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ABSTRACT

As more organizations are leveraging third-party cloud and edge data centers to process data efficiently,
the issue of preserving data confidentiality becomes increasingly important. In response, numerous security
mechanisms have been introduced and promoted in recent years including software-based ones such as
homomorphic encryption, as well as hardware-based ones such as Intel SGX and AMD SEV. However
these mechanisms vary in their security properties, performance characteristics, availability, and application
modalities, making it hard for programmers to judiciously choose and correctly employ the right one for a
given data query.

This paper presents a mechanism-independent approach to distributed confidentiality-preserving data
analytics. Our approach hinges on a core programming language which abstracts the intricacies of individual
security mechanisms. Data is labeled using custom confidentiality levels arranged along a lattice in order
to capture its exact confidentiality constraints. High-level mappings between available mechanisms and
these labels are captured through a novel expressive form of security policy. Confidentiality is guaranteed
through a type system based on a novel formulation of noninterference, generalized to support our security
policy definition. Queries written in a largely security-agnostic subset of our language are transformed to the
full language to automatically use mechanisms in an efficient, possibly combined manner, while provably
preserving confidentiality in data queries end-to-end. We prototype our approach as an extension to the
popular Apache Spark analytics engine, demonstrating the significant versatility and performance benefits of
our approach over single hardwired mechanisms — including in existing systems — without compromising on
confidentiality.

CCS Concepts: • Security and privacy → Information flow control; Distributed systems security;
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1 INTRODUCTION

A primary challenge when leveraging cost-effective third-party cloud and edge data centers for
processing data is to ensure that data confidentiality constraints are satisfied. To that end several
confidentiality-preserving mechanisms have been proposed, differing in their security properties
and performance characteristics, as well as where/how available they are and how they are used.

Options for secure data processing in third-party clouds. Homomorphic encryption (HE) allows data
to be computed with while it is encrypted. Fully homomorphic encryption (FHE) cryptosystems [Gen-
try 2009] support arbitrary computations over encrypted data but exhibit substantial overheads.
Partially homomorphic encryption (PHE) cryptosystems such as Paillier [1999] or ElGamal [1985]
are generally much more efficient, however, each cryptosystem can only support certain operations
– addition or multiplication of ciphertexts respectively in the above two cases. These limitations
can be overcome, e.g., by using few trusted resources on the client side to complete queries by
performing remaining operations on data in plaintext [Tu et al. 2013] or re-encrypting data [Stephen
et al. 2014a]. But determining when and how to do so most efficiently in a given data query adds to
the difficulty of choosing between different cryptosystems, understanding their security properties,
and employing them correctly in combination.
Several hardware-based mechanisms have also been proposed, including Intel’s software guard

extensions (SGX), AMD’s secure encrypted virtualization (SEV) etc. Besides not being ubiquitously
available (e.g., Microsoft Azure provides SGX while Google GCP provides SEV), these each have
specific security and performance properties, and are non-trivial to set up (e.g., using remote
attestation via trust authority) and use by programmers (e.g., identify sensitive data, reason about
information flow, partition programs to minimize trusted computing base).

A flexible mechanism-independent approach. To help data analysts without expert knowledge in
security efficiently query data using third-party compute resources without compromising data
confidentiality, we present a novel mechanism-independent approach that employs an extensible
set of software- and hardware-based security mechanisms for expressing confidentiality-preserving
computations. In short, our approach hinges on a novel general form of security policy S, and a
corresponding novel formulation of the theory of noninterference (NI) [Goguen and Meseguer 1982]
for our general notion of security policy: S-noninterference (S-NI) .
That is, as security mechanisms provide different properties, not all data usually has the same

confidentiality constraints, and stronger constraints tend to call for more costly mechanisms, our
model allows (1) different custom levels of data confidentiality in the form of labels arranged along
a lattice following established practices (e.g., [Denning 1976; Denning and Denning 1977; Sandhu
1993]). (2) Data sets are assigned labels of the lattice to capture their confidentiality constraints
in a fine-grained manner. (3) Our novel security policy associates the labels of the lattice with
both different cryptosystems (schemes) and available hardware mechanisms (domains). Finally,
(4) data queries expressed in a programming language marrying functions, relations, and query
operators are executed efficiently in a way leveraging the different mechanisms individually or in
combination using annotations to meet constraints on the data’s confidentiality and on mechanisms
as captured by the security policy.

To help harness ourmodel we develop a type system to statically ensure secure use of mechanisms,
based on our novel theory of S-NI . Furthermore, we formalize the process of correct transformation
allowing data analysts to express queries in a subset of our language without security annotations,
which are then transformed to use security mechanisms based on (3) such as to guarantee data
confidentiality constraints as per (2).
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We describe a prototype implementation of our approach dubbed Hydra (hybrid approach to
distributed confidentiality-preserving data analytics) based on the popular Apache Spark [Zaharia
et al. 2012] data analytics platform. In our prototype (cf. Fig. 1), programmers specify queries in
Scala using Spark SQL [Armbrust et al. 2015] which are then augmented with annotations for
efficient execution with confidentiality preserved end-to-end using one of several current heuristics:

Security 
constraints

Query

Result
HYDRA

Data     

Client-side Cloud & security

Trusted 
on-prem. 
compute 
resource

Cloud resources / security mechanisms

mechanisms

Untrusted 
cloud 

compute 
resource

   
analyst

Fig. 1. Hydra overview. Data analysts submit

queries to be executed using shared cloud re-

sources (and, if need be, limited local resources),

and collect results.Queries are transformed based

on security constraints to best use available secu-

rity mechanisms for confidentiality preservation.

(a) “PHE only” using PHE cryptosystems, and
client-side completion when encountering limits of
PHE; (b) “SGX only” using exclusively SGX; (c) a
simple hybrid heuristic combining PHE and SGX
based on a cost model of individual operations. Per-
formance evaluation on the popular TPC-H bench-
mark [TPC 1988] in Amazon AWS demonstrates that
(a) and (b) are competitive with respect to state-of-
the art solutions Cuttlefish [Savvides et al. 2017]
and Opaque [Zheng et al. 2017] respectively, which
are also based on Apache Spark but with hardwired
mechanisms (in fact Hydra is on average substan-
tially faster – 1.6× and 11.3× respectively). We also
show that (c) commonly outperforms (a) and (b), on
average by a significant 1.7× and 1.6× respectively,
demonstrating the benefits not only of supporting
different mechanisms to make queries more portable, but of allowing mechanisms to be combined
in a secure manner for improved performance.

Contributions and roadmap. In summary, this paper makes the following contributions:
• A core programming language for confidentiality-preserving computation atop third-party
compute infrastructures which allows to combine security mechanisms.

• A type system for our language to statically ensure correct, confidentiality-preserving combi-
nation among different mechanisms based on a novel general formulation of NI dubbed S-NI
which combines domains, schemes, and labels via a general security policy S, and a formal
transformation process to augment queries with annotations for secure and correct use of
security mechanisms. On top of traditional information flow control, our type system tackles
extra challenges stemming from the combined use of two orthogonal (hence, incomparable)
kinds of security mechanisms, namely domains and schemes, and presents a more compact
treatment of the implicit effect relation sizes have on computation’s result.

• A prototype implementation of our approach for the Spark data analytics engine along
with three heuristics to respectively leverage PHE (with client-side completion), SGX, or a
combination of the two.

• An evaluation of our prototype using our three heuristics on an industrial benchmark showing
the benefits of being able to switch between different security mechanisms and also of
combining them.

Note that for simplicity we use the term Hydra in the following to refer to our approach and its
underlying model and language, in addition to the prototype. The meaning is clear from context.

The rest of this paper is organized as follows. §2 gives background information and introduces
the lattice-based model of confidentiality used in Hydra with examples and Hydra’s workflow. §3
introduces the static and dynamic semantics of Hydra’s core language, and §4 presents a type
system for reasoning about confidentiality end-to-end, corresponding formal properties, and a
formalization of the query transformation process. §5 discusses Hydra’s implementation in Spark.
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§6 evaluates our approach. §7 contrasts Hydra with related work, and §8 concludes with final
remarks.
Detailed proofs of all lemmas and theorems can be found in the appendix with additional

definitions.

2 OVERVIEW OF Hydra

Hydra achieves its confidentiality goals by using “pluggable” (execution) domains and (encryption)
schemes. We denote the set of domains and schemes asD andS respectively. As an example,D may
include public or private cloud, trusted client side, or SGX. Data always resides in some domain, but
is not always encrypted, hence for uniformity we would also use S∅ = S ∪ {∅}, where ∅ means
plaintext (no encryption scheme). We impose a partial order on D × S∅ representing “less secure
or equal”, namely (𝑑,∅) ≼𝑑𝑠 (𝑑, 𝑠) for any 𝑠 ∈ S∅. Each element of D × S∅ provides a certain
confidentiality level irrespective of what the underlying plaintext data is. Similarly, every data item
comes with a confidentiality level requirement, realizable in different ways.

2.1 Threat Model

We consider honest but curious (HbC) adversaries [Dong et al. 2016, 2018; Popa et al. 2012;
Savvides et al. 2017; Tople et al. 2013], that can see the data, but cannot modify it. Adversaries
differ in what they can see. Each adversary 𝐴 is represented by a downward-closed set (w.r.t ≼𝑑𝑠 )
𝐴 ⊆ D × S∅ of domains and schemes that one is able to break, i.e., able to observe the protected
data. The downward-closed constraint captures the fact that if 𝐴 is not able to observe plaintext in
some domain, i.e., (𝑑,∅) ∉ 𝐴, then surely 𝐴 is not able to observe any (no less secure) ciphertext
either, i.e., for every 𝑠 ∈ S, (𝑑, 𝑠) ∉ 𝐴 since (𝑑,∅) ≼𝑑𝑠 (𝑑, 𝑠). That observation is valid irrespective
of any specific D and S. We denote the set of all such adversaries as A and also regard it as a
partially ordered set ⟨A, ⊆⟩. Intuitively, 𝐴 ⊆ 𝐴′ is the same as “𝐴 is no more powerful than 𝐴′”.
We assume that each adversary 𝐴 can only observe the final result of the computation, and that
observation is partial based on domain/scheme combinations 𝐴 is able to break (elements of 𝐴).

Via these generic adversaries, we abstract away computational guarantees of encryption schemes
and trustworthiness of domains and leave it to a security expert to decide which combinations
suffice for a given confidentiality level (using abstractions described shortly in §2.2). Viaduct [Acay
et al. 2021] used a similar approach to represent adversaries, associating each with a set of hosts
(or principals) it can read data from. Unlike Hydra, Viaduct does not have a general treatment
of encryption schemes: it presents four specific protocols able to alter the set of hosts reading
or writing data with some restrictions on protocol composition. Attacks on data integrity and
availability are out of Hydra’s scope. Even though we do not consider specific side-channel attacks,
Hydra’s customizable security policy allows to take into account security mechanisms with known
side-channel and access pattern attacks, and appropriately preclude usage of such mechanisms for
highly sensitive confidentiality levels.

Given the security policy, our system prevents direct information leaks, and indirect information

leaks except those via size of the query result. The former represent direct violations of the policy.
The latter represent gaining some knowledge about one part of the data (e.g. secret) by observing a
different part of the data (e.g. non-secret), e.g., gaining information about the inputs (e.g. secret)
to a filter’s predicate based on other (e.g. non-secret) columns in the result, or about the key (e.g.
secret) used for aggregation based on the aggregated values (e.g. non-secret).

Preventing indirect leaks via results size would be too restrictive (e.g., no PHE-based filtering in
the public cloud), and padding, typically done to prevent size leaks, incurs substantial overhead.
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2.2 Security Constraints

Confidentiality constraints in Hydra are based on a finite set L of security labels (also levels or
security classes, cf. [Denning 1976; Denning and Denning 1977; Sandhu 1993]) reflecting differences
in confidentiality requirements of the data.L is typically defined by an organization’s business expert
together with a security expert. The latter entity also defines the security policy: correspondence
between the confidentiality requirements represented by a given security label and the set of
execution domains D and encryption schemes S satisfying those requirements. A data manager

then typically provides database schemata where fields (columns) of relations are annotated with
labels from L. The labels restrict, indirectly through a security policy, a set of adversaries who must
not be able to get access to the corresponding data. Security labels in L thus serve as abstractions
for: (1) confidentiality requirements of data columns, and (2) confidentiality guarantees accorded by
schemes (software-based security mechanisms) and domains (hardware-based security mechanisms
or trusted execution environments).

2.2.1 Security Lattice. To entertain combining different confidentiality levels in the course of
computation, Hydra demands L to be equipped with a lattice structure following Denning [1976],
thus forming a security lattice ⟨L, ≼,⊔,⊓⟩, where (join) ⊔ : L × L → L is the least upper bound
operator, (meet) ⊓ : L × L → L is the greatest lower bound operator, and ( partial order) ≼ is a
reflexive, transitive, and antisymmetric binary relation on L. The join 𝑙1 ⊔ 𝑙2 is at least as strict as
both 𝑙1 and 𝑙2; it is used, in particular, to label the result of an operation involving two differently
labelled inputs. The meet 𝑙1 ⊓ 𝑙2 is at least as lenient as both 𝑙1 and 𝑙2. If 𝑙1 ≼ 𝑙2 then confidentiality
requirements imposed by 𝑙2 are at least as strict as those imposed by 𝑙1, and it is always safe to
replace 𝑙1 with 𝑙2 when labelling data. As L is finite, there exists the lowest security label ⊥ ∈ L,
such that, ⊥ ≼ 𝑙 for all 𝑙 ∈ L; label ⊥ represents data with no confidentiality constraints. There is a
conceptual difference between ≼𝑑𝑠 and ≼: the former captures an intrinsic property of adversaries
that is independent of specificD, S and L; the latter compares confidentiality levels, but ultimately
does not change the threat model, i.e., the set A. On a technical side, ≼𝑑𝑠 determines the partial
ordering on elements (𝑑, 𝑠) of adversary 𝐴 while ≼ determines partial ordering on labels 𝑙 ∈ L.

2.2.2 Security Policy. To inform Hydra about confidentiality guarantees provided by domains and
schemes, Hydra uses a novel generalized security policy represented as a function S : L → 2D×S∅ ,
such that for every 𝑙 ∈ L we have S(𝑙)𝑐 ∈ A and −𝑐 ◦S : L → A is order- and minimum-preserving;
we use 𝑋𝑐 to denote the set complement of 𝑋 , e.g., 𝑋𝑐 = (D × S∅ \ 𝑋 ) for 𝑋 ⊆ D × S∅.

The intuitive interpretation of the security policy is that each element of S(𝑙) provides confiden-
tiality guarantees sufficient for level 𝑙 . Formally, any adversary 𝐴 unable to observe values once
protected by any combination from S(𝑙), 𝐴 ∩ S(𝑙) = ∅, must not be able to access inputs labeled by
𝑙 . Equivalently, S(𝑙)𝑐 denotes the most powerful adversary who must not be able to access inputs
labelled by 𝑙 , i.e., 𝐴 ∈ A must not be able to access 𝑙-inputs if and only if 𝐴 ⊆ S(𝑙)𝑐 . In light of that
interpretation, preservation of the minimum, S(⊥)𝑐 = ∅, ensures confidentiality level ⊥ has the
intended meaning of “no confidentiality constraints” so the most powerful adversary who must
not be able to access ⊥ is the one unable to observe anything; order preservation says that if 𝑙 ′ ≼ 𝑙
then any adversary who must not be able to access 𝑙 ′-labelled inputs must not be able to access
𝑙-labelled inputs.

When expressing the policy in a tabular form (e.g., Tbl. 1 ) we assume that each occurrence of
(𝑑, 𝑠, 𝑙) in the same row is representing (𝑑, 𝑠) ∈ S(𝑙).

