HSUC

Zookeeper-HSUC
-+ % Zookeeper-HUC

"e-9.
.'."O---.._. 65

1 2 3 4 1 2 3
Tolerated process crash failures

(a) Throughput
- 0.5 =
é /
5 0.4 1
=
v 0.3 F AT T Y [
1 2 3
Tolerated process crash failures
(b) Latency

Figure 6: SET request performance of Redis and Zookeeper
with different replication algorithms for given numbers of
tolerated process failures (except for “Redis” reported as base-
line). The values in between points on the x axis for RedisRaft
are due to its use of a larger number of processes for tolerating
the same number of failures cf. Tab. 1.

orders and batches concurrent requests which fit in the piggy-
back payload in a given FiDe heartbeat interval (at least multi-
cast period and in the benchmarks HB; = 100 us for every p;).
We scale up to five and three tolerated failures, respectively
9 Redis instances and 7 Zookeeper instances, large sizes for
a replication cluster (§ 2.3). Note that no method benefits
from traffic prioritization: HUC-based services immediately
return after piggybacking the decision message, hence only
exploiting FiDe’s accuracy and not latency enhancements. We
evaluate HSUC-based services without traffic prioritization.

Results. Fig. 6a and Fig. 6b show throughput and latency
of the compared approaches respectively. The metrics are
plotted against the number of tolerated process failures cor-
responding to Tab. 1. The number of points equals to the
number of processes. Since RedisRaft requires at least 3 pro-
cesses to run, we put a “null” point as a placeholder for two
processes (empty circle). All FiDe implementations almost
always outperform the native performance, except for Redis
which does not provide consistency guarantees. HUC has
the highest throughput, 1.22x on average and 1.7x at maxi-
mum better than RedisRaft, and 1.71x on average and 2.23 x
at maximum for Zookeeper. It also has the lowest latency,
respectively, reduced by 0.79x on average, 0.46x at maxi-
mum against RedisRaft, and 0.64 x on average, and maximum
0.57x against Zookeeper. This is expected: the leader in HUC

uses only one heartbeat multicast to piggyback its decision
directly, making FiDe’s heartbeat interval (HB;) and piggy-
back size limit (6) the major factors affecting throughput.
Considering HB; = 100ps for all p; and 6 ~ 400B, we can
estimate the max throughput to be around 32 Mbit/s, largely
sufficient for this benchmark. HSUC implementations show
typical downtrend in both latency and throughput when the
number of involved processes increases.

6.5 Network faults and deployment (RQ5)

We evaluate the network fault tolerance mechanism by es-
timating the probability of a critical compound failure, i.e.,
both redundant multicast trees failing withing a short time (cf.
§3.3), at different scales.

Methodology. We assume the widely-deployed multi-
rooted fat tree topology [48] as defined by Al-Fares et al. [5],
which uses multiple rooted trees to approximate a classical
fat-tree (e.g., see Fig. 8 in App. C). We consider trees with
height = 1,2,3 which we define as half the diameter of the
tree. Note that multi-rooted fat trees always have an even num-
ber of nodes. We deploy FiDe in the multi-switch Cloudlab
setup to analyze the effect of increased latency on previously
measured application and OS failure detection time as well
as RedisFiDe SET request latency. We apply the network and
CPU load of §6.2. We estimate the probability of critical com-
pound failure by taking empirical failure probabilities from a
popular study [22]; see App. C for a detailed breakdown.

Results. As expected (see Tab. 3), we observe an increase
on the average application failure (A,,¢) and OS failure (OS)
detection times due to the added network distance, with la-
tency overheads roughly equivalent to the additional switch
forwarding latency of 5-10us for larger fat trees. The impact
on RedisFiDe HSUC and HSUC variations is instead mini-
mal, due to the latency being dominated by Redis’ request
processing. Note that results for 1 switch vary compared to
previous tests due to the different hardware setup (cf. Fig. 6b).
The expected frequency of 1 critical compound failure ev-
ery 22.7 years in the ideal deployment shows that FiDe is
extremely likely to guarantee reliability for any realistic up-
time. A back-of-the-envelope estimation of the probability of
packet corruption in Ethernet + TCP (cf. App. C and [69]),
widely regarded as reliable and used as such [29], shows that
we could observe one packet corruption every 2.3 days at best,
making FiDe more than 3 orders of magnitude more reliable.

6.6 FiDe in the bigger picture

Implementation costs. FiDe meets Non-intrusiveness: no
application-specific failure detection code is required for the
implementation of RedisFiDe modules apart from the nec-
essary API calls, which amount to 6 lines of code including

Table 3: Consequences of deployment at larger scale. freqgccr
is the expected frequency of a critical compound failure, Ag,g
and OS respectively denote average application and operating
system failures, RF= average latency of RedisFiDe deployed
on 2 processes (1 tolerated process failure).

Tree Aavg oS RFHSUC RFHUC f}"

height 1) (us) (us) (us) caecr
1 (ideal) 6.34 45 531 518 1/22.7 years
2 13.62 65 580 530 1/11.3 years
3 20.89 80 621 541 1 /6 years

the imports. FDs using internal observation (§ 3.4) can have
a much larger impact in similar contexts: applications based
on Pidgeon [43] require 68 and 414 integration lines of code,
while Falcon requires up to 159 for replication protocols [45].

Combination with other FDs. FiDe can be combined
out-of-the-box with other, more comprehensive (i.e. multi-
level/gray) FDs through its API (§ 3.1). This would allow
for performance gains and wider coverage, e.g., terminating
processes that are out of control such as through deadlocks,
getting the best of both worlds. For example, integrating FiDe
into Panorama would improve Panorama’s average crash fail-
ure detection by ca. 400x. Moreover, piggybacking probes’
observations on FiDe’s fast communication substrate could be
exploited to accelerate remote detection of other types of fail-
ures, e.g., by more than 2 orders of magnitude for Panorama’s
reported propagation delay of 776.3us [27] and more than 3
orders of magnitude for Falcon.

Overhead. FiDe’s impact on the system consists in process
and network resources reserved to enable reliable interac-
tions (§ 5). We reserve one CPU core fully utilized during
peak performance. This might impact performance differently
depending on the processor’s core count; in our case, it con-
stitutes only 1/56 (1.79%) of overall server processing power.
The overhead introduced by the kernel watchdog, specifically
kprobes, is in the order of ns thus negligible. In the network,
we reserve highest priority queues (where needed) and con-
sume bandwidth proportional to the periodic multicast proto-
col parameters (§ 3.3). In our setup, bandwidth consumption
amounts to ~250 Mbit/s for links adjacent to endhosts, and at
most kx50 Mbit/s inside the network, for k FiDe processes.

Mitigation and future work. Highly available core ser-
vices targeted by FiDe are usually placed in a way to guaran-
tee performance in practice, avoiding co-locating too many
other compute intensive processes, achieving the effects of
FiDe resource reservation by deployment [19, 83]. Further-
more, both processing and networking costs are mitigated
by the efficiency of FiDe-based services, namely the smaller

number of nodes to tolerate same amount of failures as tradi-
tional quorum-based fault-tolerant services. We propose the
following methods to mitigate energy consumption. Increas-
ing FiDe’s heartbeat interval, e.g. to hundreds of ps, would
greatly reduce core utilization and only compromise failure
detection time for passive failure detection. While we did not
test kernel/system upgrades, FiDe simply treats them as fail-
ures and requires no particular upgrade strategy. We assume
such updates are infrequent and also always provide a degree
of backward compatibility. Combining FiDe with one of the
state-of-the-art interference-aware CPU schedulers [21,57],
could provide stable processing without reserving a full core.
Priority queues can be shared with other applications, as long
as the resources needed are accounted by FiDe controller.

7 Related Work

FDs. Being able to detect failures promptly and reliably can
tremendously improve distributed systems performance [4].
One of the most prominent works is Falcon [45], which aims
to implement a reliable FD using system-tailored design with
a web of layer-specific probes (spies). Falcon allows program-
mers to define failures but pays with intrusiveness, complexity,
and observation overhead. Several FDs use a system-tailored
design [7, 24, 43, 44], including gray/partial failure detec-
tors [27,49,50,52,58] which enhance system availability by
detecting subtle failures. FiDe uses a ground-up system-driven
approach focusing on crash-stop process failures, gaining in
reliability, usability, and detection timeliness.

