
Train Once Apply Anywhere: Effective Scheduling
for Network Function Chains Running on FUMES
Marcel Blöcher
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Abstract—The emergence of network function virtualization
has enabled network function chaining as a flexible approach
for building complex network services. However, the high degree
of flexibility envisioned for orchestrating network function chains
introduces several challenges to support dynamism in workloads
and the environment necessary for their realization. Existing
works mostly consider supporting dynamism by re-adjusting
provisioning of network function instances, incurring reaction
times that are prohibitively high in practice. Existing solutions
to dynamic packet scheduling rely on centralized schedulers and
a priori knowledge of traffic characteristics, and cannot handle
changes in the environment like link failures.

We fill this gap by presenting FUMES, a reinforcement learn-
ing based distributed agent design for the runtime scheduling
problem of assigning packets undergoing treatment by network
function chains to network function instances. Our design consists
of multiple distributed agents that cooperatively work on the
scheduling problem. A key design choice enables agents, once
trained, to be applicable for unknown chains and traffic patterns
including branching, and different environments including link
failures. The paper presents the system design and shows its
suitability for realistic deployments. We empirically compare
FUMES with state-of-the-art runtime scheduling solutions show-
ing improved scheduling decisions at lower server capacity.

I. INTRODUCTION

The emergence of NFV (network function virtualization)
has enabled the vision of a converged network architecture,
spanning data centers, carrier networks, and edge, accessing
dynamically created services using resources distributed across
the network. Scheduling such network services end-to-end,
with packets undergoing treatment by combinations of NFs
(network functions) orchestrated into NFCs (network function
chains) [1], remains an open challenging problem [2]–[4].

A. Real-life Constraints

The main challenge in conceiving NFCs in a way realizing
the vision of flexible services for real-life deployments is to
support the necessary dynamism, especially when considering
support for wireless communication in 6G. More precisely,
solutions must address the following requirements:
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Dynamic workload [DYN-WORK]: Packet arrivals for NFCs
do not necessarily follow some fixed, known, rate or
distribution, but can exhibit more fundamental unforeseen
workload variations. This includes branching decisions,
as required for expressive NF orchestrations.

Dynamic environment [DYN-ENV]: Similarly, execution en-
vironments are not static. Networks may get extended
with new links or improved link latencies, and servers
can get added. Inversely, resource reductions including
outages, e.g., link failures, need to be accommodated.
Testing and adjusting is often not even possible in real-
life settings ahead of production time. Adaptations must
happen automatically on the fly with minimal disruption.

B. Lack of Dynamic Solutions

We know of no solution capable of addressing these needs
among existing works. Several works periodically adjust the
deployment of NFIs (network function instances) or individ-
ual VNFs (virtualized network functions) and their resource
assignments to changes in network traffic and topology, as
required for future carrier networks [5]–[10]. However, these
solutions are too coarse-grained for [DYN-WORK], e.g., with
adaptations taking seconds to take effect [10], incurring com-
plexities prohibitive for real-time application [8], and involving
disruptive NFI migration [6]. Solutions for scheduling packets
for VNFs or NFCs mostly perform network-wide centralized
scheduling, assuming a scheduler with global knowledge of
the network and advance knowledge of statistical information
– often even assuming static bandwidth requirements for
network flows [9], [11]–[20]. The few solutions considering
dynamic flow demands [5], [6], [9], make assumptions pre-
venting real-life dynamic deployments as captured by [DYN-
WORK], like knowledge of input and output traffic volume of
all NFIs [9], of flows’ nominal and maximum volumes [6], or
of flow rates [21]. The closest matching work is STEAM [22],
which treats traffic scheduling entirely as a runtime problem
without a priori knowledge of traffic characteristics. However,
STEAM supports neither expressive NFC orchestrations with
branching necessary for [DYN-WORK], nor handles environ-
mental changes as per [DYN-ENV] like link failures.

C. FUMES

This paper presents FUMES (network function chaining
with reinforcement learning incorporating state), the first NFC
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packet scheduling solution fully addressing [DYN-WORK] and
[DYN-ENV]. We use RL (reinforcement learning) to solve the
MDP (Markov decision process) of deciding on the fly for a
given packet which NFI for the next NF in the packet’s NFC to
process the packet at. More precisely we propose a distributed
scheduler with a MARL (multi-agent reinforcement learning)
design, with an own independent agent for each NFCC (net-
work function chain coordinator) managing ingress and egress
at a site, thus becoming an instance of Markov game [23].

Every agent uses packet metadata and collected network
state to calculate a state table and generate an action vector
represented by an array of probabilities for all possible actions,
following a policy. An agent draws a random decision based
on this probability distribution to decide which NFI to send
a given packet to next for processing. Each time an agent
is involved in scheduling decisions, the agent calculates a
reward to improve its policy; the reward function uses several
parameters including the current processing stage in the NFC
and processing latency, and the estimated latency to reach the
next NFCC. By adopting techniques such as padding and state
shuffling, and by leveraging gossip-based communication for
state sharing, FUMES is able to effectively adapt to changes in
both workload ([DYN-WORK]) and environment ([DYN-ENV]),
while minimizing synchronization across agents and sites.

D. Contributions and Roadmap

After specifying the model of multi-site NFC execution con-
sidered, and the dynamic packet-level scheduling problem for
that model (§ II), this paper makes the following contributions:

1) for ease of presentation only, we first conceptually map
the considered scheduling problem to an MDP and show
how to solve it via RL using simplifying assumptions,
such as a single oracle agent with full visibility over the
state of all NFCCs taking decisions (§ III);

2) we lift the assumptions and map the problem to a realistic,
distributed setup with multiple sites, and individual agents
for all NFCCs, leveraging gossiping for state sharing and
a carefully designed distributed reward function (§ IV);

3) we empirically evaluate FUMES, comparing it against an
extension of STEAM [22] to support branching as well
as link failures, and a greedy heuristic similarly adapted
from prior works. We show that FUMES achieves higher
success rates and lower latency, and uses less server
capacity, especially under workload spikes, network link
failures, and unpredictable branching, demonstrating its
ability to achieve [DYN-WORK] and [DYN-ENV] (§ V).