2.2.3 Example. Fig. 2 shows a simple example of a security lattice with L = {Public, Low, High}
and associated security policy used in other works (e.g., [Gollamudi and Chong 2016]) and for

Proc. ACM Program. Lang., Vol. 7, No. PLDI, Article 117. Publication date: June 2023.



117:6 Shamiek Mangipudi, Pavel Chuprikov, Patrick Eugster, Malte Viering, and Savvas Savvides

Table 1. A relation producing a se-

curity policy for the simple lattice

of Fig. 2. For brevity we elide some

triples of security policy inferrable

from −𝑐 ◦ S : L → A being order-

and minimum-preserving.

Label Domain Scheme
L D S∅

High CLNT, SGX ∅

High CLD AES-GCM

Low CLD SWP, AES-ECB,
Paillier,
ElGamal, OPE

Table 2. Extract of Customers and Orders relations of the TPC-H
benchmark. Labels are from the simple lattice shown with Fig. 2.

Security types are for execution in CLD and are inferred based on

the security policy from Tbl. 1 and on the operations used by the

example query of Fig. 5.

Relation Field Type Label Security type (inferred)

Customers custId Str Low (StrAES-ECB,Low)
bal Dbl High (DblAES-GCM,High)
...

Orders orderId Str High (StrAES-GCM,High)
custKey Str Low (StrAES-ECB,Low)
price Str High (DblAES-GCM,High)
date Int Low (IntOPE,Low)
...

Security
policy

Result
Final

execution
plan

Compiler &
optimizer

Annotated 
query

Annotated 
data schema

Query Transformer

Untrusted cloud 
compute resource

SGX

Trusted on-prem. 
compute resource

Executor

PHE …Heuristic

Fig. 3. Hydra workflow. Except for red parts execution happens on the client side where the analyst resides.

the TPC-H benchmark in our evaluation later. Domain CLNT means (trusted) client side, and CLD

public (untrusted) cloud. Triples from the first two rows in Tbl. 1 state that data labeled High

High

Low

Public

≼
≼

Fig. 2.

Simple

lattice.

is allowed to be in plaintext when present inside domains CLNT and SGX, and must be
encrypted under AES-GCM when present inside CLD. The third row states that data labeled
Low should be encrypted under any of the five listed schemes when inside CLD. Note, as
S(𝑙)𝑐 ∈ A, S(𝑙) must be upward closed, and since having High-sensitive in plaintext
inside SGX is secure (according to Tbl. 1), (SGX,∅) ∈ S(High), then it is surely secure to
have that same data inside SGX encrypted under any encryption scheme 𝑠 . An example
of a more complex lattice is discussed in the appendix. Tbl. 2 shows an extract of the
correspondingly annotated TPC-H data set. Fields such as bal(ance) containing highly
sensitive data that are annotated with a High label are (as inferred by Hydra) encrypted
with advanced encryption standard Galois counter mode (AES-GCM) while those such as
date containing moderately sensitive data are annotated with Low are encrypted with
advanced encryption standard electronic codebook (AES-ECB) or order-preserving encryption (OPE).
2.2.4 Escape Hatch. Note that our approach currently does not include a primitive for declassifica-
tion, as it already has the inherent escape hatch of running on the trusted client side when out of
options to continue execution in the cloud. Label creep — an issue stemming from NI being too
strong — is less of an issue in our approach since all data whose labels crawl to the highest level are
processed inside the most secure domain (e.g., SGX), but the computed result can still be encrypted
and remain in the cloud until returned to the trusted client side for decryption.
2.3 Hydra Workflow

Fig. 3 shows the end-to-end workflow of Hydra for a given query once the security policy is
set up and data has been labeled. Apart from the untrusted (third-party shared) cloud compute
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Type ^ F ^ →𝑑 ^ | {𝑓 : (𝑝 𝑠 , 𝑙)} | 𝑇 {𝑓 : (𝑝 𝑠 , 𝑙)} | (𝑝 𝑠 , 𝑙)
Prim type 𝑝 F Int | Dbl | Str | Bool | ...
Scheme 𝑠 F ∅ | AES-GCM | ElGamal | Paillier | ... (in one-to-one correspondence with S∅)
Domain 𝑑 F CLNT | SGX | SEV | CLD | ... (in one-to-one correspondence with D)
Value 𝑣 F 𝑇 {𝑓 : 𝑣} | {𝑓 : 𝑣} | 𝑐 𝑠 | _[𝑑](𝑥 : ^). 𝑒 | 𝑓

Expression 𝑒 F 𝑣 | 𝑥 | 𝑒 (𝑒) | ⊕(𝑒) | {𝑓 : 𝑒} | 𝑒.𝑓 | table(𝑛𝑎𝑚𝑒) | \ (𝑒) | encr(𝑒, 𝑠) | decr(𝑒) | [𝑒]𝑑
Prim ops ⊕ F + | − | ... | ∧ | ∨ | ...

Query ops \ F filter | proj | cross | agg | ...
Fig. 4. Syntax and parameterization of Hydra language. Terms/items in𝑔𝑟𝑒𝑒𝑛 (only present at runtime), and

𝑏𝑙𝑢𝑒 are not used by the data analyst. The superscript 𝑠 in the base type 𝑝𝑠 denotes either a plaintext (𝑠 = ∅)
or encrypted (𝑠 ∈ S) version of primitive type 𝑝 . An overline represents a sequence.

resources, execution occurs at the trusted client side (where the data analyst resides, cf. Fig. 3).
Data is stored beforehand in encrypted form, as needed, in the cloud.

Transformer: The “logical” query without security annotations submitted by the data analyst is
transformed to use security mechanisms based on the annotated data schema (with labels),
the security policy, and a heuristic for using mechanisms defined in the security policy.

Compiler & optimizer: The compiler takes a query with explicit use of mechanisms and annota-
tions for security, verifies it, and generates a final optimized execution plan.

Executor: The execution back-end uses untrusted third-party resources with different mechanisms,
cryptosystems, and client-side trusted resources (if needed) to perform the query on the data
in the cloud and generate the (encrypted) result, which is sent to the data analyst.

The workflow steps are extensible in several ways: a more sophisticated algorithm for mechanism
selection means extending the transformer ; a new encryption scheme amounts to adding several
Spark Catalyst rules (see §5.2) to the compiler and making the transformer aware of the scheme’s
performance; a new domain includes the steps for a new encryption scheme plus telling the
executor how to execute subquery in that domain. As input queries have no security annotations
and intermediate steps are not persisted, the executed query is always compatible with the runtime.

3 PROGRAMMING LANGUAGE

We present syntax and operational semantics of Hydra’s core programming language.

3.1 Syntax

The syntax, shown in Fig. 4 , reflects three aspects of confidentiality-preserving distributed data
processing: (composition of) query operators applied to relational data, (user-defined) functions that
parameterize query operators, and confidentiality constraints. 𝑧 is a sequence 𝑧1, . . . , 𝑧𝑛 . In some
cases (not sequences) we may also use 𝑧′, 𝑧′′ etc. to range over several instances of a meta-variable.
In our prototype, the data analyst only uses an abbreviated subset of the language without security
annotations (𝑏𝑙𝑢𝑒) and runtime-only constructs (𝑔𝑟𝑒𝑒𝑛).

3.1.1 Values. Values 𝑣 include two constructs central to data representation, namely, relations
𝑇 {𝑓 : 𝑣} and records of values {𝑓 : 𝑣}, where we abbreviate 𝑓 : 𝑣 = 𝑓1 : (𝑣11, . . . , 𝑣𝑘1), . . . , 𝑓𝑛 :
(𝑣1𝑛, . . . , 𝑣𝑘𝑛) and 𝑦 : 𝑧 = 𝑦1 : 𝑧1, . . . , 𝑦𝑛 : 𝑧𝑛 . Other values of our language are: possibly encrypted
constants 𝑐𝑠 , where 𝑠 ∈ S∅ and 𝑐 is an element of a ground set of primitive values (e.g., an
integer 42, a string "hello", or a sequence of bytes 0x42be... representing some ciphertext); lambda
abstractions _[𝑑] (𝑥 : ^). 𝑒; and, as a minor technical convenience, record fields 𝑓 . Notably, every
lambda abstraction explicitly states domain 𝑑 in which its body must be evaluated.
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1 agg(filter(cross(table(Customers),
2 filter(table(Orders),
3 _(rO: {/* Orders */}). rO.date < 16052002)) ,
4 _(rCO: {/* Customers + Orders */}). rCO.custId == rCO.custKey),
5 custId , 0,
6 _(rP: {price: Dbl}, acc: Int).
7 acc + rP.price)

Fig. 5. Example query without security annotations as expressed by a data analyst. The types of record fields

inside comments /* ... */ are taken from the “Type” column of Tbl. 2.

3.1.2 Expressions. Besides values 𝑣 , expressions 𝑒 include several primitives standard for lambda
calculus with records and primitive data types such as variables 𝑥 , function applications 𝑒 (𝑒),
primitive arithmetic and logical operations denoted by ⊕(𝑒), records {𝑓 : 𝑒}, and record access 𝑒.𝑓 .
When an operator ⊕ is binary, we will use infix notation 𝑒1 ⊕ 𝑒2 to mean ⊕(𝑒1, 𝑒2). Then, there
are two data-processing constructs: references to relations table(𝑛𝑎𝑚𝑒) already in the database,
and relational query operators \ (. . .) such as filter or cross that transform relations. Encryption
and decryption primitives are represented by encr(𝑒, 𝑠) and decr(𝑒). In encr(𝑒, 𝑠), 𝑠 ≠ ∅ defines the
encryption scheme; it is implicit in decr(𝑒). Neither encr nor decr contain keys, we provide keys at
runtime to a well-typed query appropriately, assuming one encryption key per encryption scheme.
Finally, during runtime we use [𝑒]𝑑 to demarcate a sub-expression evaluated inside domain 𝑑 .
3.1.3 Types. Types are parameterized by user-provided lattice L. At the lowest level we have
primitive types 𝑝 , including integer and floating point numbers, and strings. The base types 𝑝𝑠 ,
𝑠 ∈ S∅ are for optionally encrypted values of primitive types. By attaching security labels 𝑙 ∈ L
and structure to base types, we get the following types ^: (𝑝𝑠 , 𝑙) for atomic values, {𝑓 : (𝑝𝑠 , 𝑙)}
for records, and 𝑇 {𝑓 : (𝑝𝑠 , 𝑙)} for sequences of records, i.e., relational schemata; 𝑓 : (𝑝𝑠 , 𝑙) stands
for 𝑓1 : (𝑝𝑠11 , 𝑙1), . . . , 𝑓𝑛 : (𝑝𝑠𝑛𝑛 , 𝑙𝑛). Finally, we have a function type ^ →𝑑 ^ carrying a domain
𝑑 inside which the function will execute, in addition to usual parameter and result types. The
domain may represent Intel SGX (SGX), client-side computation (CLNT), AMD SEV (SEV), the public
cloud without hardware security mechanism (CLD), etc. To capture structure of inputs, we use table
environment 𝜌 : 𝑛𝑎𝑚𝑒 ↦→ 𝑇 {𝑓 : (𝑝𝑠 , 𝑙)}, a finite map from relations’ names to their schemata. The
map is provided by the data manager (see §2.2) without encryption schemes, i.e., all 𝑠 = ∅; the
encryption schemes are inferred by query transformation (see §3.3).
3.1.4 Syntactic Sugar For the sake of simplicity, in the examples, we use a shorthand notation
without security annotations, the same notation that is used by a data analyst when writing
queries. The simplified notation boils down to replacing parts colored in 𝑏𝑙𝑢𝑒 with some defaults;
we remind that𝑔𝑟𝑒𝑒𝑛 expressions exist only at runtime. The defaults are the following: an omitted
domain is replaced with the client-side domain CLNT, an omitted scheme 𝑠 is replaced with ∅,
and an omitted security label is replaced with ⊥. As an example, _(𝑥 : Int). 𝑥 + 2 desugars to
_[CLNT] (𝑥 : (Int∅,⊥)). 𝑥 + 2∅. The example in Fig. 5 is expressed in the simplified notation and
hence the type annotations correspond to the non-colored portions of ^ defined in Fig. 4.
3.1.5 Running Example. Fig. 5 presents a simple query retrieving the amount of money spent by
each customer (see Customers in Tbl. 2) on orders (see Orders in Tbl. 2) prior to a certain date. The
query has three steps: (1) filter orders of interests on line 2, (2) perform an inner join with customers
using cross followed by filter on lines 1–4, and (3) aggregate price by cusutId using agg.
3.1.6 Primitives. Hydra makes extensible the set S of possible schemes, domains D, primitive
types 𝑝 , and operations ⊕ (see Fig. 4). Semantics of primitive operations is captured by 𝜑ev

⊕ (⊕, 𝑐, 𝑠),
a partial map from syntax symbols (e.g., + or -) and primitive values with possibly encryption
schemes (cf. (Ev Op)) to a primitive result value and possibly scheme; 𝑧, 𝑠 stands for 𝑧1, 𝑠1, . . . , 𝑧𝑛, 𝑠𝑛 .
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Table 3. Functions capturing

Hydra’s built-in types (𝜑 ty
_
) and

operations (𝜑ev
_
) with respective

shapes of functions’ values.

Built-in Value

𝜑
ty
𝑐 (𝑐, 𝑠) 𝑝′ or ⊥
𝜑
ty
⊕ (⊕, 𝑝, 𝑠) {(𝑝′1, 𝑠′1), . . .}
𝜑
ty
encr (𝑠) {𝑝′1, . . .}

𝜑ev
⊕ (⊕, 𝑐, 𝑠) {𝑐′1, . . .}
𝜑ev
encr (𝑐, 𝑠) {𝑐′1, . . .}
𝜑ev
decr (𝑐, 𝑠) 𝑐′ or ⊥

(Ev Cxt) 𝑒1 −→
Ω
𝑒2

C[𝑒1] −→
Ω

C[𝑒2]

(Ev Op)

𝜑ev
⊕ (⊕, 𝑐, 𝑠) = (𝑐, 𝑠)
⊕(𝑐𝑠 ) −→

Ω
𝑐𝑠

(Ev Enc)

𝑐2 ∈ 𝜑ev
encr (𝑐1, 𝑠)

encr(𝑐∅1 , 𝑠) −→
Ω
𝑐𝑠2

(Ev Decr)

𝜑ev
decr (𝑐1, 𝑠) = 𝑐2
decr(𝑐𝑠1) −→

Ω
𝑐∅2

(Ev OpQuery)

eval\ (Ω, \, 𝑣) = 𝑣
\ (𝑣) −→

Ω
𝑣

(Ev RecSelect)

{𝑓 : 𝑣}.𝑓𝑖 −→
Ω
𝑣𝑖

(Ev Apply)

_[𝑑] (𝑥 : ^).𝑒 (𝑣) −→
Ω

[{𝑣/𝑥}𝑒]𝑑

(Ev Tbl) Ω(𝑛𝑎𝑚𝑒) = 𝑣
table(𝑛𝑎𝑚𝑒) −→

Ω
𝑣

(Ev Return)

[𝑣]𝑑 −→
Ω
𝑣

C F[•]𝑑 | ⊕(𝑣, •, 𝑒) | \ (𝑣, •, 𝑒) | encr(•, 𝑠) | decr(•) | • (𝑒)

| 𝑣 (𝑣, •, 𝑒) | • .𝑓 | {𝑓 : 𝑣, 𝑓 : •, 𝑓 : 𝑒}
Fig. 6. Operational semantics of Hydra language parameterized by table

store Ω: name ↦→ 𝑇 {𝑓 : 𝑣}.