Accelerating ps services. Many real-world distributed ap-
plications require operations at the ps scale [9, 10, 67], for
which they rely on fast fault-tolerant distributed services built
on top of FDs. State-of-the-art works here include Mu [2],
Hovercraft [39], and DARE [60] for SMR, and uKharon [24]
for group membership. Mu and DARE employ heartbeat-
based FDs and assume stable interaction but fail to guaran-
tee reliability respectively by not considering jitter sources.
uKharon puts a stronger focus on reliability and implements
a multi-level FD, achieving the fastest performance to our
knowledge with a 50 ps full membership change. However,
it fails to tackle the unpredictability of the network and op-
timizes heavily for RDMA on Infiniband, strongly limiting
deployment. FiDe proposes a different approach with strong
focus on reliability and timeliness, improving over uKharon
by 7.2 on worst-case failure detection, on generic Ethernet.

Stable communication in datacenters. An ever-growing
number of systems optimizes tail-latency for datacenter re-
mote procedure calls through specialized networking stacks in
hardware/software co-design [30,71] and software only [11,
16,21,37,38,46,57,59,61,81]. These works achieve ns [30]
and ps tail-latency through optimal endhost packet processing

but do not consider sources of jitter in the network, hamper-
ing stability at the tail end. QJump [23] leads the way to
achieve minimal, stable tail-latency in networks but does not
consider jitter at the endhost, leading to the same issue. To
our knowledge, the only comprehensive approach for end-to-
end stable latency is given by X-Lane [35]. FiDe leverages
network and process execution a-la X-Lane, but introduces
more efficient and reproducible packet processing, critical
novel design features including TE tailored for redundancy,
reliability towards network failures and a ground-up, robust
design tailored to failure detection (non-intrusive, prompt
monitoring, active detection) offering dramatic improvements
in throughput (50x from the values reported [35]) and reli-
ability. Seminal work on deterministic distributed processes
was introduced by DDOS [28]. However DDOS has signif-
icant overhead in remote process interaction, which FiDe’s
communication substrate could significantly reduce. Several
prior works simply take stable interactions as given for, e.g.,
optimal weaker FDs [3], coordination primitives like leader
election [66], or even synchronous BFT and blockchain pro-
tocols [1,26] on top of a commodity software stack, without
any concrete implementations to enforce such assumptions.
Clock synchronization protocols such as PTP [31] and
TrueTime in Google Spanner [15] provide a very accurate
global clock to support synchronous systems. Since gains
in clock drift accuracy (ns-scale) are so small compared to
interaction/communication latency (us-scale), FiDe focuses
on the latter leaving possible integration with accurate clock
synchronization mechanisms for future work.

8 Conclusions

An increasing number of highly available, distributed applica-
tions are being deployed in datacenters. A key challenge in
building such applications is detecting failures quickly and
reliably, to ensure liveness and safety. Yet, existing failure de-
tectors (FDs) fail to provide reliability at the ps scale, leading
to inefficient, quorum-based coordination services built on
top. Such FDs and are also often intrusive, making it hard for
programmers to use them. FiDe fills this gap by providing
reliable failure detection accelerated with respect to the state
of the art by up to 7.2x, and 3.8 x on average. To this end
FiDe introduces a novel split system design, built ground-up,
for timely interactions (communication and processing). Be-
yond failure detection, FiDe can be used as building block for
simpler, faster algorithms. We propose 3 novel coordination
primitives, accelerating replication in Redis and Zookeeper.

Acknowledgments

This work was supported by Swiss National Science Founda-
tion (grants #192121, #197353), SAP, and Hasler Foundation.
We thank our shepherd Atul Adya for his valuable feedback.

References

(1]

(2]

(3]

(4]

(5]

(6]

(71

(8]

(9]

Ittai Abraham, Kartik Nayak, and Nibesh Shrestha. Op-
timal good-case latency for rotating leader synchronous
bft. In 25th International Conference on Principles of
Distributed Systems (OPODIS 2021), 09 2021.

Marcos K. Aguilera, Naama Ben-David, Rachid Guer-
raoui, Virendra J. Marathe, Athanasios Xygkis, and Igor
Zablotchi. Microsecond consensus for microsecond
applications, November 2020.

Marcos K. Aguilera, Carole Delporte-Gallet, Hugues
Fauconnier, and Sam Toueg. On implementing omega
in systems with weak reliability and synchrony assump-
tions. Distributed Computing, 21(4):285-314, 2008.

Marcos Kawazoe Aguilera, Gérard Le Lann, and Sam
Toueg. On the impact of fast failure detectors on real-
time fault-tolerant systems. In Proceedings of the 16th
International Conference on Distributed Computing,
DISC 02, page 354-370, 2002.

Mohammad Al-Fares, Alexander Loukissas, and Amin
Vahdat. A scalable, commodity data center network
architecture. In Proceedings of the ACM SIGCOMM
2008 Conference on Data Communication, SIGCOMM
’08, page 63—74, New York, NY, USA, 2008. Association
for Computing Machinery.

Mohammadreza Alimadadi, Hieu Mai, Shenghsun Cho,
Michael Ferdman, Peter Milder, and Shuai Mu. Wa-
verunner: An elegant approach to hardware acceleration
of state machine replication. In 20th USENIX Sympo-
sium on Networked Systems Design and Implementation
(NSDI 23), pages 357-374, Boston, MA, April 2023.
USENIX Association.

Sebastian Angel, Mihir Nanavati, and Siddhartha Sen.
Disaggregation and the application. In /2th USENIX
Workshop on Hot Topics in Cloud Computing (HotCloud
20). USENIX Association, July 2020.

Arista 7280R Series. https://www.arista.com/
assets/data/pdf/Datasheets/7280R-DataSheet.
pdf. Online; accessed 20-May-2025.

Berk Atikoglu, Yuehai Xu, Eitan Frachtenberg, Song
Jiang, and Mike Paleczny. Workload analysis of a
large-scale key-value store. In Proceedings of the
12th ACM SIGMETRICS/PERFORMANCE Joint Inter-
national Conference on Measurement and Modeling
of Computer Systems, SIGMETRICS ’12, page 53-64,
New York, NY, USA, 2012. Association for Computing
Machinery.

[10]

(11]

(12]

[13]

[14]

[15]

[16]

[17]

(18]

Luiz Barroso, Mike Marty, David Patterson, and
Parthasarathy Ranganathan. Attack of the killer mi-
croseconds. Commun. ACM, 60(4):48-54, mar 2017.

Adam Belay, George Prekas, Mia Primorac, Ana
Klimovic, Samuel Grossman, Christos Kozyrakis, and
Edouard Bugnion. The ix operating system: Combining
low latency, high throughput, and efficiency in a pro-
tected dataplane. ACM Trans. Comput. Syst., 34(4), dec
2016.

James Bornholt, Rajeev Joshi, Vytautas Astrauskas,
Brendan Cully, Bernhard Kragl, Seth Markle, Kyle
Sauri, Drew Schleit, Grant Slatton, Serdar Tasiran, Jacob
Van Geffen, and Andrew Warfield. Using lightweight
formal methods to validate a key-value storage node in
amazon s3. In Proceedings of the ACM SIGOPS 28th
Symposium on Operating Systems Principles, SOSP *21,
page 836-850, New York, NY, USA, 2021. Association
for Computing Machinery.

Christian Cachin, Rachid Guerraoui, and Lus Rodrigues.
Introduction to Reliable and Secure Distributed Pro-
gramming. Springer Publishing Company, Incorporated,
Heidelberg, Germany, 2nd edition, 2011.

Tushar Deepak Chandra and Sam Toueg. Unreliable
failure detectors for reliable distributed systems. J. ACM,
43(2):225-267, mar 1996.

James C. Corbett, Jeffrey Dean, Michael Epstein, An-
drew Fikes, Christopher Frost, J. J. Furman, Sanjay
Ghemawat, Andrey Gubarev, Christopher Heiser, Pe-
ter Hochschild, Wilson Hsieh, Sebastian Kanthak, Eu-
gene Kogan, Hy Kuang, Richard Lagar-Cavilla, Richard
Lloyd, Scott Melnik, David Mwaura, David Nagle, Sean
Quinlan, Rajesh Rao, Lindsay Rolig, Yasushi Saito,
Michal Szymaniak, Christopher Taylor, Ruth Wang, and
Dale Woodford. Spanner: Google’s Globally Distributed
Database. In Proceedings of the 10th USENIX Sympo-
sium on Operating Systems Design and Implementation
(OSDI ’12), pages 251-264, 2012.