§ VI presents related work, and § VII draws conclusions.

II. MODEL AND PROBLEM

This section provides a comprehensive system model for
runtime NFC packet scheduling in a distributed system.

A. System Model

1) Infrastructure: We consider a distributed system with
several geographically distributed computing sites, e.g., edge
or cloud data centers, holding servers for running NFIs. We

Fig. 1: NFC scenario with 3 sites, inter-connected through their
NFCCs, and 3 different types of NFs with multiple instances.

denote sites by capital letters (e.g., A, B, C). Each site has an
NFC coordinator (NFCC), responsible for forwarding traffic
within its site and to other sites; each NFCC runs a classifier
and a scheduler. Examples of NFCCs include service function
forwarders in SFC architectures [24] or front-end servers in
data centers [25]. We denote the coordinator of a site A by
AC. The NFCC is seconded by a set of servers running NFIs,
as depicted in Fig. 1, denoted by A1, A2, etc.

We assume that network planning, as discussed in [26], [27]
for different use cases, is performed beforehand, with enough
capacity assigned to links interconnecting NFCCs. Generally,
these links are not a bottleneck; however, the communication
over these links can be unreliable (fail at runtime for unknown
time periods) and is subject to latency. The propagation latency
of a link is a random variable with finite mean (based on the
physical length of the link) and variance.

2) NFIs: An NF is a piece (type) of processing logic
applied to network packets, while an NFI is a concrete
instantiation of such an NF on a server. Multiple instances
of the same NF might be deployed at a same site. We denote
by NFi the NF of type i = 1, 2, etc., and by NFIAk

i an instance
of NF type i deployed on server Ak at site A.

We consider that NFIs are already deployed in the network.
That is, we consider a capacity planning scheduler that runs
periodically (minutes granularity) and updates the NFI installa-
tion, by using any solution proposed in the literature (e.g., [12],
[14]). In contrast to these solutions, however, NFIs are not pre-
assigned resources or traffic. Our scheduler decides entirely at
runtime where to send a packet and how many resources to
assign to its processing. Naturally each NFI has a local buffer
to store incoming packets. We also assume that the processing
capacity of a server is shared among all hosted NFIs according
to a given policy. The above-mentioned assumptions are not
restrictive, representing many real-life use cases [28].

3) Network traffic: The network traffic is composed of
many flows originating from different users connected to
the network. The ingress and egress nodes of a flow are
determined from the flow’s source and destination addresses.
A flow’s packets should go through an ordered chain of NFs,
determined by packet classification. This classification can be
performed at NFCCs, by the classifier deployed at these nodes.
The classification information can be embedded in a packet’s
header, which also maintains the packet’s processing stage,
specifying by which NF in its NFC it is to be processed next.

Fig. 2: NFC with 2 or 3 steps
depending on branching.

We apply a generic def-
inition of NFC as a di-
rected graph with branches,
each edge specifying an NF



type [24]. The example NFC
in Fig. 2 has two or three
NFs, depending on the branching decision after NF1. Any
branching decision is made at arrival of the first packet of
a flow at the corresponding hop of the chain; all remaining
packets of a flow take the same branch. In addition, each
NFC is given a set of QoS metrics that the handling of
packets undergoing that NFC has to conform to, which in our
considered scenarios contains a maximum end-to-end delay.
An NF in the chain can be handled by any of its instances.

B. Service Scheduling Problem

We consider instances of the service scheduler running
at each NFCC. The service scheduling problem consists in
deciding at runtime where to route a packet next, i.e., how to
serve the next hop in the chain of a packet, knowing the chain
undergone by the packet and its current position in that chain.1

The decision is made by the scheduler instance receiving the
packet. We assume no buffering at the scheduler, so it is to
operate at line rate. For each packet, the end-to-end delay is the
sum of the queuing and service delays at NFIs along its NFC
path and propagation delays. Our objective is to maximize the
system’s processing goodput (the rate of packets successfully
processed over respective chains within their delay budgets),
while constraining the average delay experienced by packets.

C. Challenges

The runtime traffic scheduling problem is hard to solve
due to the distributed setup and strict requirements posed
by the high dynamics ([DYN-WORK] and [DYN-ENV], cf .
§ I-A). Centralized schedulers adopting corresponding optimal
solvers are impractical due to the rigid latency requirement on
scheduling decisions. Distributed schedulers applying heuris-
tics for decision-making are typically optimized for specific
static scenarios, require parameter tuning, and fall short of
generalizing to dynamic scenarios with uncertainty (e.g., un-
predictable workload variations, network link failures). Hence
we explore learning-based approaches which have shown
great potential in dealing with dynamics and uncertainty
for decision-making problems. However, non-trivial domain-
specific designs are required for such a solution to succeed.

III. PROBLEM TRANSFORMATION

This section introduces the building blocks for our FUMES
scheduler detailed shortly in § IV. They map the aforemen-
tioned NFC runtime traffic scheduling problem to an MDP and
use RL to solve the MDP. For ease of exposition only, we first
simplify the scheduling problem by assuming a single oracle
controller with full visibility over the state of all NFCCs and
their NFIs. In § IV we relax this assumption and discuss how
to use MARL to address the challenges posed by distribution.

1Here, we consider per-packet scheduling, where packets from the same
flow can be scheduled separately over different NFIs with state synchronized
by an existing mechanism (e.g., [29]). Our solution can be adapted to more
constrained settings where consecutive packets of a flow or flowlet need to
be served by the same NFI (e.g., due to high state synchronization latency
across NFIs) [30]. We leave such an extension to future work.

TABLE I: Notation used.