Arguments and return values of 𝜑ev
⊕ reflect the variety of PHE operations. For instance, OPE allows

to compare two ciphertexts 𝑐1 and 𝑐2, so we may have 𝜑ev
⊕ (<, 𝑐1, OPE, 𝑐2, OPE) = (true,∅); ElGamal

allows to multiply a ciphertext 𝑐1 by either another ciphertext 𝑐2 or by a plain text integer, hence, we
may have𝜑ev

⊕ (*, 𝑐1, ElGamal, 𝑐2, ElGamal) = (𝑐3, ElGamal) and𝜑ev
⊕ (*, 𝑐1, ElGamal, 2,∅) = (𝑐4, ElGamal);

for plaintext operators 𝑠 = ∅. Encryption/decryption is modelled by 𝜑ev
decr (𝑐, 𝑠) and 𝜑

ev
encr (𝑐, 𝑠); the

former possibly returns a constant and the latter returns a set of constants (for non-deterministic
schemes). Note, 𝜑ev

decr and 𝜑
ev
encr take 𝑠 ∈ S∅, but, naturally 𝜑ev

decr (𝑐,∅) = ⊥ and 𝜑ev
encr (𝑐,∅) = {}.

In order to type check Hydra queries (see §4.2), we introduce a corresponding partial function
𝜑
ty
⊕ (⊕, 𝑝, 𝑠) that given primitive operator ⊕ and its arguments’ primitive types and schemes returns

the primitive type and scheme of the result (used in (T-Op)), and a 𝜑 ty
𝑐 (𝑐, 𝑠) that returns the primitive

type of 𝑐 and, if 𝑠 ≠ ∅, verifies that 𝑐 is indeed the ciphertext of 𝑠 (used in (T-Const)). As it may be
impossible to encrypt values of every primitive type with every 𝑠 , 𝜑 ty

encr (𝑠) specifies the primitive
types supported by 𝑠 . Naturally, for subject reduction, and then to prove security properties and
correctness of query transformation we impose three types of correspondence constraints on 𝜑ev

_
and 𝜑 ty

_ : type-preservation w.r.t. 𝜑 ty
𝑐 and 𝜑 ty

⊕ for primitive operations 𝜑ev
⊕ , encryption 𝜑ev

encr, and
decryption 𝜑ev

decr; progress of all three 𝜑
ev
_ when given the right arguments; and correctness of

encryption/decryption (decryption is the inverse) and PHE operations (correspond to plain-text
versions). Notation for built-ins is summarized in Tbl. 3.
3.1.7 Semantics of Relational Operators. Finally, we present our assumptions on the semantics
of relational operators. Evaluating projection eval\ (Ω, proj, 𝑣𝑡 , 𝑣_) applies 𝑣_ to every record of 𝑣𝑡 .
Evaluating eval\ (Ω, cross, 𝑣𝑡 , 𝑣 ′𝑡 ) results in a straightforward cross-product of of 𝑣𝑡 and 𝑣 ′𝑡 , while
eval\ (Ω, agg, 𝑣𝑡 , 𝑓 , 𝑣0, 𝑣_) takes as input a relation 𝑣𝑡 , a field 𝑓 on which to group, an initial value 𝑣0,
and a combining function 𝑣_ which takes a record and an accumulator to produce a new accumulated
value. To evaluate filter, eval\ (Ω, filter, 𝑣𝑡 , 𝑣_) returns only those records from relation 𝑣𝑡 on which
𝑣_ evaluates to true.
3.2 Operational Semantics

Fig. 6 shows the evaluation rules of our language following small-step operational seman-
tics [Plotkin 2004]. Evaluation is parameterized by table store Ω mapping table names to corre-
sponding relations from the database. A context C is an expression with a hole •; 𝑒 = C[𝑒′] is an
expression with the hole occupied by a sub-expression 𝑒′, i.e., 𝑒 decomposes into a sub-expression 𝑒′
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(TxSchema)

𝑠 ∈ S
𝑇 {𝑓 : (𝑝∅, 𝑙)} {𝑆 𝑇 {𝑓 : (𝑝𝑠 , 𝑙)}

(TxSchemata)

∀𝑛.𝜌 (𝑛) {𝑆 𝜌
′ (𝑛)

𝜌 {𝑆 𝜌
′

T F⊕(•) | \ (•) | • (•) | • .𝑓

| {𝑓 : •} | 𝑇 {𝑓 : •}

(Tx Const)

𝜑ev (decr, 𝑐1, 𝑠) = 𝑐
𝑐∅ { 𝑐𝑠1

(Tx Func)

𝑑 ∈ D 𝑒 { 𝑒′

_[CLNT] (𝑥 : ^).𝑒 { _[𝑑] (𝑥 : ^′).𝑒′

(Tx Encr)

𝑒 { 𝑒′ 𝑠 ∈ S
𝑒 { encr(𝑒′, 𝑠)

(Tx Decr)

𝑒 { 𝑒′

𝑒 { decr(𝑒′)

(Tx Cxt)

𝑒 { 𝑒′

T [𝑒] { T [𝑒′]

(Tx Refl)

𝑒 ∈ {𝑓 , 𝑐∅, 𝑥, table(𝑛𝑎𝑚𝑒)}
𝑒 { 𝑒

(Tx Ret)

𝑑 ∈ D 𝑒 { 𝑒′

[𝑒]CLNT { [𝑒′]𝑑
Fig. 7. Transformation 𝜏 of the subset language to the full language. 𝜏 ′𝑠 constraints are defined over types and
expressions using relations. Heuristics are instantiations of 𝜏 . We assume the original query transforms to a

well-typed query which precludes (due to (Tx Encr)) illegal transformations of the sort encr(table(𝑛𝑎𝑚𝑒), 𝑠).

enclosed in a context C. Evaluation contexts in Fig. 6 are used to define a left-to-right, call-by-value
operational semantics. Rule (Ev Cxt) performs a reduction inside a context. Rule (Ev Op) evaluates
⊕ based on the evaluation provided by function 𝜑ev

⊕ . Rule (Ev Enc) encrypts a value with scheme
𝑠 using 𝜑ev

encr while rule (Ev Decr) decrypts an encrypted value using 𝜑ev
decr. Rule (Ev OpQuery)

evaluates query operators based on the evaluation provided by eval\ and described in §3.1.7. Rule
(Ev Apply) applies a function to fully evaluated arguments 𝑣 moving the rest of computation inside
the appropriate domain. Rule (Ev Return) returns the final result of a computation performed in a
possibly different domain to the domain that invoked the computation.
3.3 Query Transformation

The query written by a data analyst (see § 3.1.4) is bereft of security constraints — schemes,
domains, and security labels of the database schemata 𝜌 . Before compilation (cf. Fig. 3), Hydra
transforms the query by filling in security annotations (𝑏𝑙𝑢𝑒 parts of Fig. 4). In addition, Hydra
chooses the appropriate schemes for input data as part of the transformation.
3.3.1 Transformation Characterization. The transformation consists of a function 𝜏⟦·, ·⟧ taking a
query 𝑒 and plaintext database schemata 𝜌 and returning a related by{ (see Fig. 7) transformed
query 𝑒′ and related by{𝑆 (see Fig. 7) schemata 𝜌 ′ that uses (encryption) schemes:

Definition 1 (qery transformation). Function 𝜏⟦·, ·⟧ is a query transformation iff ∀𝜌, 𝑒 ,
and (𝜌 ′, 𝑒′) = 𝜏⟦𝜌, 𝑒⟧, we have 𝑒 { 𝑒′ and 𝜌 {𝑆 𝜌

′
.

On the one hand, Def. 1 gives enough flexibility to Hydra’s transformation heuristic to account
for a variety of external constraints and objectives, such as query execution time and resource
availability. On the other hand, by limiting the set of changes using{ and{𝑆 (described shortly),
Def. 1 makes it easy to check the preservation of a query’s semantics (formallized in §4.4).
Next, we describe the changes to the query and schemata allowed by{ and{𝑆 , respectively.

Rules (TxSchemata) and (TxSchema) ensure that the only change to the database schemata is the
addition of schemes, in other words, labels of input data columns and primitive types do not change.
Rule (Tx Const) allows for encryption of a constant. Rule (Tx Func) allows to change the domain
of a lambda expression and also argument types, so the latter match to the inferred labels and
encryption schemes. New types ^′ are left unconstrained because the transformed query would
still be type-checked. Rules (Tx Encr) and (Tx Decr) allow to introduce encryption or decryption to
an arbitrary subexpression within the query. Note that the cases where encryption (or decryption)
do not make sense (e.g., decr(filter(...)) or encr({...},AES-GCM)) will be handled by the type
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1 agg(filter(cross(table(Customers),
2 filter(table(Orders),

3 _[SGX](rO: {/* Orders */}). rO.date < 0x..OPE)),
4 _[SGX](rCO: {/* Customers + Orders */}). rCO.custId == rCO.custKey),

5 custId , 0x..AES-GCM,

6 _[SGX](rP: {price: (DblAES-GCM, High)}, acc: (DblAES-GCM, High)).
7 encr(decr(acc) + decr(rP.price), AES-GCM ))

Fig. 8. Query corresponding to Fig. 5 transformed for CLD execution using explicit security annotations. Types

of fields in comments /* ... */ are taken from the “Security type” column of Tbl. 2.

system (see § 4.2). Rule (Tx Cxt) allows to apply all of the earlier rules to an arbitrary set of
subexpressions within the query, while (Tx Refl) handles those that stay intact. It is easy to see that
the right hand sides of the above rules for{ correspond to the result of desugaring of the simplified
syntax introduced in §3.1.4. (Tx Ret) allows to change the domain of an ongoing computation; this
rule is only used during inductive argument in the proof of transformation correctness (see Th. 3).
3.3.2 Running Example (transformed). Fig. 8 presents a transformation of our running example
from Fig. 5; the corresponding transformation of the schemata is presented in “Security type”
column of Tbl. 2. Importantly, execution of the transformed query is to be spawned in CLD domain.

We discuss the schemata first. The encryption for High fields is set to AES-GCM, the only allowed in
CLD for High (cf. Tbl. 1). For Low fields, the encryption choice is based on the respective usage: custId
and custKey participate in equality comparison, hence they are encrypted using a deterministic
AES-ECB scheme; date in its turn participates in order comparison, hence an order-preserving OPE is
used instead. Apart from types in lambda expressions only adjusted to match the new schemata,
there are three key changes in the query: (1) constants representing the date and the initial value
to agg are encrypted using (Tx Const); (2) domains of function arguments are replaced with SGX

using (Tx Func) since their bodies include non-Public plaintext values; (3) computation inside agg

uses decryption and encryption to convert to plaintext and back using (Tx Encr) and (Tx Decr).
As is evident from this example, while our programming language provides core abstractions for

streamlined use of different security mechanisms including in combined manner, and — as we show
shortly — enables the automated verification of correctness of such use, the level of abstraction is
not suited for all. That is, while the full language can be used by system developers with security
expertise, it is challenging for many data analysts. We show in the next section that in Hydra all
the needed properties hold automatically. In particular, Th. 3 guarantees that the execution of a
transformed query (cf. Fig. 8) is equivalent to execution of the underlying short query (Fig. 5), and
Th. 1 plus the fact that the full query type-checks guarantee the confidentiality constraints.
4 TYPE SYSTEM AND PROPERTIES

This section presents the properties of program execution enforced by Hydra that reflect end-
to-end confidentiality guarantees outlined in §2.1, with the underlying security type system.
4.1 Security Framework

Any well-typed program is guaranteed to satisfy confidentiality constraints of inputs w.r.t. a
security policy S, namely, no adversary incapable of breaking any of S(𝑙) accesses 𝑙-labelled inputs.
4.1.1 S-Noninterference. As a formal basis, we use an end-to-end property called noninterference

(NI) [Goguen and Meseguer 1982], its essence being that public outputs are unchanged as secret
inputs are varied. By augmenting NI with restrictions imposed by the security policy S, we arrive at
a more generic variant, dubbed S-NI, which guarantees that indistinguishable outputs are observed
by an adversary 𝐴 ∈ A when program executions differ only in inputs at security levels which
𝐴 must not be able to access according to S. Our approach currently does not include a primitive

Proc. ACM Program. Lang., Vol. 7, No. PLDI, Article 117. Publication date: June 2023.



117:12 Shamiek Mangipudi, Pavel Chuprikov, Patrick Eugster, Malte Viering, and Savvas Savvides

for declassification §2.2.4 and thus intransitive noninterference is not a good design choice for us
[Gorrieri and Vernali 2011; Roscoe and Goldsmith 1999]. In Hydra, the inputs are a table store Ω,
and the outputs—a final value 𝑣 of a query 𝑒 , i.e., 𝑒 −→

Ω

∗ 𝑣 . Note, for any binary relation ∼ we use ∼∗

to denote ∼’s reflexive and transitive closure.
4.1.2 Equivalence Relations. Formally we introduce two equivalence relations ∼𝑙^ for query inputs
and, w.r.t. a given S, ∼𝑑,𝑙 for query outputs. The two are different because we decouple the following:
(a) which input values should remain confidential to certain adversaries (input relation), and
(b) which outputs are not observable by certain adversaries (output relation). Note, (a) only depends
on security labels, while (b) only depends on domains and encryption schemes. We have 𝑣1 ∼𝑙^ 𝑣2
precisely when 𝑣1 and 𝑣2 differ only in those constants that have confidentiality requirements 𝑙 . Type
^ in ∼𝑙^ is needed to determine where such constants are, for instance, {𝑥 : 0} and {𝑥 : 1} of type ^
may or may not be related depending on 𝑥 ’s label contained in ^. Only labels of ^ are taken into
account in ∼𝑙^ . For outputs, 𝑣1 ∼𝑑,𝑙 𝑣2 iff 𝑣1 and 𝑣2 inside execution domain 𝑑 are indistinguishable
by any adversary 𝐴 who must not be able to access 𝑙 according to S or, equivalently, 𝐴 cannot
distinguish values protected by any of S(𝑙).

Definition 2. A non-function value 𝑣 satisfies type ^ iff 𝑣 ’s structure follows ^’s, and for each 𝑐𝑠

in 𝑣 , 𝜑 ty (𝑐, 𝑠) is equal to the corresponding base type in ^ . Table store Ω satisfies table environment 𝜌

iff for each name 𝑛, Ω(𝑛) satisfies 𝜌 (𝑛).

Definition 3 (∼𝑙^ and ∼𝑑,𝑙 w.r.t. S). For any 𝑣 and 𝑣 ′ satisfying ^ and security policy S, the

equivalence relations 𝑣 ∼𝑙^ 𝑣 ′ and 𝑣 ∼𝑑,𝑙 𝑣 ′ w.r.t. S are defined inductively in Fig. 9.

The key rules are (EquivConstin) and (EquivConst
out

), the remaining rules either say that equal
values are equivalent, namely rules (EquivEqin), (EquivEqout), (EquivEncEqin), and (EquivEncEqout),
or propagate the equivalence through the value structure as is the case for rules (EquivTblPWin

),
(EquivTblPW

out
), (EquivRecin), and (EquivRec

out
). The rule (EquivTblAllout) used in ∼𝑑,𝑙 is a

little special, we discuss it shortly after. When applied to the two query’s inputs, (EquivConstin)
defines the parts that may differ only allowing variability in constants labelled with 𝑙 . When
applied to the query’s outputs, (EquivConstout) restricts which parts of the output may vary, and,
notably, to only those protected by domains and encryption schemata deemed, by S, sufficient
for 𝑙 . Rule (EquivTblAllout) establishes equivalence by considering all-to-all correspondence of
rows across both tables, this rule is important for filtering using secret-valued predicates and is
exactly how our threat model excludes table length information. As an example, for inputs we have
2 ∼Public

(Int,Public) 3 and 2 ∼High
(Int,High) 3, but neither 2 ∼High

(Int,Public) 3 nor 2 ∼Public
(Int,High) 3. Outputs are

more interesting: assuming S from Tbl. 1, 2 ∼SGX,High 3 and 2 ∼CLD,Public 3 but not 2 ∼CLD,High 3.
We are now in a position to formally state our S-NI property, namely, an expression 𝑒 satisfies

S-NI iff for any two related inputs, i.e., table stores, evaluating 𝑒 always produces related results.
The next definition captures when computation of query 𝑒 finishing in 𝑑 satisfies confidentiality
requirements of 𝑙-labelled inputs for some 𝑙 in L.