Alexandros Daglis, Mark Sutherland, and Babak Falsafi.
Rpcvalet: Ni-driven tail-aware balancing of ps-scale
rpes. In Proceedings of the Twenty-Fourth International
Conference on Architectural Support for Programming
Languages and Operating Systems, ASPLOS °19, page
35-48, New York, NY, USA, 2019. Association for Com-
puting Machinery.

DPDK, Data Plane Processing Kit. https://www.
dpdk.org/, 2023. Online; accessed 20-May-2025.

Dmitry Duplyakin, Robert Ricci, Aleksander Mar-
icq, Gary Wong, Jonathon Duerig, Eric Eide, Leigh
Stoller, Mike Hibler, David Johnson, Kirk Webb, Aditya

https://www.arista.com/assets/data/pdf/Datasheets/7280R-DataSheet.pdf
https://www.arista.com/assets/data/pdf/Datasheets/7280R-DataSheet.pdf
https://www.arista.com/assets/data/pdf/Datasheets/7280R-DataSheet.pdf
https://www.dpdk.org/
https://www.dpdk.org/

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

Akella, Kuangching Wang, Glenn Ricart, Larry Landwe-
ber, Chip Elliott, Michael Zink, Emmanuel Cecchet,
Snigdhaswin Kar, and Prabodh Mishra. The design and
operation of CloudLab. In Proceedings of the USENIX
Annual Technical Conference (ATC), pages 1-14, July
2019.

Etcd hardware reccomendations. https://etcd.io/
docs/v3.5/op-guide/hardware/#network. Online;
accessed 20-May-2025.

C. Fetzer. Perfect failure detection in timed asyn-
chronous systems. [EEE Transactions on Computers,
52(2):99-112, 2003.

Joshua Fried, Zhenyuan Ruan, Amy Ousterhout, and
Adam Belay. Caladan: Mitigating interference at mi-
crosecond timescales. In I14th USENIX Symposium on
Operating Systems Design and Implementation (OSDI
20), pages 281-297. USENIX Association, November
2020.

Phillipa Gill, Navendu Jain, and Nachiappan Nagappan.
Understanding network failures in data centers: measure-
ment, analysis, and implications. SIGCOMM Comput.
Commun. Rev., 41(4):350-361, August 2011.

Matthew P. Grosvenor, Malte Schwarzkopf, Ionel Gog,
Robert N. M. Watson, Andrew W. Moore, Steven Hand,
and Jon Crowcroft. Queues Don’t matter when you can
JUMP them! In 12th USENIX Symposium on Networked
Systems Design and Implementation (NSDI 15), pages
1-14, Oakland, CA, May 2015. USENIX Association.

Rachid Guerraoui, Antoine Murat, Javier Picorel,
Athanasios Xygkis, Huabing Yan, and Pengfei Zuo.
uKharon: A membership service for microsecond appli-
cations. In 2022 USENIX Annual Technical Conference
(USENIX ATC 22), pages 101-120, July 2022.

Kegiang He, Junaid Khalid, Sourav Das, Aaron Gember-
Jacobson, Chaithan Prakash, Aditya Akella, Li Erran
Li, and Marina Thottan. Latency in software defined
networks: Measurements and mitigation techniques. In
Proceedings of the 2015 ACM SIGMETRICS Interna-
tional Conference on Measurement and Modeling of
Computer Systems, pages 435-436, 2015.

Kaiwen Huang, Ronghui Hou, and Yingming Zeng.
Lwsbft: Leaderless weakly synchronous BFT protocol.
Computer Networks, 219:109419, 2022.

Peng Huang, Chuanxiong Guo, Jacob R. Lorch, Lidong
Zhou, and Yingnong Dang. Capturing and enhancing in
situ system observability for failure detection. In /31h
USENIX Symposium on Operating Systems Design and
Implementation (OSDI 18), pages 1-16, Carlsbad, CA,
October 2018. USENIX Association.

(28]

(29]

(30]

(31]

(32]

(33]

[34]

[35]

(36]

[37]

Nicholas Hunt, Tom Bergan, Luis Ceze, and Steven D.
Gribble. Ddos: taming nondeterminism in dis-
tributed systems. SIGARCH Comput. Archit. News,
41(1):499-508, mar 2013.

Patrick Hunt, Mahadev Konar, Flavio P. Junqueira, and
Benjamin Reed. ZooKeeper: Wait-free coordination
for internet-scale systems. In 2010 USENIX Annual
Technical Conference (USENIX ATC 10). USENIX As-
sociation, June 2010.

Stephen Ibanez, Alex Mallery, Serhat Arslan, Theo
Jepsen, Muhammad Shahbaz, Changhoon Kim, and
Nick McKeown. The nanopu: A nanosecond network
stack for datacenters. In 15th USENIX Symposium on
Operating Systems Design and Implementation (OSDI
21), pages 239-256. USENIX Association, July 2021.

IEEE Instrumentation and Measurement Society. IEEE
Standard for a Precision Clock Synchronization Proto-
col for Networked Measurement and Control Systems
(IEEE Std 1588-2008), 2008.

Intel XL710. https://www.intel.com/content/
dam/www/public/us/en/documents/datasheets/
x1710-10-40-controller-datasheet.pdf. Online;
accessed 20-May-2025.

iPerf tool. https://iperf.fr/. Online; accessed 20-
May-2025.

Zsolt Istvan, David Sidler, Gustavo Alonso, and Marko
Vukolic. Consensus in a box: Inexpensive coordination
in hardware. In 13th USENIX Symposium on Networked
Systems Design and Implementation (NSDI 16), pages
425-438, Santa Clara, CA, March 2016. USENIX Asso-
ciation.

Patrick Jahnke, Vincent Riesop, Pierre-Louis Roman,
Pavel Chuprikov, and Patrick Eugster. Live in the ex-
press lane. In 2021 USENIX Annual Technical Confer-
ence (USENIX ATC 21), pages 581-597, July 2021.

Flavio P. Junqueira, Benjamin C. Reed, and Marco Ser-
afini. Zab: High-performance broadcast for primary-
backup systems. In 2011 IEEE/IFIP 41st International
Conference on Dependable Systems & Networks (DSN),
pages 245-256, 2011.

Kostis Kaffes, Timothy Chong, Jack Tigar Humphries,
Adam Belay, David Mazieres, and Christos Kozyrakis.
Shinjuku: Preemptive scheduling for pusecond-scale tail
latency. In Proceedings of the 16th USENIX Confer-
ence on Networked Systems Design and Implementation,
NSDI’ 19, page 345-359, USA, 2019. USENIX Associ-
ation.

https://etcd.io/docs/v3.5/op-guide/hardware/#network
https://etcd.io/docs/v3.5/op-guide/hardware/#network
https://www.intel.com/content/dam/www/public/us/en/documents/datasheets/xl710-10-40-controller-datasheet.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/datasheets/xl710-10-40-controller-datasheet.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/datasheets/xl710-10-40-controller-datasheet.pdf
https://iperf.fr/

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

Anuj Kalia, Michael Kaminsky, and David Andersen.
Datacenter RPCs can be general and fast. In 16th
USENIX Symposium on Networked Systems Design and
Implementation (NSDI 19), pages 1-16, Boston, MA,
February 2019. USENIX Association.

Marios Kogias and Edouard Bugnion. Hover-
craft: Achieving scalability and fault-tolerance for
microsecond-scale datacenter services. In Proceedings
of the Fifteenth European Conference on Computer Sys-
tems, EuroSys ’20, New York, NY, USA, 2020. Associ-
ation for Computing Machinery.

Maciej KuZniar, Peter Peresini, Dejan Kosti¢, and Marco
Canini. Methodology, measurement and analysis of
flow table update characteristics in hardware openflow
switches. Computer Networks, 136:22-36, 2018.

Leslie Lamport. The part-time parliament. ACM Trans.
Comput. Syst., 16(2):133-169, may 1998.