Symbol Description
α Overload normalization

U
sed

in
§

III
and

§
IV

β Reward scaling factor
SPak

i [b] State column pressure view from site b on NFi

SBak
i [b] State column background view from site b on NFi

SSak [b] State column sever speed view from site b on NFi

SLak [b] State column latency view from site b on NFi

SHak
i [b] State column probability next view from site b on NFi

AAak
i Agent’s action vector’s probability of taking NFIak

i
d(x, y) Estimated latency from x to y (server/NFCCs)
PR Reward of packet

w.r.t. current packet
PD Deadline of the chain
PL Current latency of the packet
PT Remaining time for packet
PQ QoS (%) when packet arrives at egress
FCak Processing capacity of server ak
FLak Network latency to reach ak
FWak

i Queueing time at NFIak
i w/o considering other NFIs

F̂W
ak
i Queueing time at NFIak

i w/ considering other NFIs
FPak

i Time (ms) to process one packet when NFI at full speed
FNak

i # of packets queued at or on the way to NFIak
i NFI

PM # of NFs in the chain, in case of branches, the longest path in
§

IV
and

§
V

PH Weighted processing progress of the chain ∈ [0, 1]

P̂Q Expected QoS ∈ [0, 1] when packet arrives at egress
AT Number of max scheduling targets FUMES is trained for

A. Problem Mapping Overview

Fig. 3 gives an overview of the problem mapping focusing
on the lower branch of Fig. 2 for simplicity. The oracle
controller collects real-time state information from the network
and implements agents making packet scheduling decisions.
When a new packet arrives at an NFCC, the NFCC classifies
the packet to assign it an NFC given the packet’s metadata.
Based on the metadata and the collected network state, the
controller selects the agent for the next NF and calculates a
state table (§ III-C). With that table as input, the agent at
the controller generates an action vector represented by an
array of probabilities for all possible actions, following a pre-
trained policy. The array has an entry for each NFI in the
network indicating the probability of forwarding the packet
to that NFI. The agent draws a random NFI following this
probability distribution and returns the decision to the NFCC,
which forwards the packet to that NFI. Once an NFI finished
processing a packet, it sends the packet back to the NFI’s
NFCC, repeating the above procedure for further processing.

When a packet has been processed by the last NF in its NFC,
the controller collects the packet’s end-to-end latency (defined
in § II-B). The controller then calculates a reward (detailed in
§ III-B) comparing this latency to the deadline specified for
the NFC. This reward is then fed back to all agents that took
scheduling decisions for the specific packet, to continuously
train their policy for generating the action vector.

Table I summarizes notation and terminology used in the
following. min(R) and max(R) return the smallest and largest
element of set R respectively. For brevity we omit the set
notation {...} for R but may add variables quantified over for
constructing R, e.g., minz(r(z)) for R = {r(z)}z . We use
i, j as (abstract) identifiers for NF types, and k, l for servers.
a, b, c, e are used for sites with e reserved for the egress site.
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State

SFI Pressure Back-
ground

Server
Speed Latency Next hop

same site
1.0 0.8 0.5 0 0.25
0.2 0.6 1 0 0.25
0.6 0.4 0.7 0.6 0.50
0.7 0.6 0.6 0.6 0.50
0.8 0.3 0.6 1 0.25

Action
Choose

NFI
0.05
0.40
0.25
0.15
0.15

State

SFI Pressure Back-
ground

Server
Speed Latency Next hop

same site
1.0 0.6 1 0 0
0.4 0.3 0.6 1 1

Action
Choose

NFI
0.15
0.85
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retraining

network

...

 
...

Fig. 3: Perspective of AC: This example shows the state table with 5 rows for a new packet arrived at AC with next hop of type
NF1, and the state table with 2 rows for a packet at AC that awaits processing by NF3. (w/o servers for sake of readability.)

x, y represent both coordinators (e.g., bC) and servers (e.g., bl).

B. Actions

Each time a packet arrives at an NFCC, the agent makes a
scheduling decision for the next stage. Possible actions are
(a) drop the packet upon QoS timeout,
(b) send the packet to the desired egress site,
(c) serve the packet at an NFI locally (the same site), or
(d) serve the packet at an NFI remotely (at a different site).

Cases (a) and (b) do not need scheduling logic; the agent
simply drops the packet, or sends it to the desired egress
site along the shortest path respectively. In case (c), the
NFCC forwards the packet directly to the selected NFI, which
processes it and after its done sends it back to the NFCC
for further decisions. In case (d), the packet is redirected
to the remote site and then immediately forwarded (without
scheduling by the remote agent) to the selected NFI. After
processing at the NFI, the packet goes to the respective remote
NFCC which takes over scheduling for the chain’s next stage.

C. State

The agent considers five state metrics to take as input for
its scheduling decisions: For the view of site b’s agent on NFi

and server ak, we define the pressure (SPak
i [b]), background

(SBak
i [b]), server speed (SSak [b]), latency (SLak [b]), and prob-

ability next hop (SHak
i [b]). These are detailed shortly.

We define network latency FLbk – the estimated network
latency to send the packet from NFCC aC where the packet is
located at, to NFCC bC local to the next desired NFIbki (a = b
is possible), plus the estimated network latency to send the
packet from bC to bk – as:

FLbk = d(aC, bC) + d(bC, bk), packet at site a. (1)
Furthermore, we define the remaining time of the current

packet PT = PD − PL, i.e., it is the difference between the
deadline PD of the chain and the current latency PL of the
packet. The achieved QoS of a packet is the ratio PQ = PL/PD
calculated when the packet arrives at the desired egress.

All state metrics are normalized to values in [0, 1]. However,
some situations might represent overload scenarios. These may
only be visible as part of the performance approximation,
or real overload scenarios where NFIs cannot cope with the
arriving packets to satisfy all chain deadlines. This is why we
introduce the scaling factor α, which is set to 0 < α < 1,
such that the range of values considered as normal is encoded
as [0, α] (instead of [0, 1]), and overloaded situations are in
(α, 1]. The following formulas use the scaling factor α and
for values > 1 adopt 1. This normalization is applied in all
state formulas except for the server speed and probability next
column, since these two metrics are unaffected by overload.