Definition 4 (Level-𝑙 S-noninterference S-NI(𝑒)𝜌,𝑑,𝑙 ). Expression 𝑒 has S-NI(𝑒)𝜌,𝑑,𝑙 property
dubbed level-𝑙 S-noninterference if and only if for any two stores Ω1 and Ω2 satisfying 𝜌 , Ω1 ∼𝑙𝜌 Ω2,

and any two values 𝑣1 and 𝑣2, 𝑒−−→
Ω1

∗𝑣1 and 𝑒−−→
Ω2

∗𝑣2, it holds that 𝑣1 ∼𝑑,𝑙 𝑣2.

We ultimately want 𝑒 to satisfy confidentiality requirements of all inputs, Def. 4 for all 𝑙 ∈ L.

Definition 5 (S-noninterference S-NI(𝑒)𝜌,𝑑 ). Expression 𝑒 has S-noninterference property
S-NI(𝑒)𝜌,𝑑 if and only if it has level 𝑙 S-noninterference property S-NI(𝑒)𝜌,𝑑,𝑙 for every 𝑙 in L.
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(EquivConst
in
)

𝑐𝑠1 ∼𝑙(𝑝𝑠 ,𝑙 ) 𝑐
𝑠
2

(EquivConst
out

)

(𝑑, 𝑠) ∈ S(𝑙)
𝑐𝑠1 ∼𝑑,𝑙 𝑐𝑠2

(EquivEq
in/out

)

𝑐∅ ∼𝑑,𝑙
(𝑝∅, 𝑙 ′ )

𝑐∅

(EquivEncEq
in/out

)

𝜑ev
decr (𝑐1, 𝑠) = 𝜑

ev
decr (𝑐2, 𝑠)

𝑐𝑠1 ∼
𝑑,𝑙

(𝑝𝑠 , 𝑙 ′ )
𝑐𝑠2

(EquivRec
in/out

)

∀𝑖 . 𝑣𝑖 ∼𝑑,𝑙^𝑖 𝑤𝑖

{𝑓 : 𝑣} ∼𝑑,𝑙
{ 𝑓 : ^ }

{𝑓 : 𝑤}

(EquivTblPW
in/out

)

∀𝑖 𝑗 . 𝑣𝑖 𝑗 ∼𝑑,𝑙^𝑖 𝑤𝑖 𝑗

𝑇 {𝑓𝑖 : 𝑣𝑖 𝑗 𝑗
𝑖

} ∼𝑑,𝑙
𝑇 { 𝑓 : ^ }

𝑇 {𝑓𝑖 : 𝑤𝑖 𝑗 𝑗
𝑖

}

(EquivTblAll
out

)

∀𝑖 𝑗𝑘 . 𝑣𝑖 𝑗 ∼𝑑,𝑙 𝑤𝑖𝑘

𝑇 {𝑓𝑖 : 𝑣𝑖 𝑗 𝑗
𝑖

} ∼𝑑,𝑙 𝑇 {𝑓𝑖 : 𝑤𝑖𝑘 𝑘
𝑖

}

Fig. 9. Equivalence relations ∼𝑙^ for query input, and ∼𝑑,𝑙 w.r.t. S—for output in domain 𝑑 , from the perspective

of an adversary without level 𝑙 capability. Parts relevant to ∼𝑙^ (∼𝑑,𝑙 ) but not to ∼𝑑,𝑙 (∼𝑙^ ) are in pink (purple ),

e.g., (EquivConst
out

) and (EquivTblAll
out

) use only ∼𝑑,𝑙 . (EquivConstin) uses only ∼𝑙^ .

4.2 Typing Rules

The security type system for our language must guarantee S-NI property for any well-typed
program. While presenting the typing rules we assume a fixed security policy S. Typing judgements
are of the form 𝜌 ≀ Γ ⊢𝑑 𝑒 : ^ where 𝜌 represents relations’ schemata, Γ is a typing environment
mapping variables to types, 𝑑 is the domain in which expression 𝑒 resides, and ^ is the type derived
for 𝑒 . We will show in §4.3 that 𝜌 ⊢𝑑 𝑒 : ^ w.r.t. S implies S-NI(𝑒)𝜌,𝑑 . Fig. 10 presents the typing
rules, where we use a convenient shorthand ^ ⊑ 𝑑 to assert that S allows expressions of type ^
inside domain 𝑑 , and we also use the subtyping relation ^ <: ^′, which simply propagates ≼ through
type structure. A sequence of typed expressions 𝜌 ≀ Γ ⊢𝑑 𝑒1 : ^1, 𝜌 ≀ Γ ⊢𝑑 𝑒2 : ^2, ..., 𝜌 ≀ Γ ⊢𝑑 𝑒𝑛 : ^𝑛 is
abbreviated as 𝜌 ≀ Γ ⊢𝑑 𝑒 : ^.
Rule (T-TblCall) assigns a type to table(𝑛𝑎𝑚𝑒) expression equal to the corresponding schema

𝜌 (𝑛𝑎𝑚𝑒) after checking that the type is allowed in the domain. For corresponding relational values
the type is assigned by the (T-Tbl) rule based on types of individual entries. (T-Var) assigns types
to variables using the typing environment ensuring that the type is compatible with the domain.
(T-Const) assigns values to constants based on built-in type information 𝜑 ty

𝑐 using the least secure
label ⊥, which is always allowed according to security policy’s definition (see §2.2.2). Note, the
last two rules do not imply that constants always have ⊥ label. We present shortly a different rule
allowing to bump the confidentiality level; we also rely on it in §4.3 for subject reduction. (T-Fun)
types a function based on the body’s type, checking also that arguments are allowed in the domain
where the function will run. Functions can be typed in any domain 𝑑1 irrespective of the domain 𝑑2
they would execute in. When a (sub)expression is being evaluated in a different domain, as a result
of (Ev Apply), (T-Return) changes the typing domain. (T-ConfUp) upgrades to a more confidential
type as defined by the subtyping relation; the new type must be allowed in the domain. (T-Apply)
mandates that function application returns a result allowed in the domain where the function
is invoked. Hence, a function does not carry an explicit label since compatibility checks in the
typing rules between security types and domains (attached domain 𝑑2 to the function and context
𝑑1 invoking the function) suffices. (T-Op) types an operator ⊕ expression based on 𝜑 ty

⊕ and sets the
security label to be the lattice join of inputs’ security labels. The second premise of (T-Op) says that
if some of the inputs or the output are encrypted, then all the encryption schemes are the same
(equal to 𝑠′). (T-Encr) allows encryption of an expression under a scheme 𝑠 which is compatible
with both the security label of the expression and the domain performing encryption. (T-Decr)
checks that the type of the plaintext for the encrypted expression is allowed in the domain carrying
out the decryption.
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^ ⊑ 𝑑 (𝑝𝑠 , 𝑙) ⊑ 𝑑 ⇔ (𝑑, 𝑠) ∈ S(𝑙)
𝑇 {𝑓 : (𝑝𝑠 , 𝑙)} ⊑ 𝑑 ⇔ (𝑝𝑠 , 𝑙) ⊑ 𝑑
{𝑓 : (𝑝𝑠 , 𝑙)} ⊑ 𝑑 ⇔ (𝑝𝑠 , 𝑙) ⊑ 𝑑
^′ →𝑑 ′ ^

′ ⊑ 𝑑

(T-Tbl) ∀𝑗 . 𝜌 ≀ Γ ⊢𝑑 𝑣𝑖, 𝑗 : (𝑝𝑠𝑖 , 𝑙𝑖 )
∀𝑖 . (𝑝𝑠𝑖 , 𝑙𝑖 ) ⊑ 𝑑

𝜌 ≀ Γ ⊢𝑑 𝑇 {𝑓𝑖 : 𝑣𝑖, 𝑗
𝑖
𝑗

} : 𝑇 {𝑓 : (𝑝𝑠 , 𝑙)}

(T-Var)

Γ(𝑥) = ^
^ ⊑ 𝑑

𝜌 ≀ Γ ⊢𝑑 𝑥 : ^

(T-TblCall)

𝜌 (𝑛𝑎𝑚𝑒) = 𝑇 {𝑓 : (𝑝𝑠 , 𝑙)} ∀𝑖 . (𝑝𝑠𝑖 , 𝑙𝑖 ) ⊑ 𝑑
𝜌 ≀ Γ ⊢𝑑 table(𝑛𝑎𝑚𝑒) : 𝑇 {𝑓 : (𝑝𝑠 , 𝑙)}

(T-Const)

𝜑
ty
𝑐 (𝑐, 𝑠) = 𝑝

𝜌 ≀ Γ ⊢𝑑 𝑐𝑠 : (𝑝𝑠 ,⊥)

(T-Fun)

𝜌 ≀ Γ, 𝑥 : ^ ⊢𝑑2 𝑒 : ^
∀𝑖 . ^𝑖 ⊑ 𝑑2

𝜌 ≀ Γ ⊢𝑑1 _[𝑑2] (𝑥 : ^). 𝑒 : ^ →𝑑2 ^

(T-Return)

𝜌 ≀ Γ ⊢𝑑2 𝑒 : ^
^ ⊑ 𝑑1

𝜌 ≀ Γ ⊢𝑑1 [𝑒]𝑑2 : ^

(T-ConfUp)

𝜌 ≀ Γ ⊢𝑑 𝑒 : ^1
^1 <: ^2
^2 ⊑ 𝑑

𝜌 ≀ Γ ⊢𝑑 𝑒 : ^2

(T-Apply)

𝜌 ≀ Γ ⊢𝑑1 𝑒_ : ^ →𝑑2 ^

𝜌 ≀ Γ ⊢𝑑1 𝑒 : ^
^ ⊑ 𝑑1

𝜌 ≀ Γ ⊢𝑑1 𝑒_ (𝑒) : ^

(T-Op)
𝜌 ≀ Γ ⊢𝑑 𝑒 : (𝑝𝑠 , 𝑙)

𝜑
ty
⊕ (⊕, 𝑝, 𝑠) = (𝑝, 𝑠) 𝑠, 𝑠 ∈ {𝑠′,∅}

(𝑝𝑠 ,⊔𝑖𝑙𝑖 ) ⊑ 𝑑
𝜌 ≀ Γ ⊢𝑑 ⊕(𝑒) : (𝑝𝑠 ,⊔𝑖𝑙𝑖 )

(T-Decr)

𝜌 ≀ Γ ⊢𝑑 𝑒 : (𝑝𝑠 , 𝑙)
𝑝 ∈ 𝜑 ty

encr (𝑠)
(𝑝, 𝑙) ⊑ 𝑑

𝜌 ≀ Γ ⊢𝑑 decr(𝑒) : (𝑝, 𝑙)

(T-Encr)

𝜌 ≀ Γ ⊢𝑑 𝑒 : (𝑝∅, 𝑙)
𝑝 ∈ 𝜑 ty

encr (𝑠)
(𝑝𝑠 , 𝑙) ⊑ 𝑑

𝜌 ≀ Γ ⊢𝑑 encr(𝑒, 𝑠) : (𝑝𝑠 , 𝑙)

(T-Filter)
𝜌 ≀ Γ ⊢𝑑 𝑒𝑡 : 𝑇 {𝑓𝑖 : (𝑝𝑠𝑖 , 𝑙𝑖 )}𝑖∈𝐼 𝜌 ≀ Γ ⊢𝑑 𝑒_ : {𝑓𝑖 : (𝑝𝑠𝑖 , 𝑙𝑖 )}𝑖∈𝐼 ′ →𝑑 ′ (Bool, 𝑙)

𝐼 ′ ⊆ 𝐼 ∀𝑖 . (𝑝𝑠𝑖 , 𝑙𝑖 ⊔ 𝑙) ⊑ 𝑑
𝜌 ≀ Γ ⊢𝑑 filter(𝑒𝑡 , 𝑒_) : 𝑇 {𝑓𝑖 : (𝑝𝑠𝑖 , 𝑙𝑖 ⊔ 𝑙)}𝑖∈𝐼

(T-Cross)
𝜌 ≀ Γ ⊢𝑑 𝑒1 : 𝑇 {𝑓𝑖 : (𝑝𝑠𝑖 , 𝑙𝑖 )}𝑖∈𝐼 𝜌 ≀ Γ ⊢𝑑 𝑒2 : 𝑇 {𝑓𝑗 : (𝑝𝑠𝑗 , 𝑙 𝑗 )} 𝑗∈ 𝐽

𝐽 ∩ 𝐼 = ∅ ∀𝑘 ∈ 𝐼 ∪ 𝐽 .(𝑝𝑠
𝑘
, 𝑙𝑘 ⊔ (⊓𝑖∈𝐼 𝑙𝑖 ) ⊔ (⊓𝑗∈ 𝐽 𝑙 𝑗 )) ⊑ 𝑑

𝜌 ≀ Γ ⊢𝑑 cross(𝑒1, 𝑒2) : 𝑇 {𝑓𝑘 : (𝑝𝑠
𝑘
, 𝑙𝑘 ⊔ (⊓𝑖∈𝐼 𝑙𝑖 ) ⊔ (⊓𝑗∈ 𝐽 𝑙 𝑗 ))}𝑘∈𝐼∪𝐽

(T-Proj) 𝜌 ≀ Γ ⊢𝑑 𝑒𝑡 : 𝑇 {𝑓𝑖 : (𝑝𝑠𝑖 , 𝑙𝑖 )}𝑖∈𝐼 𝐼 ′ ⊆ 𝐼

𝜌 ≀ Γ ⊢𝑑 𝑒_ : {𝑓𝑖 : (𝑝𝑠𝑖 , 𝑙𝑖 )}𝑖∈𝐼 ′ →𝑑 ′ {𝑓𝑗 : (𝑝𝑠𝑗 , 𝑙 𝑗 )} 𝑗∈ 𝐽 ∀𝑗 ∈ 𝐽 . (𝑝𝑠𝑗 , 𝑙 𝑗 ⊔ (⊓𝑖∈𝐼 𝑙𝑖 )) ⊑ 𝑑
𝜌 ≀ Γ ⊢𝑑 proj(𝑒𝑡 , 𝑒_) : 𝑇 {𝑓𝑗 : (𝑝𝑠𝑗 , 𝑙 𝑗 ⊔ (⊓𝑖∈𝐼 𝑙𝑖 ))} 𝑗∈ 𝐽

(T-Agg)

𝜌 ≀ Γ ⊢𝑑 𝑒𝑡 : 𝑇 {𝑓𝑖 : (𝑝𝑠𝑖 , 𝑙𝑖 )}𝑖∈𝐼 𝜌 ≀ Γ ⊢𝑑 𝑒0 : (𝑝𝑠 , 𝑙 ′) 𝐼 ′ ∪ { 𝑗} ⊆ 𝐼 (𝑝𝑠 , 𝑙 ′ ⊔ 𝑙 𝑗 ) ⊑ 𝑑
𝜌 ≀ Γ ⊢𝑑 𝑒_ : ({𝑓𝑖 : (𝑝𝑠𝑖 , 𝑙𝑖 )}𝑖∈𝐼 ′ , (𝑝𝑠 , 𝑙 ′)) →𝑑 ′ (𝑝𝑠 , 𝑙 ′) 𝜑

ty
⊕ (=, 𝑝 𝑗 , 𝑠 𝑗 , 𝑝 𝑗 , 𝑠 𝑗 ) = (Bool,∅)

𝜌 ≀ Γ ⊢𝑑 agg(𝑒𝑡 , 𝑓𝑗 , 𝑒0, 𝑒_) : 𝑇 {key : (𝑝
𝑠 𝑗
𝑗
, 𝑙 𝑗 ), aggVal : (𝑝𝑠 , 𝑙 ′ ⊔ 𝑙 𝑗 )}

Fig. 10. Typing judgements for Hydra language excluding two for records. In the top-left, we define relation

^ ⊑ 𝑑 meaning expressions of type ^ are allowed to appear in domain 𝑑 by security policy S.