Leslie Lamport, Robert E. Shostak, and Marshall C.
Pease. The byzantine generals problem. ACM Trans.
Program. Lang. Syst., 4:382-401, 1982.

Joshua B. Leners, Trinabh Gupta, Marcos K. Aguilera,
and Michael Walfish. Improving availability in dis-
tributed systems with failure informers. In Proceedings
of the 10th USENIX Conference on Networked Systems
Design and Implementation, NSDI’ 13, page 427442,
USA, 2013. USENIX Association.

Joshua B. Leners, Trinabh Gupta, Marcos K. Aguilera,
and Michael Walfish. Taming uncertainty in distributed
systems with help from the network. In Proceedings of
the Tenth European Conference on Computer Systems,
EuroSys ’15, 2015.

Joshua B. Leners, Hao Wu, Wei-Lun Hung, Marcos K.
Aguilera, and Michael Walfish. Detecting failures in
distributed systems with the falcon spy network. In
Proceedings of the Twenty-Third ACM Symposium on
Operating Systems Principles, SOSP ’11, page 279-294,
2011.

Jialin Li, Naveen Kr. Sharma, Dan R. K. Ports, and
Steven D. Gribble. Tales of the tail: Hardware, os, and
application-level sources of tail latency. In Proceedings
of the ACM Symposium on Cloud Computing, SOCC
"14, page 1-14, New York, NY, USA, 2014. Association
for Computing Machinery.

Linux Kernel Documentation - Kprobes overhead.
https://docs.kernel.org/trace/kprobes.html#
probe-overhead. Online; accessed 20-May-2025.

(48]

[49]

(50]

[51]

[52]

(53]

[54]

[55]

[56]

[57]

Vincent Liu, Daniel Halperin, Arvind Krishnamurthy,
and Thomas Anderson. F10: A Fault-Tolerant engi-
neered network. In /0th USENIX Symposium on Net-
worked Systems Design and Implementation (NSDI 13),
pages 399-412, Lombard, IL, April 2013. USENIX As-
sociation.

Chang Lou, Peng Huang, and Scott Smith. Under-
standing, detecting and localizing partial failures in
large system software. In 17th USENIX Symposium on
Networked Systems Design and Implementation (NSDI
20), pages 559-574, Santa Clara, CA, February 2020.
USENIX Association.

Chang Lou, Peng Huang, and Scott Smith. Understand-
ing, detecting and localizing partial failures in large sys-
tem software. In NSDI, volume 20, pages 559-574,
2020.

Erik Rigtorp’s low latency tuning guide. https:
//rigtorp.se/low-latency-qguide/. Online; ac-
cessed 20-May-2025.

Ruiming Lu, Erci Xu, Yiming Zhang, Fengyi Zhu,
Zhaosheng Zhu, Mengtian Wang, Zongpeng Zhu,
Guangtao Xue, Jiwu Shu, Minglu Li, and Jiesheng Wu.
Perseus: A Fail-Slow detection framework for cloud stor-
age systems. In 27st USENIX Conference on File and
Storage Technologies (FAST 23), pages 49—64, Santa
Clara, CA, February 2023. USENIX Association.

Sarah McClure, Amy Ousterhout, Scott Shenker, and
Sylvia Ratnasamy. Efficient scheduling policies for
Microsecond-Scale tasks. In 79th USENIX Sympo-
sium on Networked Systems Design and Implementa-
tion (NSDI 22), pages 1-18, Renton, WA, April 2022.
USENIX Association.

Mellanox Connectx-4. https://
network.nvidia.com/files/doc-2020/
pb-connectx-4-1x-en-card.pdf. Online; ac-
cessed 20-May-2025.

A/ Muthumanikandan, C Valliyammai, and

B Swarna Deepa. Switch failure detection in
software-defined networks. In Advances in Big Data
and Cloud Computing: Proceedings of ICBDCCIS,
pages 155-162. Springer, 2019.

Diego Ongaro and John Ousterhout. In Search of an
Understandable Consensus Algorithm. In 2074 USENIX
Annual Technical Conference, USENIX ATC ’14, pages
305-319, 2014.

Amy Ousterhout, Joshua Fried, Jonathan Behrens, Adam
Belay, and Hari Balakrishnan. Shenango: Achieving
high CPU efficiency for latency-sensitive datacenter

https://docs.kernel.org/trace/kprobes.html#probe-overhead
https://docs.kernel.org/trace/kprobes.html#probe-overhead
https://rigtorp.se/low-latency-guide/
https://rigtorp.se/low-latency-guide/
https://network.nvidia.com/files/doc-2020/pb-connectx-4-lx-en-card.pdf
https://network.nvidia.com/files/doc-2020/pb-connectx-4-lx-en-card.pdf
https://network.nvidia.com/files/doc-2020/pb-connectx-4-lx-en-card.pdf

[58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

[68]

workloads. In 16th USENIX Symposium on Networked
Systems Design and Implementation (NSDI 19), pages
361-378, Boston, MA, February 2019. USENIX Asso-
ciation.

Biswaranjan Panda, Deepthi Srinivasan, Huan Ke, Karan
Gupta, Vinayak Khot, and Haryadi S. Gunawi. IASO:
A Fail-Slow detection and mitigation framework for
distributed storage services. In 2019 USENIX Annual
Technical Conference (USENIX ATC 19), pages 47-62,
Renton, WA, July 2019. USENIX Association.

Simon Peter, Jialin Li, Irene Zhang, Dan R. K. Ports,
Doug Woos, Arvind Krishnamurthy, Thomas Anderson,
and Timothy Roscoe. Arrakis: The operating system is
the control plane. ACM Trans. Comput. Syst., 33(4), nov
2015.

Marius Poke and Torsten Hoefler. Dare: High-
performance state machine replication on rdma net-
works. In Proceedings of the 24th International Sym-
posium on High-Performance Parallel and Distributed
Computing, HPDC ’15, page 107-118, New York, NY,
USA, 2015. Association for Computing Machinery.

George Prekas, Marios Kogias, and Edouard Bugnion.
Zygos: Achieving low tail latency for microsecond-scale
networked tasks. In Proceedings of the 26th Sympo-
sium on Operating Systems Principles, SOSP °17, page
325-341, New York, NY, USA, 2017. Association for
Computing Machinery.

Redis. https://redis.io. Online; accessed 20-May-
2025.

Redis-benchmark. https://redis.io/docs/
management /optimization/benchmarks/. Online;
accessed 20-May-2025.

https://
Online; ac-

RedisRaft, consistent key-value store.
github.com/RedisLabs/redisraft.
cessed 20-May-2025.

RoCEv2. InfiniBand Trade Association, Supplement to
InfiniBand Architecture Specification Volume 1, Release
1.2.1, September 2014.

Nicolas Schiper and Sam Toueg. A robust and
lightweight stable leader election service for dynamic
systems. In 2008 IEEE International Conference on De-
pendable Systems and Networks With FTCS and DCC
(DSN), pages 207-216, 2008.

David Schneider. The microsecond market. IEEE Spec-
trum, 49(6):66-81, 2012.

SKB - The Linux Kernel documentation. https://
docs.kernel.org/networking/skbuff.html. On-
line; accessed 20-May-2025.

[69]

[70]

[71]

[72]

(73]

[74]

[75]

[76]

[77]

(78]

[79]

[80]

Jonathan Stone and Craig Partridge. When the crc and
tcp checksum disagree. SIGCOMM Comput. Commun.
Rev., 30(4):309-319, aug 2000.

Stress-ng tool. http://colinianking.github.io/
stress-ng/. Online; accessed 20-May-2025.

Mark Sutherland, Siddharth Gupta, Babak Falsafi, Viren-
dra Marathe, Dionisios Pnevmatikatos, and Alexandres
Daglis. The nebula rpc-optimized architecture. In Pro-
ceedings of the ACM/IEEE 47th Annual International
Symposium on Computer Architecture, ISCA 20, page
199-212. IEEE Press, 2020.

Catching Corrupted OSPF Packets! - Blog.
https://routingfreak.wordpress.com/2011/
03/01/catching-corrupted-ospf-packets/.
Online; accessed 20-May-2025.