1) Pressure: The current pressure SPak
i [b] of NFIak

i is
computed from the NFI’s processing rate and the number of
pending packets. To calculate the pressure, the agent uses the
expected processing time of a packet of the respective NF, the
expected processing capacity of the NFI, and the number of
packets that the NFI has not processed yet. Eq. 2 defines the
pressure metric (SPak

i [b]), considering the remaining time for
the packet in relation to the expected waiting time FWak

i :

SPak
i [b] = min

(
1, α× FWak

i /
(
min

(
PT,maxc,l

(
FWcl

i

))))
. (2)

The expected waiting time FWak
i in turn is given as

FWak
i = max(0,FPak

i × FNak
i − FLak) . (3)

2) Background: A server ak’s background SBak
i [b] is simi-

lar to its pressure (SPak
i [b]), but considers all the server’s NFIs:

SBak
i [b] = min

(
1, α× F̂W

ak
i /

(
min

(
PT,maxc,l

(
F̂W

cl
i

))))
. (4)

Eq. 5 in turn calculates the expected waiting time of the
packet, considering all packets that are processed or are on
the way to any NFI of that particular server ak as

F̂W
ak

i = max
(
0,
∑

m
(FPak

m × FNak
m )− FLak

)
. (5)

3) Server speed: The relative speed of a server ak, i.e., its
processing capacity, normalized with respect to the maximal
processing capacity among all the servers is given as:

SSak [b] = FCak/maxc,l

(
FCcl

)
. (6)



for nfcc in self._all_nfcc: # iterate NFC coordinators
for nf in self._all_nf: # iterate NFs (not instances)
state = self._state(origin=nfcc, nf=nf, summarize=True)
self._next_hop_prob[nfcc][nf] = self._action(state)

Listing 1: Calculation of cached
∑

k AAak
i by summarizing

NFIs of same NF for each site.

4) Latency: The expected relative latency for a packet to
travel from the current NFCC (aC) to the desired NFIak

i ,
including the estimated latency towards the egress also for
intermediate stages of the chain, is defined as

SLak [b] = min(1, α× (FLak + d(ak, a
C
) + d(a

C
, e

C
))/PT) (7)

for a packet at site a with egress at site e.
5) Probability next hop: SHak

i [b] denotes the probability,
for a packet at NFIak

i , that the next stage of the chain will be
at the current site a. I.e., either the next hop NFI NFj is at a, or
the desired egress eC is such that e = a. This back-propagation
mechanism achieves scheduling decisions considering more
than a single NFC stage. In the example of Fig. 1 and chain
Fig. 2, the next hop action vector for the second stage in the
lower branch (NF2) may be (0.6, 0, 0.4), denoting 60%, 0%,
and 40%, probability of serving NF3 for this packet at site A,
B, and C, respectively.

Considering a single branch of the current chain of the
packet, ŜH

ak

i [b] gives the next hop probability as

ŜH
ak

i [b]
=

1 if next hop egress at site e = a,

0 if next hop egress at site e ̸= a,∑
l AAal

j /
∑

c,l AAcl
j if next hop is of type NFj . (8)

AAak
i is the agent’s action vector’s probability to take NFIak

i .
There are two cases to differentiate: The next stage of the chain
is (a) the desired egress, or (b) a normal NF. If the next stage
is the desired egress, the agent can easily fill up the column
with probabilities (0 or 1) based on whether the egress is the
same site or not (first two cases in Eq. 8).

For the state table, SHak
i [b] combines all individual branches

(if there are multiple) using the average of all ŜH
ak

i [b].
Otherwise, if there are no branches, SHak

i [b] = ŜH
ak

i [b].
The look ahead with AAak

i requires additional inference
by the agent. However, simple caching can be used for the
agent to quickly (without additional inference delays) inject
the values for the probability next column while constructing
the state for a scheduling attempt. In total, the agent needs
|NFs|× |sites| cached action vectors. Listing 1 shows FUMES
pseudo code for calculating the cached next hop action vectors.

D. Reward

The main goal for the runtime NFC scheduling problem is to
achieve high success rate of packet delivery (i.e., maximize the
ratio of packets processed by the system before reaching the
respective NFC deadlines). Beyond that, we aim to minimize
the amount of time a packet has to stay in the system as
the secondary goal. The design of a reward function should
positively reward actions taken by the agent that affect the

goals in the long run. The most straightforward way is to
incorporate the goals directly into a reward function that is
calculated for each action taken. However, in our setting, the
success rate and delay of a packet are known only when it
has been processed completely by its NFC. Hence, we choose
a sparse (or delayed) reward environment [31], assigning a
reward to the agent after multiple actions. Our reward (PR)
function is defined as follows:

PR =

{
1− (PL × β)/PD if successfully delivered,
−1 otherwise (timeout).

(9)

β is a scaling factor to adjust the impact of the achieved
PQ ratio. For the centralized agent assumed in this section
only, this reward can be calculated globally when a packet
is done being processed and leaves the network. The reward
is distributed to all the actions that have been taken for the
packet, with the help of a database maintaining the decisions
the agent has taken for each packet. Clearly, the database can
quickly become a performance bottleneck. The next section
shows how to address such distribution issues.

IV. FUMES: DISTRIBUTED COOPERATIVE SCHEDULING

This section presents FUMES, a distributed scheduler with
a MARL design combining the building blocks from § III. We
first summarize challenges of moving from those blocks to a
distributed setting, then present how FUMES addresses them.