(T-Filter), (T-Cross), (T-Proj), and (T-Agg) type-check query operators filter, cross, proj,
and agg, respectively. (T-Filter) ensures the test expression 𝑒_ outputs Bool and then propagates
confidentiality requirements of that output to every field of the resulting relation as the fields’ values
may depend on 𝑒_’s outcomes. Note, 𝑒_ is allowed to depend on a subset of fields, which can be
useful when its domain 𝑑 ′ is not the same as filter’s 𝑑 . (T-Cross) is mostly straightforward except
for bumping all the labels by (⊓𝑖∈𝐼 𝑙𝑖 ) and (⊓𝑗∈ 𝐽 𝑙 𝑗 ), the meets approximate the security of relation
size, we explain them later. (T-Proj) is also straightforward except for another label bumping by
(⊓𝑖∈𝐼 𝑙𝑖 ). Finally, (T-Agg) captures the implicit dependency of aggVal on key by propagating 𝑙 𝑗 and
ensures aggregation on 𝑓𝑗 is feasible by requiring values of type 𝑝𝑠 𝑗

𝑗
to be equality-comparable,
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(Ext-T-Bracket)

𝜌 ≀ Γ ⊢𝑑 𝑒1 : (𝑝𝑠 , 𝑙) 𝜌 ≀ Γ ⊢𝑑 𝑒2 : (𝑝𝑠 , 𝑙) (𝑑0, 𝑠) ∉ S(𝑙)
𝜌 ≀ Γ ⊩𝑑/𝑑0 ⟨𝑒1 | 𝑒2⟩ : (𝑝𝑠 , 𝑙)

(Ext-T-Bracket-Enc)

𝜌 ≀ Γ ⊢𝑑 𝑒1 : (𝑝𝑠 , 𝑙) 𝜌 ≀ Γ ⊢𝑑 𝑒2 : (𝑝𝑠 , 𝑙) (𝑑0,∅) ∉ S(𝑙)
𝜌 ≀ Γ ⊩𝑑/𝑑0 ⟨𝑒1 | 𝑒2⟩ : (𝑝𝑠 , 𝑙)

(Ext-T-Bracket-Tbl)

𝜌 ≀ Γ ⊢𝑑 𝑒1 : 𝑇 {𝑓 : (𝑝𝑠 , 𝑙)} 𝜌 ≀ Γ ⊢𝑑 𝑒2 : 𝑇 {𝑓 : (𝑝𝑠 , 𝑙)} (𝑑0,∅) ∉ S(⊓𝑖𝑙𝑖 )
𝜌 ≀ Γ ⊩𝑑/𝑑0 ⟨𝑒1 | 𝑒2⟩ : 𝑇 {𝑓 : (𝑝𝑠 , 𝑙)}

Fig. 11. Main typing rules for “bracket” expressions ⟨𝑒1 | 𝑒2⟩ of the extended language.

which usually would mean that if 𝑠 ≠ ∅, then 𝑠 is deterministic. Both filter and agg exhibit implicit

information flow to the result, correspondingly, from predicate’s inputs and values of aggregated
column. Such information flows are captured in (T-Filter) and (T-Agg) by appropriately bumping
up security labels in the type of the result. The last two primitives replace the typical control-flow
constructs based on conditional branching (e.g., "if-then-else" and "switch"), which lets us omit the
standard program-counter [Hirsch and Cecchetti 2021; Liu et al. 2009; Zheng et al. 2003] approach
of tracking the current control branch’s label in typing judgments for capturing implicit flows.
It remains to explain the bumping of a security label 𝑙 of the ouput table’s column by (⊓𝑖∈𝐼 𝑙𝑖 )

in rules (T-Cross) and (T-Proj), where 𝑇 {𝑓𝑖 : (𝑝𝑠𝑖 , 𝑙𝑖 )}𝑖∈𝐼 is the type of an input table. Bumping is
required, because labels capture not only the security of the corresponding column’s values, but
also of the size of that column, and the latter can be lost without bumping. Even though, we do not
protect against leaks through result size, agg turns intermediate sizes into primitive values, and leaks
in primitive values we do protect against. E.g., consider expressions 𝑒1 = proj(𝑒𝑡 , _(𝑥). {𝑓 : 0})
and 𝑒2 = agg(𝑒1, 𝑓 , 0, _(𝑥,𝑦). 1 + 𝑦), type annotations omitted. Without bumping inside proj, one
would have 𝑒1 : 𝑇 {𝑓 : (Int,⊥)} and 𝑒2 : 𝑇 {key : (Int,⊥), aggVal : (Int,⊥)}. If 𝑒𝑡 ’s size depended
on confidential inputs and 𝑒2 were the final result, the value of aggVal would constitute a leak. To
protect against such leaks, our type system maintains that the meet of labels of all table’s columns
is at least as secure as the size of the table; hence, the bumping by (⊓𝑖∈𝐼 𝑙𝑖 ). We did consider having
a separate label for the table size, but decided not to further complicate the structure of types.
4.3 Soundness

The following soundness theorem captures end-to-end confidentiality in the execution of com-
putations expressed in Hydra’s programming language:

Theorem 1 (Soundness). If there exists non-function ^, s.t., 𝜌 ⊢𝑑 𝑒 : ^ w.r.t. S then S-NI(𝑒)𝜌,𝑑 .

A simple special case is when 𝑑 alone is sufficient for level-𝑙 confidentiality requirements,
(𝑑,∅) ∈ S(𝑙); we only need 𝑙-inputs to be confidential to adversaries who cannot observe final
result inside 𝑑 . Naturally, ∼𝑑,𝑙 holds for any values of the same type, and from the subject reduction
of Hydra language we get:

Lemma 1 (Inaccessible soundness). If (𝑑,∅) ∈ S(𝑙) and there exists non-function^ , s.t., 𝜌 ⊢𝑑 𝑒 : ^
w.r.t. S then 𝑒 has level-𝑙 S-noninterference, i.e., S-NI(𝑒)𝜌,𝑑,𝑙 .

Having degenerate cases handled by Lem. 1, the general structure of the proof for the remaining
case, (𝑑,∅) ∉ S(𝑙) is styled after Pottier and Simonet [2002]. First, we extend the language to
support two separate branches of execution by adding “bracket” terms ⟨𝑒 | 𝑒⟩ and ⟨𝑣 | 𝑣⟩ to the syntax
of expressions e and values v, respectively; no nesting allowed. The projections ⌊e⌋𝑖 , 𝑖 ∈ {1, 2},
back to the original language are defined in a straightforward manner.
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We extend the type system as shown in Fig. 11 to handle bracket expressions, denoting the
new typing judgement with ⊩𝑑/𝑑0 and abbreviating ⊩𝑑/𝑑 as ⊩𝑑 . Domain 𝑑0 in ⊩𝑑/𝑑0 denotes the
final domain of the computation, where the final value is observed by an attacker, and also where
branches were initially typed (cf. Th. 1). As we shortly state in Lem. 4, typeable bracket values in
the extended language have indistinguishable (related by ∼𝑑,𝑙 ) branches. (Ext-T-Bracket) ensures
that encrypted terms present as branches of a bracket in 𝑑 would not propagate to the final result
in 𝑑0. The last two rules reflect the current S-NI subcase, where 𝑑0 is insufficient for 𝑙 , (𝑑,∅) ∉ S(𝑙),
and an adversary who is able to observe values inside 𝑑 may still not be allowed to access 𝑙 . (Ext-
T-Bracket-Enc) allows arbitrary encrypted terms present as branches of a bracket as underlying
plaintext cannot propagate to 𝑑0. (Ext-T-Bracket-Tbl) is a version of (Ext-T-Bracket-Enc) for
branches containing relations of possibly different sizes. In principle, it would be sufficient for
(Ext-T-Bracket-Tbl) to have premise ∀𝑖 .(𝑑0,∅) ∉ S(𝑙𝑖 ) instead of stricter (𝑑0,∅) ∉ S(⊓𝑖𝑙𝑖 ), if
relating well-typed results with (EquivTblAll

out
) was the only goal. The stricter premise is due

to subject reduction: (Ev OpQuery) cases involving (Ext-T-Bracket-Tbl)-typed tables rely on ⊓𝑖𝑙𝑖
overapproximating security of table sizes (see the discussion on (T-Cross) and (T-Proj) in §4.2).
Then, we define binary encoding taking two non-functional values 𝑣1 and 𝑣2 from the original

language and producing a single value 𝑣1 ★ 𝑣2 from the extended language. If the domain 𝑑0 is
observable and initial expressions were typeable and only differing in 𝑙 , then the encoding is
also typeable in the extended language in any domain where the corresponding type is allowed
assuming the final domain 𝑑0. Formally, we introduce a judgement ⊩/𝑑0 𝑣 : ^ which holds iff for
every 𝑑 , s.t. ^ ⊑ 𝑑 , we have ∅ ≀ ∅ ⊩𝑑/𝑑0 𝑣 : ^; we abbreviate the latter as simply ⊩𝑑/𝑑0 𝑣 : ^.
Lemma 2 (Encoding is correct). If (𝑑0,∅) ∉ S(𝑙) and for Ω1 and Ω2 satisfying 𝜌 we have

Ω1 ∼𝑙𝜌 Ω2 then ⊩/𝑑0 Ω1 ★ Ω2 : 𝜌 .
As the derivation rules for ⊩𝑑 are a superset of those for ⊢𝑑 , we can type the query 𝑒 itself using

the typing rules of the extended language, i.e., 𝜌 ⊢𝑑 𝑒 : ^ implies 𝜌 ⊩𝑑 𝑒 : ^. There is a small twist,
when addressing the inputs labelled with 𝑙 , we relax S to S/𝑙 by treating as public all confidentiality
levels that do not protect against all the adversaries that 𝑙 protects from.

Definition 6 (S/𝑙 ). ∀𝑙 ′ . S/𝑙 (𝑙 ′) = S(𝑙 ′) if S(𝑙 ′) ⊆ S(𝑙) and S/𝑙 (𝑙 ′) = S(⊥) = D × S∅ otherwise.

Lemma 3. If 𝜌 ⊢𝑑 𝑒 : ^ w.r.t. S then 𝜌 ⊢𝑑 𝑒 : ^ w.r.t. S/𝑙
.

The crucial next step is to show that the extended type is preserved by computation.
Theorem 2 (Subject Reduction). Let ⊩/𝑑 
 : 𝜌 , 𝜌 ≀ Γ ⊩𝑑 e : ^ and e =⇒




e′ then 𝜌 ≀ Γ ⊩𝑑 e′ : ^.

The final step is to show that projections of the well-typed values are related.
Lemma 4 (Projections are related). For non-function v, if there exists ^ , s.t. 𝜌 ⊩𝑑 v : ^ w.r.t. S/𝑙

,

then ⌊v⌋1 ∼𝑑,𝑙 ⌊v⌋2.
Th. 1 then follows from some technical correspondence properties between ⇒ and→.

4.4 Equivalence of FullQuery and SimpleQuery

For the purpose of Th. 3, we coarsely extend transformation 𝜏 to a table store using encrValwhich
takes an existing table store Ω and transformed table environment 𝜌 ′ to produce a transformed
table store Ω′ = encrVal(Ω, 𝜌 ′).

Theorem 3 (Transformation correctness). For query transformation 𝜏⟦·, ·⟧, schemata 𝜌 , and

expression 𝑒 , let (𝜌 ′, 𝑒′) = 𝜏⟦𝜌, 𝑒⟧. If 𝜌 ′ ⊢𝑑 𝑒′ : ^ for some domain 𝑑 and type ^, and also 𝑒 −→
Ω

∗ 𝑣 for

some table store Ω satisfying 𝜌 , then for any Ω′ = encrVal(Ω, 𝜌 ′), there exists 𝑣 ′, s.t., 𝑒′ −−→
Ω′

∗ 𝑣 ′ and

decrVal(𝑣 ′) = 𝑣 .
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The core steps of the proof of Th. 3 involve showing under some assumptions on encryption
and PHE being well-behaved that: (1) 𝑣 { 𝑒′ implies either 𝑒′ is a value or can make progress;
(2) if 𝑒1 { 𝑒′ and 𝑒1 −→

Ω
𝑒2 then 𝑒′ can make progress and remain a transformation of either 𝑒1 or

𝑒2; (3) evaluation sequence 𝑒′1 −−→Ω′
𝑒′2 −−→Ω′

. . . cannot remain equivalent to the same 𝑒 indefinitely.
(4) 𝑣 { 𝑣 ′ implies decrVal(𝑣 ′) = 𝑣 . A small induction indirection is used to deal with big-step
premises used in the definition of eval\ (Ω, \, . . .).
5 IMPLEMENTATION

We present details of implemented Hydra prototype which extends Apache Spark’s SQL library.
5.1 Spark Extension

Spark SQL includes the Dataframe API, and the Catalyst extensible query optimizer which offers
a general tree manipulation library. We leverage Spark’s query analyzer, optimizer, and execution
planner introducing:

• encrypted data sources in the analysis phase (3.2 kLoC Scala),
• logical optimization rules applied during the analysis phase (3.4 kLoC Scala),
• physical optimization rules applied during the planning phase (6.2 kLoC Scala and 100 LoC
Java), and

• a code generation step (29 kLoC C++, 2.5 kLoC C, 568 LoC Scala).
Security mechanisms necessary to execute the final Java bytecode are available on the executors:
code for PHE computations generated from our custom Catalyst tree expressions is executed in
the cloud while appropriate instrumentation is injected via Java native interface (JNI) for SGX
operations to be invoked in enclaves. Finally, decryption and any necessary post-computation
happens on the trusted client side before results are returned.
5.2 Rule-Based Transformation

Following the approach of Catalyst’s tree manipulation, Hydra transforms logical plans through
rules and strategies. A rule is a set of “match-replace” transformations applied during analysis phase,
while a strategy is a procedure transforming a logical plan to a physical plan. As a first step, the
query expressed using the Dataframe API is transformed byHydra to an internal tree representation
called a logical plan. Then, Hydra’s logical optimization rules are applied to introduce custom
security-aware expressions, provide security metadata for every query operator, and encrypt
constants. A rule performing static type checking as prescribed by Fig. 10 is then applied to verify
the validity of security constraints induced by the combination of security mechanisms. Finally,
in the physical planning phase, a strategy is used to map operators to the appropriate security
mechanisms, and optionally client-side computation. Each strategy takes into account the output
of the heuristic (see §5.3) and security annotations.
5.3 Query Transformation Heuristics

The transformer (see Fig. 3) uses a heuristic to emit a query with security annotations following
our full core programming language. Currently the Hydra prototype implements three heuristics:
(1)HydraPHE for “PHE only” mode of execution, using a similar approach to assign PHE schemes to
relations’ columns as Savvides et al. [2017]; (2) HydraSGX for “SGX only” mode of execution, where
all columns are encrypted with AES-GCM analogously to Zheng et al. [2017]; and (3)HydraHYBRID
for combining PHE and SGX. HydraHYBRID is guided by empirical measurements of execution
times across different security mechanisms. The measurements show that SGX incurs serialization
and JNI overheads, and, in PHE, computation is directly on ciphertext while data entering/exiting
SGX has to be decrypted/encrypted, favoring PHE sometimes. In general, within the confines of
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the security policy, HydraHYBRID strives to start a query by using PHE on the untrusted cloud
until either hitting a limit of PHE or reaching operations that are faster in SGX. The rest of the
query proceeds inside SGX. In the future, we plan to enrich our heuristics by considering e.g., input
data size, order of operations in the query, cost of data serialization.