How both TCP and Ethernet checksums
fail - Blog. https://www.evanjones.ca/
tcp-and-ethernet-checksums-fail.html. Online;
accessed 20-May-2025.

The TLA+ home page. https://lamport.
azurewebsites.net/tla/tla.html. Online;
accessed 20-May-2025.

Ubuntu 20.04. https://releases.ubuntu.com/20.
04/. Online; accessed 20-May-2025.

Fengwei Wang, Hai Jin, Deqing Zou, and Weizhong
Qiang. Fdkeeper: A quick and open failure detector for
cloud computing system. In Proceedings of the 2014
International C* Conference on Computer Science &
Software Engineering, C3S2E ’14, 2014.

Xitao Wen, Bo Yang, Yan Chen, Li Erran Li, Kai Bu,
Peng Zheng, Yang Yang, and Chengchen Hu. Ruletris:
Minimizing rule update latency for tcam-based sdn
switches. In 2016 IEEE 36th International Conference
on Distributed Computing Systems (ICDCS), pages 179—
188, 2016.

Cilium ebpf and xdp reference. https://docs.
cilium.io/en/latest/bpf/. Online; accessed 20-
May-2025.

Yuan Yu, Panagiotis Manolios, and Leslie Lamport.
Model checking tla+ specifications. In Proceedings
of the 10th IFIP WG 10.5 Advanced Research Work-
ing Conference on Correct Hardware Design and Ver-
ification Methods, CHARME 99, page 54-66, Berlin,
Heidelberg, 1999. Springer-Verlag.

Irene Zhang, Jing Liu, Amanda Austin, Michael Lowell
Roberts, and Anirudh Badam. I’'m not dead yet! the
role of the operating system in a kernel-bypass era. In

https://redis.io
https://redis.io/docs/management/optimization/benchmarks/
https://redis.io/docs/management/optimization/benchmarks/
https://github.com/RedisLabs/redisraft
https://github.com/RedisLabs/redisraft
https://docs.kernel.org/networking/skbuff.html
https://docs.kernel.org/networking/skbuff.html
http://colinianking.github.io/stress-ng/
http://colinianking.github.io/stress-ng/
https://routingfreak.wordpress.com/2011/03/01/catching-corrupted-ospf-packets/
https://routingfreak.wordpress.com/2011/03/01/catching-corrupted-ospf-packets/
https://www.evanjones.ca/tcp-and-ethernet-checksums-fail.html
https://www.evanjones.ca/tcp-and-ethernet-checksums-fail.html
https://lamport.azurewebsites.net/tla/tla.html
https://lamport.azurewebsites.net/tla/tla.html
https://releases.ubuntu.com/20.04/
https://releases.ubuntu.com/20.04/
https://docs.cilium.io/en/latest/bpf/
https://docs.cilium.io/en/latest/bpf/

Proceedings of the Workshop on Hot Topics in Operating
Systems, HotOS ’19, page 73—80, New York, NY, USA,
2019. Association for Computing Machinery.

[81] Irene Zhang, Amanda Raybuck, Pratyush Patel, Kirk
Olynyk, Jacob Nelson, Omar S. Navarro Leija, Ash-
lie Martinez, Jing Liu, Anna Kornfeld Simpson, Sujay
Jayakar, Pedro Henrique Penna, Max Demoulin, Piali
Choudhury, and Anirudh Badam. The demikernel dat-
apath os architecture for microsecond-scale datacenter
systems. In Proceedings of the ACM SIGOPS 28th Sym-
posium on Operating Systems Principles, SOSP 21,
page 195-211, New York, NY, USA, 2021. Association
for Computing Machinery.

[82] Noa Zilberman, Matthew Grosvenor, Diana Andreea
Popescu, Neelakandan Manihatty-Bojan, Gianni An-
tichi, Marcin Wéjcik, and Andrew W Moore. Where
has my time gone? In Passive and Active Measurement:
18th International Conference, PAM 2017, Sydney, NSW,
Australia, March 30-31, 2017, Proceedings 18, pages
201-214. Springer, 2017.

[83] Zookeeper administrator’s guide. https://zookeeper.

apache.org/doc/r3.1.2/zookeeperAdmin.html.
Online; accessed 20-May-2025.

A FiDe-based Algorithms

The reliability of FiDe allows for the implementation of a
particular set of distributed algorithms based on a reliable FD
primitive, referred to as perfect FD () in the widely know
Chandra&Toueg classification [14]. While 2 is provably im-
possible to implement, we find the probabilities of FiDe to
break its strong completeness and strong accuracy properties
to be negligible, hence our motivation for the adoption of
for our novel algorithm.

Such algorithms are simple and, most importantly, reliable
as they can tolerate a larger number of failures (N — 1) com-
pared to their pure asynchronous counterparts. In traditional
timeout-based FDs, those gains may come at the of cost per-
formance degradation due to the time spent waiting for failure
notifications. Instead, the us-scale detection times provided by
FiDe enables the adoption of P-based algorithms in practice,
which in many cases can improve the system performance
considerably even in failure-free runs.

A.1 Primitives overview

In this work, we propose one reliable broadcast primitive,
OSRB (§ A.2), and two FiDe-based novel algorithms to solve
the uniform consensus problem. The first algorithm, HSUC (§
A.3), relies directly on and the OSRB primitive. The second
algorithm, HUC (§ A.4), exploits the piggyback feature of
FiDe to implement a heartbeat broadcast primitive which is

optimal in message complexity for consensus. All algorithms
assume an asynchronous system with a reliable FD primitive
in the crash-stop process model. We present the uniform
consensus specification taken from [13] below.

Termination: Every correct process eventually DECIDES
some value.

Validity: If a process DECIDESs v, then v was PROPOSEd by
some process.

Integrity: No process DECIDEs twice.
Uniform agreement: No two processes DECIDE differently.

All the handlers are assumed to execute atomically, and,
if multiple handlers are enabled at the same time, they are
triggered in a fair manner.

A.2 Optimistic Stabilizing Reliable Broadcast

We start by presenting specification of a reliable broadcast
primitive and our implementation of that primitive, dubbed
OSRB, which we later use in our consensus algorithm.

Properties. The reliable broadcast has BROADCAST down-
call and DELIVER upcall that must satisfy the following.

Validity: If a correct process p BROADCASTSs a message 1,
then p eventually DELIVERS m.

No duplication: No message is DELIVEREd more than once.

No creation: If a process DELIVERs a message m from p,
then m was previously BROADCAST by process p.

Agreement: If a message m is DELIVERed by some correct
process, then m is eventually DELIVERed by every cor-
rect process.

Algorithm. Like other lazy reliable broadcast primitives
[13], OSRB optimistically implements BROADCAST using
a multi-send and buffering received messages, which it may
need to retransmit later upon detecting a process failure via
P. The reception of a message for the first time triggers the
DELIVER. As a novel performance improvement, OSRB intro-
duces an additional downcall called STABILIZE, which takes a
message id as an argument. STABILIZE gives the possibility to
apply a stabilization criterion to limit the messages buffered
in retransmit and therefore lazy message relay upon failure.

Stabilility: If any process STABILIZESs id, then every correct
process has RECEIVEd msg s.t. id = ID(msg).

Note, it is the responsibility of a user of OSRB to ensure
that the stabilization criterion is satisfied as otherwise, the
agreement property can be violated.

https://zookeeper.apache.org/doc/r3.1.2/zookeeperAdmin.html
https://zookeeper.apache.org/doc/r3.1.2/zookeeperAdmin.html

Algorithm 2: Optimistic stabilizing reliable broadcast
(OSRB). Executed by every process p;

1 correct + {1,2,...,N}/* set of process ids */
2 retransmit < {}/* set of messages */
3 delivered < {}/* set of message ids */

4 to BROADCAST(msg)
5 for p; € correct do
6 L SEND(msg) to p;

7 upon RECEIVE(msg)
8 | if ID(msg) ¢ delivered then

9 retransmit < retransmit U {msg}
10 DELIVER(imsg)
1 delivered < delivered U {ID(msg)}
12 upon CRASH(j) from P
13 correct < correct \ {j}
14 for k € correct do
15 for msg € retransmit do
16 L | SEND(msg) to pi

17 to STABILIZE(id)
18 if Imsg € retransmit |id = 1D(msg) then
19 L retransmit < retransmit \ {msg}

Correctness OSRB keeps track of the delivered messages
in the delivered variable to guarantee No duplication since a
process can receive messages it has already seen upon failure
detection. The Validity and No creation properties are guaran-
teed by the reliable links abstraction and the fact that we send
to all correct processes. The Uniform agreement property is
derived from Validity, P’s accuracy, and the message retrans-
mission upon failure detection when STABILIZE has not been
called for that message’s id. If STABILIZE has been called,
then it is the stabilization criterion that ensures validity. We
demonstrate a concrete example of the use of stabilization in
the HSUC Alg. 3.