A. Overview: Generalization Challenges

The high dynamicity and uncertainty of the network chal-
lenge the approach of § III in real-life setups w.r.t.:

1) Scalability: The network consists of multiple sites each
with its own NFCC and set of NFIs. The centralized agent
assumed in § III can not scale to such a large setup. We present
a scalable MARL approach employing a dedicated agent for
each site (§ IV-B) and using a gossip protocol (§ IV-D) to
diffuse state information across sites.

2) Varying number of servers: Our state definition includes
per-NFI and per-host information. The size of the state table
thus depends on the number of servers and NFIs in the
system, whilst in real-life scenarios servers and NFIs can get
added/removed following workload changes. A trained agent
with a fixed number of servers and NFIs can not be applied
then. We present techniques including padding (§ IV-C1) and
shuffling (§ IV-C2) of state table rows addressing this issue.

3) Link dynamics: In real life, link failures are alas com-
mon. Also, new links can get added to the network or link ca-
pacities adjusted following capacity planning. The agent must
detect these changes in a timely manner and incorporate them
in decision making. We present a gossip protocol performing
latency approximation to detect such link dynamics (§ IV-D).

4) Multiple agents: The training approach described in
§ III uses one agent per site training independently of others.
However, when an agent is in training mode, other sites
perform scheduling decisions which impact the performance of
the local site. Moreover the reward calculation of § III requires
a global view across all sites, and packets leave the network
not only at a single site, but at all sites. § IV-E presents a



learning approach incorporating intermediate processing steps
and achieving distributed reward by QoS estimation.

B. MARL Design

The core design choice of FUMES is its distributed MARL
(multi-agent reinforcement learning) approach. Each site is
managed solely by the corresponding NFCC with one site-
local independent RL agent that has its own actor-critic
network. The scheduling problem in FUMES is similar to the
one described in § III, but differs crucially with respect to the
state visibility each agent has, its action responsibility, and
how the training is set up (distributed and asynchronous).

Each FUMES agent performs (a) scheduling decisions to
serve packets at site-local NFIs, and (b) redirection decisions
for NFIs at remote sites. However, differently from remote
decisions in § III, redirected packets are sent to remote NFCCs
and then picked up again for scheduling there. As depicted in
Fig. 4, AC sees all its site-local NFIs, but for the other sites
only a single summarized NFI for each NF.

history network

Fig. 4: Perspective of FUMES’s agent at AC, cf . Fig. 1

C. State

Similar to the definition of the state table in § III, a FUMES
agent has a row for each site-local NFI. However, for each
remote site that has NFIs of some NFs, only one summarizing
row is retained. This significantly reduces the size of the state
table which positively affects training time. Yet the problem of
different required state table sizes (for different NFs) remains.
Instead of training (and using) multiple agents with different
state sizes to handle different numbers of NFI instances,
FUMES uses two techniques to address the problem together.

1) Padding: The first technique chooses a single state table
size for all scheduling problems (i.e., all NFs) of an agent. For
this, FUMES chooses the largest number of site-local NFIs
for any NF, and adds the number of other sites that have NF-
matching NFIs. For the running example of Fig. 1, AC would
need 4 rows for NFI1, 3 rows for NFI2, and 2 rows for NFI3,
as shown in Fig. 4. Thus FUMES chooses a size of 4. When
constructing the state for a NF which needs fewer rows than
configured, FUMES fills remaining rows with zeros.

2) Shuffling: The second technique shuffles all rows of
the state-action table, such that the corresponding rows of
the states and actions stay aligned. Shuffling has the goal to
prevent the agent from training topology-related information as
part of the row number (which would be wrong since rows are
used across NFs), and to equally weigh all rows representing a
nonexistent entry (zero-ed rows), a site-local NFI, or an entry
representing per-site summarized NFIs.

The benefits of doing so and of the way how FUMES
constructs the state and action space are manifold, as we

show later in the evaluation (§ V). The agent is trained in
a generic way which decouples it from the configuration of
NFCs, installed NFIs and set of NFs, network topology and
number of NFCCs, and available servers and their capacity.
The only restriction is the maximum number of supported
scheduling targets AT that can be considered for scheduling at
a single scheduling attempt. In case one wants to use a trained
FUMES instance for a setup with a larger number of NFIs than
what it was trained for, a possible approach is to use a subset
of all NFIs based on sorted background state column.

D. Gossip Protocol

FUMES needs summarized NFI information of remote sites
when constructing state tables. It thus uses a gossip protocol
to share summarized NFI updates with neighboring NFCCs.

1) State diffusion: Each FUMES agent at a regular time
interval sends a gossip update to its directly neighboring
NFCCs with the following information. For each NF, all site
local NFIs are summarized to represent a conceptual single
NFI running on a single large server of the summed capacity.
This information is sufficient to construct the state table
analogously to how it is defined in § III-C, but with a single
row entry per remote site. Each gossip message holds a site-
local gossip interval counter, incremented for each message.

When a FUMES agent receives a gossip message for a
remote site, it checks if the gossip interval counter is higher
than the largest previously seen value for that site. If so, the
agent forwards the message to all direct neighbors (except
the sending one), and updates its local database with the NFI
summaries and the new interval counter for that site.

The gossip protocol could also be used to support dynamic
processing speeds of NFIs and dynamic server capacity or
set of available servers, without modifying FUMES, simply
because FUMES’ gossip protocol hides these details and
shares only the summarized statistics.

2) Latency approximation: FUMES furthermore uses gos-
siping to estimate inter-site latencies (shortest path between
sites), which it uses in the state table calculation (§ III-C). That
is, gossip messages piggyback timing information to estimate
end-to-end link latency, allowing to better approximate up-to-
date link latencies, and cope with variable link latencies and
sporadic link downtimes. We refer to common methods (e.g.,
NTP in RFC 5905 [32]) for link latency approximation across
nodes without synchronized clocks – our implementation used
in § V uses clocks synchronized across NFCCs.