The three implemented heuristics produce a well-typed result only if both CLNT and SGX domains
constitute valid escape hatches (see § 2.2.4), i.e. allow plaintext of any security label according
to a security policy. While, for increasing technology readiness level, it would be better to have
transformation always produce a well-typed query if one exists, we consider it for future work.
5.4 PHE and SGX Operations

We implement PHE schemes in Scala by creating custom Catalyst expressions for homomorphic
operations including aggregations, arithmetic calculations, comparisons, conditions, and string
matching, thus avoiding using user-defined functions (UDFs) which have increased overhead and are
opaque to Catalyst optimizations. For SGX operations we implement a shared library in C++ that
makes ecalls into the enclave while exposing the operations via JNI. The library is then packed
into Hydra’s Java archive (JAR).
5.5 Client-Side Computation

In general, to support client-side computation, a Spark application needs to be broken down
into several sub-applications so that the client-side part can be placed in-between. Our current
implementation can only produce a single Spark application. Hence, Hydra at the present only
supports client-side computation either at the beginning (pre-computation) or at the end (post-
computation) of a query. In either case, the relevant data (input columns or intermediate results) is
first materialized at the client-side as Scala arrays and decrypted. After pre-computation, the results
are appropriately encrypted based on requirements of subsequent computations. Post-computation
is performed over plaintext just before the final results are returned to the analyst.
6 EVALUATION

In this section we evaluate the performance of Hydra, addressing three research questions:
RQ1: How does Hydra compare to state-of-the-art systems supporting only a single mechanism?
RQ2: How fast is hybrid execution combining PHE and SGX vs single-mechanism execution?
RQ3: Howmuch effort is saved byHydra’s automated approach compared to explicit programming

with security constraints?
6.1 Evaluation Setup

We used an Amazon AWS cluster for evaluation. All reported times in the experiments are
averages of 5 executions, and are reported along with error bars.
6.1.1 Comparisons. We use Cuttlefish [Savvides et al. 2017] and Opaque [Zheng et al. 2017]
respectively, both built on Apache Spark like Hydra, for comparison.
Cuttlefish introduces secure data types (SDTs) which allow programmers to capture proper-

ties about the structure and constraints of data, which in turn enable a set of compilation
techniques that generate more optimized queries. Specifically, we use Cuttlefish-CS which
supports client-side computation/completion for PHE computations for a comparison with
HydraPHE. We omit a comparison with Cuttlefish-TH (i.e., Cuttlefish on SGX) since its SGX
functionality is very restricted (only re-encryption). Instead, we compare HydraSGX against
a more expressive system that supports full-blown relational operators in SGX — Opaque.

Opaque uses SGX for confidentiality and in addition prevents information leakage from access
patterns by introducing a set of oblivious operations using oblivious RAM (ORAM) [Goldreich
1987]. For fair comparison with Hydra (i.e., HydraSGX), ORAM in Opaque was disabled.
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Fig. 12. End-to-end execution times (logarithmic scale) of Hydra, Cuttlefish, and Opaque. Spark plaintext

denotes queries run on unencrypted data on vanilla Spark. HydraPHE and CuttlefishPHE use PHE only with

client-side completion. HydraSGX and OpaqueSGX use SGX only. HydraHYBRID combines PHE and SGX.

All reported times are averages of five executions. Error bars are reported but hard to discern due to the very

stable performance and logarithmic scale.

6.1.2 TPC-H Benchmark. We use the popular TPC-H benchmark [TPC 1988] for our evaluation as
it is a widely used standard benchmark, also adopted in industry, representative of complex data
analytics queries giving answers to critical business questions. In particular, Cuttlefish and Opaque
SQL [UC Berkley RISE Lab 2021] have been evaluated using this benchmark, like many other
systems (e.g., [Le Quoc et al. 2019; Savvides et al. 2020; Tu et al. 2013]). TPC-H involves 22 queries
over 8 tables with a total of 61 columns, holding information of different sensitivities and entropy
levels. For fairness of comparison we use the three point lattice of Fig. 2 which corresponds to what
is built in throughout Cuttlefish (and immutable), and similarly a policy as in Tbl. 1, ensuring that
columns are assigned same schemes (a) as in Cuttlefish for HydraPHE, and (b) as in Opaque for
HydraSGX; (c) HydraHYBRID uses a combination of (a) and (b).
6.1.3 Infrastructure. We use an Amazon AWS cluster comprising 10 r5.4xlarge instances as the
untrusted cloud for all experiments. Each instance features an Intel Xeon Platinum 8000 series
Cascade Lake CPU with 16 vCPUs and 128GiB of memory, running Ubuntu 18.04 LTS. Along the
lines of distributed computations carried out in Zheng et al. [2017], we use Intel SGX-enabled
machines in Amazon AWS running Linux SGX SDK version 2.7.101 for all SGX-related computations.
For the client-side node we use a single c4.8x large AWS instance featuring an Intel Xeon E5-2666
v3 Haswell CPU with 36 vCPUs and 60GiB of memory, similarly to the evaluation of Cuttlefish. We
use the default AWS network to connect client-side and untrusted cloud via a high speed network
connection providing bandwidth up to 10Gbit/s. To ensure geographical separation, the client-side
node (resp. untrusted cloud) was deployed in the availability zone us-east-1b (resp. us-east-1a)
of Amazon’s North Virginia datacenter. We stored data for evaluation of all systems on AWS S3.
We consider the client-side node to be trusted and hence decryption keys are available on this
node. The client-side node is used for any client-side computation needed by queries as well as for
decrypting the final results before returning them to the data analyst. Decryption keys are passed
to the node enclaves via a secure channel after the enclaves are initialized and remotely attested.
6.1.4 Encryption and Attestation. We assume that input data is encrypted once during system setup
and made available to the untrusted cloud via AWS S3 and hence we do not include encryption
latency in our evaluations. For AES-GCM, AES-ECB, search on encrypted data (SWP), and OPE we
use 128-bit long keys, and for the asymmetric Paillier and ElGamal 1024-bit long keys. Paillier and
ElGamal have a ciphertext expansion factor of 2, leading to 2048-bit ciphertexts [Savvides et al.
2017]. Similarly, SGX enclave attestation and setting up decryption keys happens once at the start
of the cloud service and therefore our evaluation does not include these.
6.2 End-To-End Latency (RQ1 and RQ2)

To compare Hydra’s performance to state-of-the-art systems and evaluate its different heuristics,
we show in Fig. 12 the end-to-end latency of queries on TPC-H (from the time the queries are
submitted until the final, decrypted results are returned to the data analyst). Note that the figure
includes error bars, which are however hard to discern due to stable performance and a log scale.
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6.2.1 Hydra vs Cuttlefish and Opaque (RQ1). Hydra using the “PHE only” heuristic (HydraPHE)
is on average 1.6× faster than Cuttlefish. HydraPHE is faster than Cuttlefish on all queries except
Q09, Q14, Q17, Q18, and with negligible difference on queries Q04, Q05, Q07, Q08, Q12, and Q21.
We attribute Hydra’s performance advantage to design choices such as using custom Catalyst
tree expressions over UDFs. Cuttlefish’s better performance in Q09, Q14, Q17, and Q18 could be
due to Spark’s built-in optimization outperforming our optimizations. The “SGX only” heuristic
(HydraSGX) is on an average 11.3× faster than Opaque. HydraSGX is faster than Opaque on all
queries. Hydra’s use of Intel SGX SDK [INTEL 2016] instead of Opaque’s use of Open Enclave
SDK [SDK 2016] along with Hydra using a custom Spark serialization for data going in and out of
SGX contribute to HydraSGX’s better performance over Opaque.

The primary goal of this comparison is not to show that Hydra is faster than existing systems,
but to assert that its generic nature does not introduce an innate penalty over single-mechanism
systems, which the results clearly support. Thus we do not dwell on improvements of Hydra’s
hybrid heuristic (HydraHYBRID) over existing single-mechanism systems despite clear trends (on
average 2.7× and 17.9× faster than Cuttlefish and Opaque respectively), but proceed to comparing
it to its own single-mechanism heuristics, demonstrating the benefits of combining mechanisms.
6.2.2 Comparison of Heuristics (RQ2). Hydra’s hybrid execution (HydraHYBRID) is on an average
1.7× and 1.6× faster than HydraPHE and HydraSGX respectively. HydraHYBRID is faster than
HydraPHE for all queries except Q22 where it is slower, and Q05 and Q13 where it is performs very
closely to HydraPHE. HydraHYBRID is faster than HydraSGX for all queries except Q22 where it
performs closely to HydraSGX.
Our evaluation demonstrates that a hybrid approach can not only help overcome limitations

in deployment or trust of systems, but also improve performance compared to the use of a single
security mechanism.
6.3 Effort (RQ3)

Assessing developer effort is usually far from trivial. To gauge the difficulty of manually identify-
ing and implementing an efficient execution of a query subject to confidentiality constraints using
different mechanisms, we show in Fig. 13 a breakdown of security mechanisms (PHE, SGX, none/-
plaintext) of operators performed by the respective TPC-H queries in HydraHYBRID. Assignment
of security mechanisms to operators in 16 of 22 queries ends up being mixed, while the remaining
6 queries use only PHE (with post-computation). Considering the large number of operators and of
possible combinations even with “only” three mechanisms, we believe the analysis conveys how
hard it would be for a programmer to choose and correctly implement an efficient combination.
7 RELATEDWORK

Many seminal works use (a) client-side computation (cloud for storage only, e.g., [Feldman et al.
2010; Li et al. 2004; Mahajan et al. 2011]), (b) PHE (e.g., [Dong et al. 2016, 2018; Papadimitriou et al.
2016; Popa et al. 2012; Savvides et al. 2020, 2017; Stephen et al. 2014b; Tetali et al. 2013; Tople et al.
2013; Tu et al. 2013]), or (c) trusted hardware (chiefly SGX, e.g., [Arnautov et al. 2016; Baumann et al.
2014; Le Quoc et al. 2019; Lind et al. 2017; Schuster et al. 2015; Shen et al. 2020; Shinde et al. 2017;
Silva et al. 2017; Sinha et al. 2015; Tian et al. 2017; Tsai et al. 2017; Zheng et al. 2017]) individually for
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confidentiality-preserving computation. Another complementary line of research uses differential
privacy (DP) (e.g., [Dwork and Roth 2014; Johnson et al. 2018; Roy et al. 2021]) to quantitatively

define data privacy and provide probabilistic guarantees, in contrast to our deterministic guarantees
(NI). §6.1.1 (and §6.2.1) already positioned Hydra with respect to Cuttlefish [Savvides et al. 2017]
and Opaque [Zheng et al. 2017], neither of which provides end-to-end formal guarantees.

7.1 Hybrid Approaches

While most works on (b) make combined use of different cryptosystems, and some limited use
of (a), to the best of our knowledge, Hydra is first to allow generic combination of mechanisms.
Drucker and Gueron [2017] combine the Paillier scheme with SGX to decouple confidentiality

from integrity. The user first encrypts data with Paillier then with a shared key agreed securely
with SGX. The latter is unknown to the untrusted application whose sole purpose is to launch the
enclave and connect it to the server’s OS.Hydramakes more generic use of PHE. Cipherbase [Arasu
et al. 2013] provides (an FPGA-based implementation of) trusted hardware that can be used to
run a commercial SQL DB system without sacrificing data confidentiality. Given a user-defined
security policy, Cipherbase generates a plan to partition query execution between untrusted
and trusted machines. This policy allows users to specify data columns to remain in plaintext or
encrypted using PHE, in which case computation happens on the untrusted machine. UnlikeHydra,
Cipherbase can not deal with data requiring different levels of security or with hypersensitive data
unprocessable using PHE or SGX. Orchard [Roth et al. 2020] supports privacy-preserving analytics
with DP guarantees against an HbC adversary which is occasionally Byzantine [Lamport et al.
1982]. Orchard transforms queries expressed in Fuzz to use a collect-and-test (CaT) primitive [Roth
et al. 2019]. Fuzz’s linear type system ensures DP guarantees for queries of a certain type. Orchard
relies on additive HE (Ring-LWE) [Lyubashevsky et al. 2013] thus limiting query expressivity. Our
hybrid model uses a range of PHE schemes while transforming queries for more expressiveness.
Unlike Orchard’s single untrusted aggregator, Hydra is resilient against many untrusted cloud
servers and hence supports distribution beyond only small computations on devices of remote
users. Orchard’s ratification of DP is sensitive to the underlying functional query language while
Hydra’s confidentiality is based on strong formal guarantees from NI built upon lambda calculus.

7.2 Languages

Ironclad [Hawblitzel et al. 2014] supports secure applications — written in the high-level Dafny
language — with a focus on privacy and integrity via full-system verification to demonstrate remote

equivalence (RE). RE involves proving both functional correctness and secure information flow.
The latter is established using SymDiff [Lahiri et al. 2012] to show NI with declassification for
inputs and outputs of the application. While Ironclad strives for stronger guarantees than Hydra
including integrity, it requires trusted hardware. Gollamudi and Chong [2016] propose IMPE, a
calculus for expressing programs that leverage SGX-like enclaves. IMPE includes a type system for
enforcing confidentiality in the presence of passive or active attackers by automatically partitioning
programs to execute sensitive code in enclaves. IMPE defines confidentiality restrictions in terms
of three fixed security levels L, H and ⊤ similar to the lattice used for TPC-H (cf. Fig. 2). While
Hydra focuses more on data processing, it supports custom security labels, and an extensible set of
software and hardware mechanisms in a formal system based on lambda and relation abstractions.
DFLATE [Gollamudi et al. 2019], a programmingmodel based on flow-limited authorization calculus,
enforces strong confidentiality and weak integrity NI guarantees for distributed applications with
passive attackers. DFLATE captures guarantees and limitations of underlying trusted execution

environments (TEEs) in high-level abstractions. Unlike Hydra it does not support software-based
cryptosystems. Oak et al. [2021] develop a security-typed language based on Java information
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flow [Pullicino 2014] to enforce confidentiality and integrity against realistic attackers via robust
declassification [Myers et al. 2004] but only for applications specifically using SGX. JSLINQ [Balliu
et al. 2016] and SeLINQ [Schoepe et al. 2014] develop formal frameworks based on standard
imperative languages to reason about end-to-end confidentiality guarantees of multi-tier web and
mobile applications. While drawing inspiration from Pottier and Simonet [2002]’s original work
just like our use of NI, both works use fixed security lattices and no security mechanisms. Parker
et al. [2019] present LWeb, a Haskell framework (extending the Haskell dynamic information
flow control library LIO) for enforcing information flow control policies based on a fixed security
lattice for multi-tier web applications. The core of LWeb is formalized in lambda calculus and the
proof of NI is shown in Liquid Haskell. Viaduct [Acay et al. 2021] enables programmers to develop
programs employing a set of cryptographic mechanisms to ensure confidentiality and integrity with
multiple data owners. Viaduct claims but does not formally prove security guarantees of a more
general form of NI — non-malleable information flow control [Cecchetti et al. 2017] — a property
combining robust declassification and transparent endorsement.Hydra considers only a single data
owner and focuses on confidentiality, but supports both software- and hardware-based security
mechanisms. Komodo [Ferraiuolo et al. 2017] achieves enclave management in software thus
decoupling from hardware requirements. It provides formally verified implementation of software
enclaves and uses NI to prove confidentiality and integrity guarantees for them. Komodo does not
aim for combining mechanisms. Nickel [Sigurbjarnarson et al. 2018] is a framework for automated
verification of intransitive NI, to eliminate covert channels inherent in the OS-application interface.
Nickel uses the Z3 SMT solver to prove the NI policy; we use a rigorous manual approach to
prove NI formulated from its classical version. For automated verification of NI using Z3, Nickel
introduces new proof strategies which increase the trusted computing base (TCB). Nickel invokes
Z3 to verify noninterference by checking unwinding and refinement conditions. The TCB includes
the information flow policy, the checker of unwinding conditions from Nickel, Z3, the checker of
refinement conditions from Nickel, and the unverified initialization and glue code. Hydra’s TCB is
constant and limited to SGX and implementations of PHE schemes.