A.3 Hierarchical Stabilizing Uniform Consen-
sus

Alg. 3 called hierarchical stabilizing uniform consensus
(HSUC) solves uniform consensus using a hierarchy among
the processes, a reliable FD detector and the previously de-
fined OSRB primitive.

Algorithm. The algorithm is re-adapted from the hierar-
chical uniform consensus algorithm in [13], originally taken
from [42]. It assumes asynchronous communication, reliable
links, unique message ids and sequential execution of con-
sensus instances. The latter means that at any given process,

Algorithm 3: Hierarchical stabilizing uniform consen-
sus (HSUC). Uses OSRB. Executed by every process

Di

correct + {1,2,...,N}/* set of process ids */
leader +—MIN(correct)

proposal <— 1

proposer +— L

acks < 0

lastid + |

QA R W N =

2

to PROPOSE(V)
8 if proposal = 1 then

9 L proposal < v
10 if i = leader then
11 for j € correct do
12 | SEND(V) to p;

13 upon RECEIVE(v) from p;
14 if proposer = L or j > proposer then

15 proposal < v
16 proposer < j
17 SEND(ACK) to p;j

18 upon RECEIVE(ACK) from p;
19 | acks < acksU{j}

20 upon acks O correct
21 BROADCAST(proposal)
22 acks <0

23 upon CRASH(j) from P

24 correct + correct\ {j}

25 if j = leader then

26 leader + MIN(correct)

27 if i = leader and proposal # | then
28 for k € correct do

29 L L SEND(proposal) to pi

upon DELIVER(V)

30 STABILIZE(lastid)
31 lastid < 1D(v)

32 DECIDE(V)

33 proposal < L

between any two PROPOSE invocations, there is exactly one
DECIDE event. We also assume two kinds of implicit behav-
iors for all handlers in HSUC. First, a process buffers mes-
sages corresponding to future consensus instances until the
process has made a decision for all the previous instances.
Second, it ignores messages from all the consensus instances
for which it has already decided. The consensus instance can
be identified by attaching and propagating a consensus in-
stance number inside every message. HSUC can tolerate up

HSUC example executions

HUC example executions

pi \‘ =y 7\ ok} pi f f k@ —) Message
ACK

A o b= oK —+ FCURB
ps @ p3 [ok]

Failure-free Failure-free OSRB
Di = 3 pi j_# Consensus decision
D2 \ \ = .“‘7: D [ok— P2 f o ok 3 Failure
ps & A ok—@ \ D3 / 0 /‘ \l—@ © FiDe Detection

Leader failure; OSRB ensures all correct
processes eventually deliver

Leader failure; p; is elected as new
leader following FiDe notification

Figure 7: HSUC and HUC execution diagrams. Black lines represent timelines for each process increasing from left to right.
HUC enforces message-then-failure ordering through FCURB (bottom right diagram) while HSUC allows the safe delivery of a
decision message through OSRB even after a failure detection event (bottom left diagram).

to f = N — 1 failures where N is the number of total processes
in the system.

The algorithm is round-based, with every round lasting
until at least one failure is detected. The leader of every round
is deterministically chosen to be the correct process with the
lowest id.

In failure-free runs, the algorithm requires only one round
and uses three communication messages: (D the leader multi-
SENDs its proposal to all correct processes, which then 2)
adopt the proposal as their own and SEND an ACK to the
leader upon reception. @) Once the leader has collected ACKs
from all alive processes, it reliably disseminates the decision
using the OSRB primitive. The algorithm goes through these
same three phases if up to f = N — 1 non-leader processes
fail.

If the leader of a round fails, all correct processes detect

it and proceed to a new round in which a new deterministi-
cally elected leader starts multi-sending the proposal message
(line 11 and line 28). Note that even if the leader fails af-
ter sending its decision, all the alive processes have their
proposal set to the leader’s so any future leader would broad-
cast the same proposal as the failed leader. If the leader de-
cides on v and then crashes before its decision can reach any
other process, any of the following leaders will propose v as
it was adopted as own proposal.
The reception of the next round’s decision defines the stabi-
lization criterion of OSRB. Once this phase of the algorithm
is reached, STABILIZE (lastid) [Alg. 3, line 30] can be safely
called so that the message from the previous consensus will
not be retransimitted by OSRB upon future failure detections
[Alg. 2, line 15].

Process diagrams in Fig. 7 depict example executions of
HSUC. Upon failure of the leader, the OSRB primitive en-
sures that the decision message is eventually delivered. The
delivery can occur even after another process detects a failure
and proceeds with the leader election. HSUC ensures that

correct processes which receive a decision message (p3 in the
bottom-left diagram) will not ACK future proposal by another
leader preventing mismatched decisions.

Correctness. The validity property follows trivially from
the algorithm and from the no-creation properties of commu-
nication abstractions. The integrity follows from our assump-
tion that all the messages from earlier consensus instances are
ignored once the decision is made. For Termination, it is suf-
ficient to show that at least some correct process DELIVERS,
for OSRB’s agreement ensures that then every correct process
DELIVERSs and, hence, decides. Assume no correct process
DELIVERS, consider then correct process p;+ with the lowest
process id i*. Eventually, due accuracy and completeness of
P, pi+ will become and always remain a leader. Right at that
point (on line 11 or line 28), p;+ will multisend its proposal.
Note that due to accuracy of 2, no process p; with j > i* will
become a leader, and, hence, will multisend its proposal or
set its proposer variable to j. Hence, no proposer variable
will ever get set to j > i*, implying that eventually all the
correct processes will respond to p;<’s proposal triggering
pi+ to BROADCAST, and hence, DELIVER, contradicting our
assumption. The fact that processes ignore messages from
older instances does not hinder termination as advancing to
the next instance is only possible after DELIVER, hence all
correct processes continue to participate under our assump-
tion that no correct process DELIVERS. To show Uniform
Agreement we argue that all the BROADCASTS necessarily
carry the same value. This is guaranteed by phase (D) and Q)
of the algorithm that ensure that every process will propose
hence decide on the same value even if a leader fails before
delivering a decision. Specifically, the moment process p;
receives all the ACKnowledgements all the alive processes
must have their proposal equal to that of p;. First of all, no
proposal has been sent by p;, j > i as no such p; could have
become a leader for i is still alive. Hence, all the processes

that have received p;’s proposal have ACKnowledged it and
could not yet have changed their proposal value. We also
need to show the Stability criterion of OSRB since it could
be violated by an unsafe call to STABILIZE and violation of
the agreement. Stability of lastid is guaranteed as if a process
receives a decision, then a leader must have collected all the
ACKs for the current consensus instance, meaning that all the
correct processes have responded with those ACKs and they
have decided in the previous instance on some proposal v with
ID(v) = lastid as otherwise ACK requests would be buffered
instead.

Complexity. In the failure-free cases, HSUC uses 3 mes-
sage delays and exchanges O(N) messages. Each failure of a
leader adds 2 additional delays and O(N) messages for con-
sensus and O(N?) for the OSRB retransmission upon failures
[Alg. 2, line 15]. If we used a lazy RB instead of OSRB ,
e.g. "Lazy Reliable broadcast" in [13], the added complexity
overhead of the RB would be O(M x N?) where M is the num-
ber of messages sent in all previous instances of consensus.
This performance improvement is achieved through message
stabilization logic.

A.4 Heartbeat Uniform Consensus

The second implementation of uniform consensus that we
propose is called heartbeat uniform consensus (HUC) and is
shown in Alg. 4.