FUMES uses a gossip interval of 2ms. The interval is a
hyperparameter which we consider to be stable across various
setups – as long as it is aligned with the inter-site latencies. We
consider 2ms to be sufficient for real-life inter-site latencies
without adding too much overhead on top of normal traffic.

E. Distributed Learning and Reward

To speed up training, FUMES learns not only from packets
that leave the network because of egress or timeout events,
but from all packets that leave an NFCC’s site. To that end
FUMES creates a reward tuple each time a packet leaves the



network of an NFCC, which happens (a) when a packet is
sent to another remote NFCC for processing, (b) in case of a
timeout drop event, or (c) when a packet leaves the network
because the NFCC was the packet’s destination egress.

For calculating reward FUMES uses several pieces of in-
formation, namely the packet’s (1) current delay, (2) NFC
and respective deadline, (3) current processing stage in its
NFC, (4) target egress NFCC, as well as (5) the estimated
end-to-end network latency to reach the egress starting from
the current NFCC. FUMES uses this information to estimate
the expected QoS when taking the current delay into account
w.r.t. processing progress of the corresponding NFC. A simple
linear approximation of the processing progress (e.g., 2 out
of 4 completed NFs mean 50% progress) would not account
for different processing rates of different NFIs. Therefore,
FUMES uses PH, the weighted approximation of processing
progress that considers the total available processing rate of
each NFI. FUMES combines all these terms to calculate the
expected QoS (processing latency) of a packet it would get at
the egress bC when leaving the site of the local agent at aC:

P̂Q =

{
(PL/PH + d(aC, bC))/PD if PH > 0,

(PL × PM + d(aC, bC))/PD otherwise.
(10)

P̂Q helps FUMES estimate how likely a packet is to be
processed successfully in its NFC deadline. P̂Q ≥ 1 means the
packet will likely be dropped due to timeout. Smaller values
are better. FUMES uses P̂Q (Eq. 10) to calculate reward:

PR =

{
1− P̂Q × β if P̂Q ≤ 1,

−1 otherwise (expected timeout).
(11)

We use an additional scaling factor β to reduce the sensi-
tivity to QoS over successfully delivered packets.

V. PERFORMANCE EVALUATION

We conduct performance evaluation including real-life
workload traces to address the following research questions:
Q1. What is the training convergence performance of the

MARL design of FUMES (§ V-B)?
Q2. How well does FUMES perform in general, and how well

does it dynamically adapt to changes in traffic models
(cf . [DYN-WORK]; § V-C) or configurations of NFCCs
and NFIs (cf . [DYN-ENV]; § V-D)?

Q3. What is the impact of entirely unseen NFC configurations
and NFC branching (cf . [DYN-WORK]; § V-E)?

Q4. How robust is FUMES against (transient) link failures
(cf . [DYN-ENV]; § V-F)?

A. Methodology

1) Workload: We use two topologies from a US and
German network respectively, based on commonly used [33],
[34] real-life traces from SNDlib [35] with randomly chosen
amounts of servers per site around a given respective mean:
Abilene: 12 sites, 15 links, and a mean of 20 servers per site.
Nobel-Germany: 17 sites, 26 links, and a mean of 15 servers.
Every site acts as potential ingress and egress for all packets.
We set inter-NFCC latencies following a Poisson distribution

in relation to the geographical distance of the respective
NFCCs. Link latencies within a site, i.e., between the NFCC
and the NFIs, follow a Poisson distribution with mean of
120µs. Two workloads are used for the network traffic:
MDP: Bursty traffic with a two-state MDP traffic model sim-

ulating the arrival of new flows. The two states high and
low have arrival rates λh = 1/120µs and λl = 1/24µs,
respectively. The transition probabilities are pl→h = 0.56
and ph→l = 0.4. Each flow follows a Poisson distribution
with λ = 1/800µs for packet arrival, with a total number
of packets per flow following Poisson with λ = 800.

SND: Trace-driven workloads from SNDlib [35], namely Abi-
lene and Nobel-Germany, for the respective topologies.

These traffic models do not provide NFC configurations, so we
use the following two setups. Unless stated otherwise, we use
NFCs without branching with 5 NFs with a processing rate per
1 unit of server capacity of 1s/80µs to 1s/200µs. We use 5
NFCs: (NF1,NF2), (NF1,NF3,NF5), (NF2,NF4), (NF5), and
(NF3,NF4), with QoS deadlines 50ms, 55ms, 50ms, 45ms,
and 50ms respectively. The experiment on unseen NFCs and
branching uses another configuration detailed in § V-E. We
randomly assign NFIs on servers such that each server has at
least 2 NFIs, and |NFIs| < 0.6× |NFs| × |servers| holds.

A seed changes the number of servers per site, the exact
server capacity, and the distribution of all randomized pro-
cesses (e.g., actual network link latency per packet, actual
number of servers per site, NFC chosen for a new flow arriving
at an ingress). We run each benchmark with three seeds.

2) FUMES: We use an A3C [36] setup with: two shared
layers (AT → 256 ; 256 → 256); two actor layers (256 → 128;
128 → AT); two critic layers (256 → 128; 128 → 1); all layers
with rectified linear unit activation. The learning rate starts at
0.0001 and is reduced by 1% every 200 batches.

To highlight FUMES’ ability to handle dynamism, we train
it only once and use it for all benchmarks, although the bench-
mark setups differ from the training setup. One benchmark
is an exception, where we show two instances of FUMES,
FUMES-SND and FUMES-MDP, trained respectively on the
SND+Abilene and MDP+Abilene setups, both with the NFCs
of § V-A1, using three seeds. So FUMES-SND is trained on a
different setup than what is used for the benchmarks, except
in § V-C2. When we train FUMES, we fix the available server
capacity to 115% and run for each seed 40, 000 batches, where
one batch consists of 2, 000 tuples (scheduling decisions); see
§ V-B for more details. We set α = 0.9, and β = 0.5.