8 CONCLUSIONS

We presented an approach to using different security mechanisms (e.g., PHE, SGX) to preserve
confidentiality in data processing using shared third-party resources. Our approach hinges on a core
programming language for confidentiality-preserving computation, and a type system guaranteeing
security following a novel generalized form of the theory of NI, namely, S-NI. Data analysts can
write queries using a subset of our language without security annotations, transformed without
hampering security. We have shown that our approach is competitive with existing systems with
hardwired single mechanisms, and can achieve significant speedups over these when combining
mechanisms. Our work opens many avenues for future research, several of which we are currently
already investigating. Besides the mechanization of S-NI proofs, these include the integration
with differential privacy, the inclusion of further properties (e.g., integrity), support for additional
mechanisms (e.g., symmetric PHE cryptosystems [Papadimitriou et al. 2016; Savvides et al. 2020])
and for multiple data owners, and the design of broader and more refined heuristics.
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Appendix

A Empirical measurements

We designedHydraHYBRID based on an empirical assessment of individual operations’ execution
times when run using different security mechanisms (see Tbl. 4). For the assessment we used Spark
in SGX-enabled single-node setup and a synthetic relation with 1 million rows, encrypted as follows:
for plaintext execution data is unencrypted, for PHE it is encrypted under a PHE scheme supporting
the specific operation (see “PHE scheme” column), and for SGX we encrypt using AES-GCM.

We observe that PHE is faster than SGX for some operations and slower for others. In particular,
for operations using AES-ECB [Daemen and Rijmen 2002], OPE [Boldyreva et al. 2009], and
SWP [Song et al. 2000], PHE performs better than SGX. PHE overhead of these operations is
relatively low, as the difference with plaintext computation is mostly due to a slightly larger size
of operands. In contrast, SGX’s overheads due to crossing the enclave boundary are substantial.
The situation is the opposite for operations using Paillier and ElGamal: ciphertext size increases
substantially and costly multi-precision arithmetic operations are required.
Table 4. Execution times of individual operations using plaintext, PHE, and SGX. “PHE scheme” denotes the

scheme data is encrypted under to enable the operation in PHE.

Operation PHE scheme Plaintext PHE SGX

filter (_ = _) AES-ECB [Daemen and Rijmen 2002] 5.4 s 5.8 s 8.0 s
filter range OPE [Boldyreva et al. 2009] 5.7 s 8.7 s 10.7 s
filter match SWP [Song et al. 2000] 5.4 s 8.8 s 9.4 s
groupby AES-ECB [Daemen and Rijmen 2002] 6.2 s 7.2 s 57.7 s
sort OPE [Boldyreva et al. 2009] 7.2 s 13.0 s 41.0 s
select (_ + _) Paillier [Paillier 1999] 5.2 s 19.4 s 7.8 s
select (_ × _) ElGamal [ElGamal 1985] 5.1 s 22.4 s 7.8 s

B Complex Lattice

HighCoETEE

HighCoE HighTEE

LowCoE

Public

(𝑙 ≼ 𝑙 ′)

Do
m
ain

D
Sc
he
m
e S
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l L

CLNT ∅ HighCoETEE

SGX Paillier, ElGamal HighCoETEE

SGX ∅ HighTEE

CLD Paillier, ElGamal HighCoE

CLD SWP, OPE, AES-ECB LowCoE

(a) Complex lattice and its security policy

Fig. 14. A complex lattice and a relation producing a security policy on the right. For brevity we elide some

triples of security policy inferrable from −𝑐 ◦ S : L → A being order- and minimum-preserving.

Fig. 14a gives a slightly more elaborate example that captures a more nuanced requirement of
data with L = {Public, LowCoE, HighTEE, HighCoE, HighCoETEE}. The suffix “CoE" in the label denotes
computation on encrypted data, thus LowCoE refers to deterministic PHE cryptosystems while
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HighCoE refers to probabilistic PHE cryptosystems. Computation on data with label HighTEE should
be carried out in a TEE (data is in the clear inside TEE), while HighCoETEE means computation
should happen on encrypted data within a TEE (data is encrypted inside TEE, as opposed to the case
HighTEE). On the one hand, there is definitely a cost to pay when processing encrypted data inside
SGX as opposed to the standard model where things are processed plaintext inside SGX. Security
requirements, on the other hand, may require such processing (e.g., in [Drucker and Gueron 2017]).
This flexibility is made available by our approach. Triples from the second row in Fig. 14a state
that data labeled HighCoETEE should be encrypted under Paillier or ElGamal even when residing
in SGX. Note, data labeled with the two triples HighCoE can also reside in SGX once encrypted under
Paillier or ElGamal.
C Some Omitted Definitions

C.1 Context in expression and encryption/decryption

Fig. 15 presents formal definition of C[𝑒], an expression that results from putting expression 𝑒
inside context C. Fig. 16 defines decrVal(𝑣) used in the statement of Th. 3.

C[𝑒] F



[𝑒]𝑑 if C = [•]𝑑
⊕(𝑣, 𝑒, 𝑒) if C = ⊕(𝑣, •, 𝑒)
\ (𝑣, 𝑒, 𝑒) if C = \ (𝑣, •, 𝑒)
encr(𝑒, 𝑠) if C = encr(•, 𝑠)
decr(𝑒) if C = decr(•)
𝑒 (𝑒) if C = •(𝑒)
𝑣 (𝑣, 𝑒, 𝑒) if C = 𝑣 (𝑣, •, 𝑒)
𝑒.𝑓 if C = •.𝑓
{𝑓 : 𝑣, 𝑓 : 𝑒, 𝑓 : 𝑒} if C = {𝑓 : 𝑣, 𝑓 : •, 𝑓 : 𝑒}

Fig. 15. Expression in an evaluation context

C.2 Primitives and Assumptions

C.2.1 Type-preservation assumptions The first set of basic type-preservation assumptions is pre-
sented in Fig. 18: (op-comp) for primitive operations ⊕, (encr-comp)—for encryption encr, and
(decr-comp)—for decryption decr.
C.2.2 Progress and correctness assumptions The second set of assumptions is in Fig. 19. Rules (op-
progress) and (encr-progress) ensure that PHE operations and encryption/decryption primitives,

decrVal(𝑣) F


𝑐∅ if 𝑣 = 𝑐∅
𝑐∅1 if 𝑣 = 𝑐𝑠 and 𝜑ev

decr (𝑐, 𝑠) = 𝑐
∅
1

{𝑓 : decrVal(𝑣)} if 𝑣 = {𝑓 : 𝑣}
𝑇 {𝑓 : decrVal(𝑣)} if 𝑣 = 𝑇 {𝑓 : 𝑣}

Fig. 16. Decryption of the final query’s result 𝑣 .

encrVal(𝑣, ^) F


𝑐∅ if 𝑣 = 𝑐∅ and ^ = 𝑝∅

𝑐𝑠1 if 𝑣 = 𝑐∅ and ^ = 𝑝𝑠 and 𝜑ev
encr (𝑐, 𝑠) = 𝑐1

{𝑓 : encrVal(𝑣, ^)} if 𝑣 = {𝑓 : 𝑣} and ^ = {𝑓 : ^}
𝑇 {𝑓 : encrVal(𝑣, ^)} if 𝑣 = 𝑇 {𝑓 : 𝑣} and ^ = 𝑇 {𝑓 : ^}

Fig. 17. Encryption of the query’s inputs, i.e., Ω
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(op-comp)

𝜑
ty
⊕ (⊕, 𝑝, 𝑠) = (𝑝, 𝑠)
∀𝑖 . 𝜑 ty

𝑐 (𝑐𝑖 , 𝑠𝑖 ) = 𝑝𝑖
𝜑
ty
𝑐 (𝜑ev (⊕, 𝑐, 𝑠)) = 𝑝

(encr-comp)

𝑠 ≠ ∅ 𝑝 ∈ 𝜑 ty
encr (𝑠)

𝜑
ty
𝑐 (𝑐,∅) = 𝑝

𝜑
ty
𝑐 (𝜑ev

encr (𝑐, 𝑠), 𝑠) = 𝑝

(decr-comp)

𝑠 ≠ ∅ 𝑝 ∈ 𝜑 ty
encr (𝑠)

𝜑
ty
𝑐 (𝑐, 𝑠) = 𝑝

𝜑
ty
𝑐 (𝜑ev

decr (𝑐, 𝑠),∅) = 𝑝

Fig. 18. Type preservation for primitive operations.

(encr-progress)

𝑝 ∈ 𝜑 ty
encr (𝑠)

𝜑
ty
𝑐 (𝑐,∅) = 𝑝

𝜑ev
encr (𝑐, 𝑠) ≠ ⊥

(op-progress)

𝜑
ty
⊕ (⊕, 𝑝, 𝑠) = (𝑝, 𝑠)
∀𝑖 . 𝜑 ty

𝑐 (𝑐𝑖 , 𝑠𝑖 ) = 𝑝𝑖
𝜑ev
⊕ (⊕, 𝑐, 𝑠) ≠ ⊥

(eq-correct)

𝜑
ty
⊕ (=, 𝑝, 𝑠, 𝑝, 𝑠) = (Bool,∅)
𝜑
ty
𝑐 (𝑐1, 𝑠) = 𝜑 ty

𝑐 (𝑐2, 𝑠) = 𝑝
𝜑ev
⊕ (=, 𝑐1, 𝑠, 𝑐2, 𝑠) = (true,∅) ⇔ 𝑐1 = 𝑐2

(decr-correct)

𝑐′ ∈ 𝜑ev
encr (𝑐, 𝑠)

𝜑ev
decr (𝑐

′, 𝑠) = 𝑐

(phe-correct)

𝜑ev
⊕ (⊕, 𝑐,∅) = (𝑐,∅) 𝜑ev

⊕ (⊕, 𝑐′, 𝑠) = (𝑐′, 𝑠) ∀𝑖 . 𝑐∅𝑖 = decrVal(𝑐′𝑖
𝑠𝑖 )

𝑐∅ = decrVal(𝑐′𝑠 )

Fig. 19. Progress and correctness assumptions for encryption primitives.

(PrimEv Filter)

∀𝑘 ∈ 𝐾.𝑣_ ({𝑓𝑖 : 𝑣𝑖,𝑘
𝑖∈𝐼 }) −→

Ω

∗ 𝑣𝑘 ∀𝑘 ∈ 𝐾.𝑣𝑘 ∈ {true, false} 𝐾true = {𝑘 ∈ 𝐾 : 𝑣𝑘 = true}

eval\ (Ω, filter,𝑇 {𝑓𝑖 : 𝑣𝑖,𝑘
𝑖∈𝐼 𝑘∈𝐾 }, 𝑣_) = 𝑇 {𝑓𝑖 : 𝑣𝑖,𝑘

𝑖∈𝐼 𝑘∈𝐾true

}

(PrimEv Proj) ∀𝑘 ∈ 𝐾.𝑣_ ({𝑓𝑖 : 𝑣𝑖,𝑘
𝑖∈𝐼 }) −→

Ω

∗ {𝑓𝑖 : 𝑣 ′𝑖,𝑘
𝑖∈ 𝐽 }

eval\ (Ω, proj,𝑇 {𝑓𝑖 : 𝑣𝑖,𝑘
𝑖∈𝐼 𝑘∈𝐾 }, 𝑣_) = 𝑇 {𝑓𝑖 : 𝑣 ′𝑖,𝑘

𝑖∈ 𝐽 𝑘∈𝐾 }

(PrimEv Join) 𝐼1 ∩ 𝐼2 = ∅

eval\ (Ω, cross,𝑇 {𝑓𝑖 : 𝑣𝑖,𝑘
𝑖∈𝐼1

𝑘∈𝐾1

},𝑇 {𝑓𝑖 : 𝑣𝑖,𝑘
𝑖∈𝐼2

𝑘∈𝐾2

}) = 𝑇 {𝑓𝑖 : 𝑣𝑖,𝑘1
𝑖∈𝐼1

, 𝑓𝑖 : 𝑣𝑖,𝑘2
𝑖∈𝐼2

𝑘1,𝑘2∈𝐾1×𝐾2

}

(PrimEv Agg)

{𝑘𝑐,1, . . . , 𝑘𝑐,𝑚𝑐
} = {𝑘 : 𝑣 𝑗,𝑘 = 𝑐} 𝑣 ′𝑐,0 = 𝑣0 𝑣_ ({𝑓𝑖 : 𝑣𝑖,𝑘𝑐,𝑠

𝑖 }, 𝑣 ′𝑐,𝑠−1) −→
Ω

∗ 𝑣 ′𝑐,𝑠

eval\ (Ω, agg,𝑇 {𝑓𝑖 : 𝑣𝑖,𝑘
𝑖
𝑘∈𝐾

}, 𝑓𝑗 , 𝑣0, 𝑣_) = 𝑇 {key : 𝑐, aggVal : 𝑣 ′𝑐,𝑚𝑐

𝑐∈{𝑣𝑗,𝑘 :𝑘∈𝐾 }}

Fig. 20. Query operator semantics.

respectively, have progress once the arguments’ primitive parts are as prescribed by 𝜑 ty
encr. Rule

(eq-correct) imposes special constraints on equality checking represented by symbol =, namely
the result is always boolean and reflects the equality of constants. Rules (decr-correct) and
(phe-correct) relate the results of such operations to the corresponding plaintexts in a natural way.
C.2.3 Semantics of relational operators Fig. 20 represents the semantics of all the operators. In
(PrimEv Filter), a table with |𝐼 | columns and |𝐾 | rows is filtered to return a table with |𝐼 | columns
and rows for which the predicate 𝑣_ evaluated to true. In (PrimEv Proj), the predicate 𝑣_ outputs a
subset of the fields sent as input. In (PrimEv Agg),𝐶 is the set of all keys to which rows of the input
table map to, 𝑣_ takes in all (one at a time) rows mapped to the same key 𝑐 and emits the aggregated
value for 𝑐 . Here, 𝑠 in 𝑣_ ranges over the indices of all rows that mapped to the same key 𝑐 .
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(Sub-Base) 𝑙 ≼ 𝑙 ′

(𝑝𝑠 , 𝑙) <: (𝑝𝑠 , 𝑙 ′)

(Sub-Fun) ^ <: ^′ ∀𝑖 . ^′𝑖 <: ^𝑖
^ →𝑑 ^ <: ^′ →𝑑 ^

′

(Sub-Tbl) ∀𝑖 . 𝑙𝑖 ≼ 𝑙 ′𝑖
𝑇 {𝑓 : (𝑝𝑠 , 𝑙)} <: 𝑇 {𝑓 : (𝑝𝑠 , 𝑙 ′)}

(Sub-Rec) ∀𝑖 . 𝑙𝑖 ≼ 𝑙 ′𝑖
{𝑓 : (𝑝𝑠 , 𝑙)} <: {𝑓 : (𝑝𝑠 , 𝑙 ′)}

Fig. 21. Subtyping on security types ^ <: ^′.

(T-Record)

𝜌 ≀ Γ ⊢𝑑 𝑒 : (𝑝𝑠 , 𝑙)
Γ ≀ 𝑑 ⊢{ 𝑓 :𝑒 } {𝑓 : (𝑝𝑠 , 𝑙)} :

(T-RecSelect)

Γ ≀ 𝑑 ⊢{ 𝑓 :𝑒 } {𝑓 : (𝑝𝑠 , 𝑙)} :

Γ ≀ 𝑑 ⊢𝑒.𝑓𝑖 (𝑝
𝑠𝑖
𝑖
, 𝑙𝑖 ) :

Fig. 22. Record-related typing judgements for Hydra.