Overview. Once again we assume asynchronous communi-
cation and reliable links. HUC uses a leader-driven decision
logic with a new leader elected deterministically by selecting
the process with the smallest ID upon failure of its predecessor.
Here FiDe is used both as P and as the means to piggyback
decision messages. As for HSUC, we assume that messages
pertaining to old consensus instances are ignored and future
ones are buffered. This simple algorithm is meant to show-
case the reduced logical and message complexity that can
be achieved in failure-free executions when using FiDe as
backbone of distributed systems. Enabling such reductions is
arguably the most relevant contribution of this work.

Fail-consistent uniform reliable broadcast. We abstract
FiDe’s piggyback feature into a primitive called fail-
consistent uniform reliable broadcast (FCURB). Since there
is a limit on the message size for the piggyback method, we
assume small message sizes. A practical implementation of
this assumption is to reliably disseminate the messages in
advance, using FiDe piggyback for message ids only. The
properties of fail-consistent uniform reliable broadcast are:

Validity: If a correct process p BROADCASTS a message m1,
then p eventually DELIVERS m.

Algorithm 4: Heartbeat uniform consensus (HUC).
Uses FCURB. Executed by every process p;

1 correct < {1,2...N}

2 leader <— MIN(correct)
3 proposals + [LN

4 acks 0

5 to PROPOSE(val)
6 proposalsli] < val
7 SEND(val) to preader

8 upon RECEIVE(val) from p;
9 proposals|j] + val
10 | acks < acksU{j}

11 upon acks D correct

12 val <—DET(proposals)
13 acks <0

14 BROADCAST(val)

15 upon CRASH(j) from FiDe
16 correct < correct \ {j}
17 proposals|j] + L
18 if j = leader then

19 leader <—MIN(correct)
20 if proposals[i] # L then
21 L SEND(proposals|i]) t0 preader

22 upon DELIVER(val)
23 LDECIDE(val)

No duplication: No message is DELIVERed more than once.

No creation: If a process DELIVERs a message m from p,
then m was previously BROADCAST by process p.

Uniform agreement. If a message m is DELIVERed by some
process, then m is eventually DELIVERed by every cor-
rect process.

Fail-consistency: If process p DELIVERs a message from
process g, then p has not yet received CRASH notification
for g.

Validity, uniform agreement, and fail-consistency are guar-
anteed by FiDe’s reliability: a heartbeat message m BROAD-
CAST by p is guaranteed to be either (i) DELIVERed by all
correct processes and confirming that p is still alive, hence
fail-consistency; or (ii) being lost for all processes as a result
of p failing before actually sending out m. No creation and no
duplication are guaranteed by underlying guarantees of the
links and the fact that no re-transmission are needed. We use
FCURB to implement Alg. 4, heartbeat uniform consensus.

Algorithm. HUC uses two communication steps in failure-
free executions: (D) every process sends its proposal to the

leader, @ once the leader has collected a proposal from ev-
ery correct process it deterministically decides using the DET
function (Alg. 4, line 12) and then disseminates the decision
by using FCURB. If the leader fails, every alive process cor-
rectly detects and proceeds with the next leader (line 19).
Note that the delivery of a decision can never follow a failure
detection event thanks to fail-consistency properties of our
FCURSB i.e., FiDe piggybacking mechanism. A leader can
fail and not broadcast a decision message (scenario depicted
in Fig. 7) or broadcast and immediately fail, in which case
the decision is reliably delivered to all processes by FCURB..

Correctness. Validity follows from the validity of underly-
ing communication abstractions, and integrity follows triv-
ially from the assumption of ignoring old consensus messages
after the decision is taken. Termination for Alg. 4 is guaran-
teed once any process DELIVERs due to FCURB’s uniform
agreement. Assume, similar to HSUC that never happens,
and consider again the correct process p; with the lowest i*.
Eventually every process would recognize p;+ as a leader (due
to ’s completeness and accuracy) and, hence, will eventu-
ally send their proposals to p;+ either on line 21 or on line 7,
which would be collected by p;+ and, hence BROADCAST, and
hence DELIVERed. Uniform agreement follows easily once
we show that only one successful BROADCAST every happens.
To see that, assume that process p; and p;, j > i both success-
fully broadcast, for that to happen, p; should have received
a proposal from some correct process py. That implies that
Pk thought p; was the leader and, hence, must have received
a failure notification from p;, but due to fail-consistency p;
must have DELIVERed p;’s decision first, and, hence, should
have advanced to the next instance, a contradiction.

Complexity. In the failure-free cases, HUC uses 2 mes-
sage delays and exchanges O(N) messages. Each failure of a
leader adds 1 additional delays and O(N) messages for con-
sensus. HUC has better performance than HSUC (Alg. 3) and
other asynchronous with 2 algorithms in literature [13]. It
also has equivalent or better performance than widely known
partially synchronous consensus algorithms (e.g. Paxos [41],
Raft [56]), but higher fault tolerance: Typical quorum-based
algorithm can tolerate f = N/2 — 1 failures compared to
f =N —1 of the algorithms proposed in this section. The
downside is that the throughput and message size are limited
FiDe’s periodic multicast protocol which may be a bottle-
neck in very large systems. To overcome limited message
size, clients might need to broadcast messages to replicas in
advance.

B FiDe Traffic Engineering Algorithm

The key responsibility of FiDe traffic engineering is to con-
struct the multicast trees and derive the parameters of the

periodic multicast protocol, while incorporating global view
on the behavior of network nodes provided made available
by SDN, namely bandwidth, latency and jitter of network de-
vices. Latency and jitter parameters of the network subsystem
at endhosts are estimated empirically using a purpose-built
tool. Crucially for FiDe’s reliability, there must be K multicast
trees for the same sender/receivers pair and those tree must
be vertex-disjoint in their internal nodes (leaves are always
the same) providing necessary redundancy in case of link or
switch failures; henceforth we use vertex-disjoint to mean
“vertex-disjoint in internal nodes”.

To decouple optimization process from ensuring latency
guarantees, we employ a similar high-level approach as
in [35], namely, first, we find the most promising set of mul-
ticast trees, and only then we compute the protocol parame-
ters. For the latter, we take the adjustment phase from [35]
and extend it to account for redundant trees: given a set of
vertex-disjoint trees 7 for sender p; and receivers { pj} jels
the parameters for 7 are derived from tree parameters as:

Omax (i,J) = min(Cpmax (T) : T € T)
Tomin (i,]) = max (fin (T) : T € T)
Amin (i, j) = min(Afs (i, /) : T € T)
Bmax (i, /) = max (M (i,) + 80x (i) : T € T) = Amin (i)

The tree-finding task is more challenging as we need to
ensure vertex-disjointness. The main building block is finding
the set of trees for a single request, represented by a FiDe
sender process p;, receiving processes { p;‘} jeJ» requested
packet size Omax (i,J), and desired sending period Tyin (i,J).
The key observation that we make to enable practical algo-
rithm for finding a set of vertex-disjoint paths is that datacenter
networks have regular structure. Let us denote the network
graph as G = (V, E), the distance between u,v € V as d(u,v),
the set of endhosts as H C V, for a FiDe process p,’; we let iy
denote the endhost where pj is running and let Hy = {h;} je;.
We also define the set of all nodes at distance exactly r from v
asN"(v) ={u €V :d(v,u) =r}, and the set of all endhosts #’
such that there exists a shortest path from z € H to &’ through
v as Ny(h~v)={h € H:d(h})=d(hv)+d(vh)}.
Now, the regularity of the network topology is expressed
by the assumption that for any endhost & € H, and any
two nodes v,v' € G"(h), either Ny (h ~> v) = Ny(h ~ V')
or Ny (h ~> v) NNy (h ~> V') = 0; moreover for any i’ € H,
W # H we have Ny (h~ h') = {h'}.

The core idea of the algorithm is to produce a set of
multicast trees 7 bottom-up, each step being identified by
re{0,...,r*}, where r* is the largest satisfying N’ (h;) # 0.
At layer r, we consider G"(h;) = V{ U...UV UV’ each
V/ representing an equivalence class w.r.t. Ny (h ~» —), so
Ny (h ~ V) is well-defined, and Ny (h ~ V) NH; # 0. We
call V{ leaf if V[= {h;} for some h; € H;. For each V//, for
each X C V/,s.t., X =V for leaf V" or |[X| = K for non-
leaf V/ the algorithm constructs set 7, (X) of |X| rooted

vertex-disjoint trees, s.t. (1) the set of roots must be exactly X;
(2) each tree must have exactly Ny (h ~» V[)N Hj as leaves;
and (3) all paths from the root must be shortest in G.