3) Schedulers: We compare FUMES with these schedulers:
STEAM(++): An extension of STEAM [22] for supporting

NFC branching. STEAM is a runtime packet-level sched-
uler that performs queueing predominantly at the NFCC
(instead of at the NFI). This enables STEAM to perform
scheduling decisions later compared to a scheduler like
FUMES that performs queueing at the NFIs; this comes at
the cost of high buffering demands at the NFCCs though
(especially when the scheduler is saturated). Branching
support is added by considering the first branch in any of
the calculations when the decision is not known yet.



Greedy(-O): Performs packet-level scheduling with queueing
at NFIs. For each scheduling decision, Greedy calculates
the estimated delay to serve the packet (sum of network
delay, queuing and processing time at the NFI, and la-
tency towards the egress), and greedily selects the fastest
option. Greedy has no mechanism to detect link latencies;
it uses an oracle O that has up-to-date distributions.

4) Metrics: For each benchmark, we vary the available
server capacity (abscissa) for the experiments, and report:
Success rate: Number of packets successfully delivered at

the egress within the QoS limit of the chain. We focus
on success rates for server capacity configurations in
the most relevant and challenging range, where FUMES
achieves values ≥ 90%. Also, we report required server
capacity over target success rate for the range 90−100%.

Quality CDF: CDF of the scheduling quality = 1−PQ, with
packets dropped at QoS timeouts capped with value 0.

Total reward: Accumulated total reward over training
batches (for FUMES), yielding insights on convergence.

B. Training Performance (Q1)

We evaluate the convergence performance for FUMES-SND
agents. When we train FUMES, we run three times 40, 000
batches, each using a different seed but running on the same
setup with a fixed server capacity of 115%. Fig. 5a shows the
achieved success rate over time. FUMES achieves already a
success rate of over 90% during the first training iteration after
10, 000 batches. The second and third training iterations bring
only little improvement on success rate, because FUMES is
already in the 99%+ range. However, there is still improvement
within a training iteration (the results of the iterations cannot
be compared due to different seeds); success rate improves in
the second iteration by ≈ 0.8%, and in the third by ≈ 0.3%.

C. Base Performance, Traffic Dynamism (Q2, [DYN-WORK])

We first use the Abilene topology with static NFC setup.
1) MDP traffic model: Fig. 7a shows the success rate over

available server capacity, Fig. 7b focuses on the success rates
≥ 90% and shows the required server capacity to reach
these. FUMES-MDP shows close performance to FUMES-SND,
requiring slightly more server capacity (< 5%) to reach the
same success rate, even though FUMES-MDP was trained
on the benchmark workload. The MDP traffic’s dynamism
challenges training for FUMES-MDP. Greedy performs worst.
STEAM outperforms the other schedulers up to a success rate
of ≈ 96%. Above ≈ 96% FUMES outperforms all schedulers.

2) SND traffic model: In Fig. 6 we change the traffic
model and benchmark all schedulers on the SND traffic model,
with both FUMES-MDP and FUMES-SND. Fig. 6a shows the
success rate over available server capacity, normalized to
100% where FUMES achieves 90% success rate. FUMES-
MDP shows close performance to FUMES-SND, requiring
barely ≈ 5% more server capacity to reach the same 90%
success rate. The other schedulers show poor performance,
not comparable with the performance we have seen in the
previous experiments. One reason might be the choice of their

hyperparameters, which were tuned for the setup of § V-C1
(because we use MDP in all following benchmarks).

Before we move to other benchmarks, we evaluate the
schedulers’ QoS rates. Fig. 6c shows the quality (1− PQ) for
successfully delivered packets; higher is better. Fig. 6d shows
one server capacity configuration, 115%, when all schedulers
are still below 100% success rate. The analysis shows that
FUMES prioritizes high success rates over improving QoS
rates as long as success rate is below 100%. We focus on
FUMES-SND in the following due to space constraints.

D. Site Topology Dynamism (Q2, [DYN-ENV])

We switch to the Nobel-Germany topology (see § V-A1)
with MDP traffic workload. Again, we use FUMES-SND
though to highlight dynamism. As the Abilene setup has 12
NFCCs vs 17 for the Nobel-Germany setup, when deploying
the FUMES-SND on the Nobel-Germany setup, we randomly
choose one trained agent and deploy it on all 17 Nobel-
Germany NFCCs. This challenges FUMES’ dynamic adap-
tation even more. Fig. 8 shows success rates. Again FUMES
outperforms all other schedulers, especially for reaching higher
percentages close to 100%. FUMES hits 99% with 20% lower
server capacity, and the 99%+ with even more savings.

E. Unseen NFCs, Branching Dynamism (Q3, [DYN-WORK])

Next we change the NFC configuration as follows. We
replace the previously used NFCs with 3 NFCs including
branching: (NF4), (NF4, [NF2, NF1]p=0.1∨ [NF1, NF3]p=0.2∨
[NF3, NF1, NF5]p=0.7), and (NF1, NF3, NF4, NF5, NF2)
with QoS deadlines 31ms, 42ms, and 48.5ms respectively.
The second NFC has 3 possible branches with the highest
probability of 0.7 for taking the longest branch. These experi-
ments again use MDP traffic on the Nobel-Germany topology.
Fig. 9 shows the success rates of the schedulers, which unveil a
similar pattern as with the previous benchmark. FUMES-SND
shows best performance, with even more saved server capacity
to reach high success rates compared to STEAM.

F. Network Link Failures Dynamism (Q4, [DYN-ENV])

0 200 400 600 800
Simulation Time [s]

50

60

70

80

90

100

Su
cc

es
s R

at
e 

[%
]

FUMES-SND
STEAM
Greedy

FUMES-SND + fail
STEAM + fail
Greedy + fail

Fig. 10: FUMES robustness to
link failures: success rate. Each
vertical line shows a different
link being set to failed mode.