The base case corresponds to V;/ being leaf, where 7, (X)
has a single trivial tree. For the inductive case, we want to
build Z;"(X) for non-leaf V. To that end, we consider all
V"1 such that Ny (h; ~ V;*!) C Ny (h; ~ V). Each such
Vkrfrl would give a separate child to each of the K trees in
7/ (X) as due to our assumption of Ny (h; ~ Vk’,H) being
disjoint and the constraint on all the paths being the shortest
makes the branching necessary at this point. Concretely, to
build 7" (X), the algorithm loops over each V;"!, at each
iteration trying all possible ¥ C Vk’,+1 and trying all possible
ways of attaching each tree from CIZH (Y) as a child of some
v € X, finding one that minimizes the cost, to be defined
shortly, of the resulting tree. Note, since the overall cost of
a tree is monotone with respect to each child, the choices
for each ‘2;;“ (Y) are independent. The overall complexity is
O(|V > .K!-d), where d is the G’s diameter.

The cost of a set of trees is computed as the sum of two com-
ponents, one measuring the maximum latency of the current
set of trees, the other being an upper bound on the maximum
latency increase of existing trees. The former is defined sim-
ply as Amin (7, j) + Omax (1, j), where j € J and r is the root of
the tree, while the latter is defined as a sum of queuing delays
Omax (i,J)/B(u,v) introduced by the new tree at each of the
links for each of the other trees using the same link, where
B(u,v) is the bandwidth of the (u,v) link.

C Critical Compound Failure Probability Es-
timation

This section details the procedure used to estimate the prob-
ability of a critical compound failure, i.e., a combination of
network failures not tolerated by FiDe. This type of failure
is outside the scope of FiDe’s model, hence monitoring pro-
cesses can possibly misinterpret it as a remote process failure
(false suspicion). Recall that the two-fold redundancy and
the tree recovery mechanism are robust towards a single net-
work failure, since processes can rely on the other (healthy)
tree, and also tolerates multiple failures in the redundant trees
given they allow FiDe TE to recover. We will shortly see how
the recovery time is in fact not influential for critical com-
pound failures. Moreover, we assume that FiDe terminates
gracefully, when one of the two trees is still alive and there
are no more healthy links available for tree recovery.

In what follows, we consider all events with respect to a
given operational year. We define two auxiliary events:

« fl:link [fails at least once;

o f! !+ links I and , 1 = I, fail at least once within the tree
recovery time.

Now we can define a critical compound failure event:

f&op: at least two distinct network failures occur within the
tree recovery time interval affecting all multicast trees
in multicast tree set 7 (in FiDe, we have |T| = 2).

Formally, for redundancy level two fé(T:'PlTZ} ={31 €
T,LeT, Zfll‘lz}.

We use switch and link failure statistics from a seminal
large scale analysis of datacenter network failures from Gill
et al. [22]. Note that, while FiDe’s failure model defines a
network failure as a more generic packet drop, we restrict the
scope to switch and link failures only because packet drops
caused by congestion are prevented by FiDe’s TE-driven pe-
riodic multicast protocol. We report probability estimates
relevant to our topology from [22] below (marked with ’).

o If [is a “trunk” link, then p(f') < pl, = 0.054 (proba-
bility of a “trunk” link failure) [22, Fig. 5].

* If [is a “core” link, then p(f!) < pL. = 0.095 (probabil-
ity of a “core” link failure) [22, Fig. 5].

o I p(31 #1: fH']f') < pl, = 0.41 (probability of a given
failure affecting a group of links) [22, Fig. 10].

Gill et al. [22] report that (a) switch failures do not show
correlation and that (b) link failures are either “simultaneous”
(without giving an exact quantification) or the time between
them is too large to indicate a meaningful correlation. Finding
(a) suggests that FiDe is very likely to always tolerate switch
failures since the trees in 7 are disjoint on inner nodes. For
finding (b), consider that FiDe adopts a conservative tree re-
covery time of several seconds (our measurements indicate a
recovery time ms-range similar to several studies [25,40,77]),
which, for the purposes of this evaluation, we can confidently
assume to be much smaller than the “large grouping thresh-
olds” evaluated in the empirical study. We therefore consider
only simultaneous link failures as potential causes of a critical
compound failure and do not delve into a detailed quantifica-
tion of the tree recovery time.

We compute an upper bound on p(fgcp) for multi-rooted
fat trees of different height, which we define as half the di-
ameter of a fat tree. Fig. 8 provides a visual example of a
multi-rooted fat tree, showing how deployment of FiDe pro-
cesses can create “sub-trees’” withing a broader topology. The
formulas below are used to derive the upper bound on the
probability of critical compound failure.

Tree héight =2 Tree height =3

|:| Host @a# SDN switch
// Link (colored for FiDe TE trees) (O Application process

|:| :_: Physical multi-rooted fat trees of different heights

Tree height = 1

[] FiDe process

Figure 8: Widely-adopted multi-rooted fat tree topology with
three different FiDe deployments (color-coded) showcasing
different tree heights.

PGP < Y pBhen: i) (1)
LeT

=Y pBhLeD: 1)y p(/h) @)
LEeT

< Y pBU#L: MM P B
LEeT

< P;: (Pt (T1) + Py ner(T1)) “4)

:plCCF({TlvTZ})

where n,,(T) and n,,(T) denote the number of “trunk” and
“core” links, respectively. In (1) we use a union bound over
links in 7}, in (2) we use the fact that £/ C £! and we can
use the definition of conditional probability, in (3) we use the
fact that any link 7> contains only a subset of links different
from /1, and, finally, in (4) we apply the bounds.

For a practical example, consider the topology with height
H =1 from Fig. 8, which has only two trunk links in each
tree, i.e. n,(T1) = 2 and n.(T1) = 0. We obtain the upper
bound on the failure probability pecr({T1,T2}) = py- piy-2 ~
0.044. In general, for a set of multicast trees 7 connecting
n FiDe processes and having height H € {1,2,3} we have
p/CCF(T) = p:q e (maX(H - 270) 'pi‘r +II121X(H - 170) 'p;r)'
Concretely, if n = 2, then for H = 2 we get prp(7) ~ 0.089
and for H = 3 we get picp(7) ~0.17.

Critical compound failure probability in perspective.
The expected frequency of a critical compound failure
(fregccr) based in the smallest (ideal) topology is 1 every
22.73 years, hence extremely likely to outlive any realistic
service uptime. To put this number in perspective, we com-
pare it against the probability of packet corruption in TCP,

widely regarded and used as reliable communication layer
by coordination services such as Zookeeper [29]. A popu-
lar study [69] reports that “the Ethernet CRC + TCP check-
sum will fail to detect errors for roughly 1 in 16 million to
10 billion packets”, with recent real-world cases being re-
ported [72,73]. If we assume equivalent TCP traffic as FiDe’s
throughput when set with the lowest possible sending period
of T = 20us (500Mbps) used in our evaluation, the reported
error rate would translate to one packet corruption every 320
seconds to 2.3 days, making it several orders of magnitude
more reliable. Considering that error reports [22,69] are from
decades ago, we expect both probabilities to be significantly
smaller in modern networks, challenging the common mis-
conception that any network is unreliable.

	Introduction
	Model and Scope
	System and failure model
	Properties
	Targeted services

	System Design
	Architecture
	Reactive, uninterrupted processing
	Fast-track, redundant networking
	Failure detection

	FiDe-based Novel Fast Services
	Boosting consensus
	Advantages over traditional approaches

	Implementation Details
	Evaluation
	Benchmark setup
	Interaction stability (RQ1)
	Application failure detection (RQ2)
	FiDe for key-value stores and distributed synchronization (RQ3, RQ4)
	Network faults and deployment (RQ5)
	FiDe in the bigger picture

	Related Work
	Conclusions
	FiDe-based Algorithms
	Primitives overview
	Optimistic Stabilizing Reliable Broadcast
	Hierarchical Stabilizing Uniform Consensus
	Heartbeat Uniform Consensus

	FiDe Traffic Engineering Algorithm
	Critical Compound Failure Probability Estimation