The last benchmark eval-
uates robustness in the event
of link failure. This bench-
mark extends the previous
setup § V-E as follows.
At any point in time one
NFCC-NFCC link is turned
to failure mode, multiplying
its link latency distribution
values with 1, 000 compared
to normal mode. A failed
link returns to normal oper-
ation mode after 50s and the
next link is randomly chosen to be set to failure mode. Fig. 10
shows the success rate over time, each with a setup where
link failures are injected (dashed) and without (solid). Clearly
FUMES is not affected by link failures. STEAM, conversely,
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Fig. 6: SND workload, Abilene topology, static NFCs.

100 110 120
Server Capacity [%]

60

80

100

Su
cc

es
s R

at
e 

[%
]

FUMES-SND
FUMES-MDP
STEAM
Greedy

(a) Success rate vs
server capacity

90 95 100
Success Rate [%]

100

110

120

Se
rv

er
 C

ap
ac

ity
 [%

]

FUMES-SND
FUMES-MDP
STEAM
Greedy

(b) Req. server cap.
vs success rate

Fig. 7: MDP workload, Abilene topology,
static NFCs.

100 110 120 130
Server Capacity [%]

60

80

100

Su
cc

es
s R

at
e 

[%
]

FUMES-SND
STEAM
Greedy

(a) Success rate vs
capacity

90 95 100
Success Rate [%]

100

110

120

130

Se
rv

er
 C

ap
ac

ity
 [%

]

FUMES-SND
STEAM
Greedy

(b) Capacity vs suc-
cess rate

Fig. 8: MDP workload, Nobel-Germany
topology, static NFCs.

100 110 120
Server Capacity [%]

60

80

100

Su
cc

es
s R

at
e 

[%
]

FUMES-SND
STEAM
Greedy

(a) Success rate vs
capacity

90 95 100
Success Rate [%]

100

110

120

Se
rv

er
 C

ap
ac

ity
 [%

]

FUMES-SND
STEAM
Greedy

(b) Capacity vs suc-
cess rate

Fig. 9: MDP workload, Nobel-Germany,
branching NFCs.

shows a clear performance drop with link failures, with success
rate dropping by up to ≈ 20% w.r.t. its performance without
failures. Greedy has the bonus of being given an oracle for
link latencies, knowing exactly when a link goes to failure
mode. Still it shows overall bad success rates.

VI. RELATED WORK

Among the many works on VNFs or NFCs, several attempt
to support dynamism in workloads ([DYN-WORK]) by period-
ically adjusting deployment of NFIs or VNFs and assignment
of resources such as CPU cores to each of them. Several
works consider optimizations and scheduling at the level of a
single server or CPU core only. E.g., NFVnice [37] is a VNF
framework for CPUs that aims for fair and efficient resource
allocation of chains, considering the impact of different VNFs
on resource usage. Katsikas et al. [38] allow to reduce inter-
core transfers of packets on the server and by this improve
single-server VNFs throughput. Meng et al. [39] split an NFC
into smaller VNFs, retaining semantics, enabling reuse of parts
of an NFC across others. Satyam et al. [7] study VNF place-
ment and CPU allocation for co-located VNFs to minimize
latency, however assuming a priori knowledge of packet arrival
rates. Others involve disruptive NFI migration [6]. None can
react in real-time to workload fluctuations across networks.

Solutions for scheduling packets for individual VNFs or
NFCs mostly perform network-wide centralized scheduling,
assuming global network state knowledge and advance knowl-
edge of statistical information – often even assuming static
bandwidth for flows. E.g., Mechtri et al. [11] consider joint
NFC placement and scheduling for systems forming undi-
rected graphs, using a priori knowledge of the static bandwidth
of each flow. Others consider similar setups [12]–[17].

Few solutions consider dynamic flow demands. Qu et al. [5]
limit servers to running single NF instances and links to
transferring single flows at a time. Eramo et al. [6] allow
traffic to change, but still require knowledge of flows’ nominal

and maximum traffic volumes. Anwer et al. [9] use the
input and output traffic volume of all NFIs to dynamically
update the routing of NFCs. Bhamara et al. [40] use queuing
models for servers and links in a multi-cloud environment to
minimize cross-cloud traffic and response times but assume
a priori knowledge of packet arrival rates. Other solutions
cannot be applied work in real-time due to prohibitively high
complexity [8], with seconds to take effect [10].

Several recent works leverage machine learning techniques
in the context of NFC routing. Pei et al. [18] use neural
networks to select NFIs in a way minimizing latency. Ning
et al. [19] leverage RL to miminize latency and also balance
load and avoid bad links. Schneider et al. [20] also use deep
RL for NFI scheduling using periodically updated scheduling
tables; while every node has its tables, these contain state of
the entire network, and are updated by a centralized controller,
as used also in the prior two works. Lin et al. [21] use RL
for both NFI placement and scheduling, however requiring
flow rate estimates, focusing on activating/deactivating NFIs
as measure, and optimizing for costs not including QoS.

The closest work to FUMES is STEAM [22], the first
to treat traffic scheduling fully as runtime problem without
global oracles, centralized components, or a priori knowledge
of traffic patterns. As shown, STEAM supports neither ex-
pressive NFCs with branching (needed for [DYN-WORK]), nor
environmental changes like link failures ([DYN-ENV]).

VII. CONCLUSIONS

We proposed FUMES for runtime NFC scheduling in real-
life dynamic settings. FUMES leverages a MARL technique
for distributed scheduling to meet strict QoS requirements
across NFCs. We discussed challenges and proposed efficient
solutions to address them in our learning-based approach.
Experimental results with both synthetic and real-life network
topologies and traffic traces show that FUMES achieves sig-
nificantly better packet delivery success rates while reducing



required server capacity w.r.t. existing approaches. Moreover,
FUMES can adapt to different network setups and conditions
without expensive retraining. We see further avenues in mov-
ing agent inference out of the critical path to minimize latency
overhead of scheduling, and in considering stateful NFIs.
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