C.2.4 Subtyping In Fig. 21 we formally define the subtyping rules w.r.t. partial order on L.
C.2.5 Remaining typing rules In Fig. 22 we present the remaining typing rules. (T-Record) deter-
mines a type for a record in essentially the same way as (T-Tbl), and (T-RecSelect) checks the field
select.
D Operational Properties of the Core Language

Fig. 18 present correspondence between 𝜑ev and 𝜑 ty functions abstracting, respectively, the
semantics and types, for built-in constructs (operators, encryption, decryption). Fig. 19 presents
assumptions ensuring encryption schemes and PHE operations behave as expected. Fig. 20 presents
big-step operational semantics for query operators. The first and the last set of properties are
crucial for the subject reduction to go through, while the second is needed to show that query
transformation preserves the query’s semantics.

Theorem 4 (Subject Reduction). If Ω satisfies 𝜌 , 𝜌 ≀ Γ ⊢𝑑 𝑒 : ^ and 𝑒 −→
Ω
𝑒′ then 𝜌 ≀ Γ ⊢𝑑 𝑒′ : ^.

Proof. Translates straightforwardly from the proof of Th. 8 and Lem. 25 using the following
observations: (1) every expression from the original language is a valid expression in the extended
language (2) bracket terms can only come from other bracket terms (3) those typing rules of the
extended language that do not involve brackets correspond directly to the typing rules of the
original language. □

E Transformation correctness

Here our goal is to show

Theorem 5 (Transformation correctness). For query transformation 𝜏⟦·, ·⟧, schemata 𝜌 , and

expression 𝑒 , let (𝜌 ′, 𝑒′) = 𝜏⟦𝜌, 𝑒⟧. If 𝜌 ′ ⊢𝑑 𝑒′ : ^ for some domain 𝑑 and type ^, and also 𝑒 −→
Ω

∗ 𝑣 for

some table store Ω satisfying 𝜌 , then for any Ω′ = encrVal(Ω, 𝜌 ′), there exists 𝑣 ′, s.t., 𝑒′ −−→
Ω′

∗ 𝑣 ′ and

decrVal(𝑣 ′) = 𝑣 .
Lemma 5 (Well-typedness preserved under context). For any 𝑒1, . . . , 𝑒𝑛 , if 𝜌 ≀ Γ ⊢𝑑 T [𝑒] : ^ ,

then there exist Γ1, . . . , Γ𝑛 , ^1, . . . , ^𝑛 , 𝑑1, . . . , 𝑑𝑛 , s.t., for all 𝑒
′
1, . . . , 𝑒

′
𝑛 , (∀𝑖 .𝜌 ≀ Γ𝑖 ⊢𝑑𝑖 𝑒′𝑖 : ^𝑖 ) ⇔ 𝜌 ≀ Γ ⊢𝑑

T [𝑒′] : ^
Proof. Straightforward case analysis over T . □

Lemma 6 (Transformation context to evaluation context). For any T , values 𝑣 ′1, . . . , 𝑣
′
𝑘−1,

and expressions 𝑒𝑘+1, . . . , 𝑒𝑛 there exists C, s.t. for all 𝑒 C[𝑒] = T [𝑣 ′1, . . . , 𝑣 ′𝑘−1, 𝑒, 𝑒𝑘+1, . . . , 𝑒𝑛].
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Proof. Straightforward case analysis over T . □

Lemma 7 (Evaluation context to transformation context). For any C, satisfying C ∉

{[•]𝑑 , encr(•, 𝑠), decr(•)}, there exists context T , s.t., values 𝑣1, . . . , 𝑣𝑘−1 and expression 𝑒𝑘+1, . . . , 𝑒𝑛 ,
s.t. for any 𝑒 C[𝑒] = T [𝑣1, . . . , 𝑣𝑘−1, 𝑒, 𝑒𝑘+1, . . . , 𝑒𝑛]

Proof. Straightforward case analysis over C. □

Lemma 8 (Value preserved under context). For any 𝑣𝑖 , . . . , 𝑣𝑛 , if T [𝑣] is a non-function value,

then for all 𝑣 ′1, . . . , 𝑣
′
𝑛 , (∀𝑖 . 𝑣 ′𝑖 is a value ) ⇔ T [𝑣 ′] is a value.

Proof. Straightforward case analysis over T [𝑣]. □

Lemma 9 (Transformed progress to value). For any 𝜌 {𝑆 𝜌
′
, 𝑣 { 𝑒′1, and Γ ≀ 𝜌 ′ ⊢𝑑 𝑒′1 : ^ , if 𝑣

is a value, then either 𝑒′1 is a value or there exists 𝑒
′
2, s.t., 𝑒

′
1 −→Ω 𝑒′2 and 𝑣 { 𝑒′2.

Proof. If 𝑣 = _[CLNT] (𝑥 : ^). 𝑒 , then there are two rules matching _[CLNT] (𝑥 : ^). 𝑒 { 𝑒′1, namely
(Tx Cxt) and (Tx Func). In all the cases 𝑒′1 is also a lambda expression, and, hence, a value. In the
rest of the proof we assume 𝑣 is a non-function value.
Induction on 𝑣 { 𝑒′1
• Case (Tx Refl), 𝑒1 = 𝑣 , hence, a value.
• Case (Tx Cxt), 𝑣 = T [𝑣], 𝑒′1 = T [𝑒], and 𝑣 { 𝑒 .
By Lem. 8, each 𝑣𝑖 is a value and by Lem. 5, there exist Γ1, . . . , Γ𝑛 , ^1, . . . , ^𝑛 , 𝑑1, . . . , 𝑑𝑛 , s.t.,
𝜌 ≀ Γ𝑖 ⊢𝑑𝑖 𝑒𝑖 : ^𝑖 for all 𝑖 , and we can apply induction hypothesis to 𝑣𝑖 { 𝑒𝑖 . There are two
cases:
– Each 𝑒𝑖 is a value, hence by Lem. 8 we can conclude that 𝑒′1 = T [𝑒] is a value.
– There exists some minimal 𝑘 and 𝑒′, s.t. 𝑒𝑘 −→

Ω
𝑒′ and 𝑣𝑘 { 𝑒𝑘 . Applying Lem. 6 to T [𝑣],

𝑒1, . . . , 𝑒𝑘−1 and 𝑒𝑘+1, . . . , 𝑒𝑛 we get that there exists C, s.t.
T [𝑒] = C[𝑒𝑘 ] (1a) C[𝑒′] = T [𝑒1, . . . , 𝑒𝑘−1, 𝑒′, 𝑒𝑘+1, . . . , 𝑒𝑛] (1b)

We set 𝑒′2 = C[𝑒′] and use (Ev Cxt) with (1a) to derive 𝑒′1 −→Ω 𝑒′2 and (Tx Cxt) with (1b) to
derive 𝑣 { 𝑒′2.

• Case (Tx Const), 𝑒′1 = 𝑐
𝑠 , hence a value, and we are done.

• Case (Tx Encr), 𝑒′1 = encr(𝑒′1, 𝑠) and 𝑣 { 𝑒′1. The only typing rule matching encr(𝑒′1, 𝑠) is
(T-Encr), inverting which we get:

𝜌 ≀ Γ ⊢𝑑 𝑒′1 : (𝑝∅, 𝑙) (2a) 𝜑 ty (encr) = 𝑝 → 𝑝𝑠 (2b)
Applying the induction hypothesis to (2a) we have two cases:
– Case 𝑒′1 is a value.
The only value shapematching (2a) is 𝑒′1 = 𝑐

∅ and the rule (T-Const), invertingwhichwe get
𝜑 ty (𝑐,∅) = 𝑝∅, combining which with (2b) and (encr-progress) gives 𝜑ev (encr, 𝑐, 𝑠) = 𝑐′
for some 𝑐′. The only rule matching 𝑣 { 𝑐∅ is (Tx Refl), hence 𝑣 = 𝑐∅. We set 𝑒′2 = 𝑐′𝑠

and use 𝜑ev (encr, 𝑐, 𝑠) = 𝑐′ with (Ev Enc) to derive 𝑒′1 −→Ω 𝑒′2, and with (Tx Const) to derive
𝑣 { 𝑒′2.

– Case 𝑒′1 −→Ω 𝑒′2 and 𝑣 { 𝑒′2 for some 𝑒′2. We set 𝑒′2 = encr(𝑒′2, 𝑠), and use (Ev Cxt) to derive
𝑒′1 −→Ω 𝑒′2 and (Tx Encr) to derive 𝑣 { 𝑒2.

• Case (Tx Decr), 𝑒′1 = decr(𝑒′1) and 𝑣 { 𝑒′1. The only typing rule matching decr(𝑒′1) is (T-Decr),
inverting which we get:

𝜌 ≀ Γ ⊢𝑑 𝑒′1 : (𝑝𝑠 , 𝑙) (3a) 𝜑 ty (decr) = (𝑝𝑠 ) → 𝑝 (3b)
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Applying the induction hypothesis to (3a) we have two cases:
– Case 𝑒′1 is a value.
The only value shape matching (3a) is 𝑒′1 = 𝑐

′𝑠 .
The only transformation rule matching 𝑣 { 𝑐′𝑠 is (Tx Const), inverting whichwe get 𝑣 = 𝑐∅
for some 𝑐 , 𝜑ev (encr, 𝑐, 𝑠) = 𝑐 and, combining with (58) and (3b), also 𝜑ev (decr, 𝑐, 𝑠) = 𝑐 . We
set 𝑒′2 = 𝑐

∅ and use (Tx Refl) to derive 𝑣 { 𝑒′2 and (Ev Decr) to derive 𝑒′1 −→Ω 𝑒′2.
– Case 𝑒′1 −→Ω 𝑒′2 for some 𝑒′2 We set 𝑒′2 = decr(𝑒′2), and use (Ev Cxt) to derive 𝑒′1 −→Ω 𝑒′2.

• Case (Tx Func) implies that 𝑣 is a function value, which has already been handled.
□

Lemma 10 (Transformed terminates). For any 𝑒 { 𝑒′1, 𝑒 { 𝑒′2, if 𝑒
′
1 −→

Ω
𝑒′2, then the total

number of encr and decr nodes in 𝑒′2 must be exactly one less than in 𝑒′1.

Proof. Induction on 𝑒′1 −→Ω 𝑒′2.

• Case (Ev Op), 𝑒′1 = ⊕(𝑐𝑠 ) and 𝑒′2 = 𝑐𝑠 . The only transformation rule matching 𝑒 { ⊕(𝑐𝑠 ) is
(Tx Cxt), hence 𝑒 = ⊕(𝑒), but then there is no transformation rule matching ⊕(𝑒) { 𝑐𝑠 .

• Case (Ev OpQuery), 𝑒′1 = \ (𝑣), 𝑒′2 = 𝑣 , and 𝜑ev (\, 𝑣) = 𝑣 . The only transformation rule
matching 𝑒 { \ (𝑐𝑠 ) is (Tx Cxt), hence 𝑒 = \ (𝑒). The only transformation rule matching
\ (𝑒) { 𝑣 is (Tx Cxt), but their right-hand sides are not values, while 𝑣 is.

• Case (Ev Tbl), 𝑒′1 = table(𝑛𝑎𝑚𝑒), 𝑒′2 = 𝑣 , and Ω(𝑛𝑎𝑚𝑒) = 𝑣 . The only transformation rule
matching 𝑒 { table(𝑛𝑎𝑚𝑒) is (Tx Refl), hence 𝑒 = table(𝑛𝑎𝑚𝑒). The only transformation
rule matching table(𝑛𝑎𝑚𝑒) { 𝑣 is (Tx Refl), but they right-hand side is not a value, while 𝑣
is.

• Case (Ev Apply), 𝑒′1 = _[𝑑] (𝑥 : ^′).𝑒′ (𝑣 ′), 𝑒′2 = [{𝑣 ′/𝑥}𝑒′]𝑑 . The only transformation rule
matching 𝑒 { _[𝑑] (𝑥 : ^′).𝑒′ (𝑣 ′) is (Tx Cxt), all imply that 𝑒 = 𝑒 (𝑒), but there is not
transformation rule matching 𝑒 (𝑒) { [{𝑣 ′/𝑥}𝑒′]𝑑 .

• Case (Ev RecSelect), 𝑒′1 = {𝑓 : 𝑣}.𝑓𝑖 , 𝑒′2 = 𝑣𝑖 . The only transformation rule matching 𝑒 {
{𝑓 : 𝑣}.𝑓𝑖 is (Tx Cxt), hence 𝑒 = 𝑒.𝑓𝑖 . The only transformation rule matching 𝑒.𝑓𝑖 { 𝑣𝑖 is (Tx
Cxt), but the right-hand side is not a value, while 𝑣𝑖 is.

• Case (Ev Enc), 𝑒′1 = encr(𝑐∅, 𝑠), 𝑒′2 = 𝑐′
𝑠 , the claim follows immediately.

• Case (Ev Decr), 𝑒′1 = decr(𝑐𝑠 ), 𝑒′2 = 𝑐∅, the claim follows immediately.
• Case (Ev Cxt), 𝑒′1 = C[𝑒′1], 𝑒′2 = C[𝑒′2], and 𝑒′1 −→Ω 𝑒′2.
Case analysis over 𝑒 { C[𝑒′1]:
– Cases (Tx Func) and (Tx Const) are impossible.
– Case (Tx Ret), 𝑒 = [𝑒]CLNT, 𝑒′1 = [𝑒′1]𝑑 , and 𝑒 { 𝑒′1. The only rule matching 𝑒 { [𝑒′2]𝑑 is
(Tx Ret), inverting which we get 𝑒 { 𝑒′2. Now we apply an induction hypothesis to 𝑒′2
and 𝑒′1 to prove that the latter has one less encr and decr node, putting them in the same
context C we get the claim.

– Case (Tx Encr), 𝑒 = 𝑒 , 𝑒′1 = encr(𝑒′1, 𝑠), 𝑒′2 = encr(𝑒′2, 𝑠), and 𝑒 { 𝑒′1.
The only rule matching 𝑒 { encr(𝑒′2, 𝑠) is (Tx Encr), inverting which we get 𝑒 { 𝑒′2.
Now we apply an induction hypothesis to 𝑒′2 and 𝑒′1 to prove that the latter has one less
encr and decr node, putting them in the same context C we get the claim.

– Case (Tx Decr), 𝑒 = 𝑒 , 𝑒′1 = decr(𝑒′1), 𝑒′2 = decr(𝑒′2), and 𝑒 { 𝑒′1
The only rule matching 𝑒 { decr(𝑒′2) is (Tx Decr), inverting which we get 𝑒 { 𝑒′2. Now
we apply an induction hypothesis to 𝑒′2 and 𝑒′1 to prove that the latter has one less encr
and decr node, putting them in the same context C we get the claim.
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– Case (Tx Cxt), 𝑒 = T [𝑒], 𝑒′1 = T [𝑒′′], and for all 𝑖 , 𝑒𝑖 { 𝑒′′𝑖 . It can be concluded that C
satisfies the restrictions of Lem. 7, hence we get for 1 ≤ 𝑖 ≤ 𝑘 − 1 𝑒𝑖 { 𝑣 ′′𝑖 , 𝑒𝑘 { 𝑒′1, and
for 𝑘 + 1 ≤ 𝑖 ≤ 𝑛 𝑒𝑖 { 𝑒′′𝑖 .

C[𝑒′2] = T [𝑣 ′′1 , . . . , 𝑣 ′′𝑘−1, 𝑒
′
2, 𝑒

′′
𝑘+1, . . . , 𝑒

′′
𝑛 ]

C[𝑒′1] = T [𝑣 ′′1 , . . . , 𝑣 ′′𝑘−1, 𝑒
′
1, 𝑒

′′
𝑘+1, . . . , 𝑒

′′
𝑛 ]

The only rule matching T [𝑒] { C[𝑒′2] is, naturally, (Tx Cxt), inverting which we get
𝑒𝑘 { 𝑒′2. Now we apply an induction hypothesis to 𝑒′2 and 𝑒′1 to prove that the latter has
one less encr and decr node, putting them in the same context C we get the claim.

□

Lemma 11 (Transformation context reduction). If T [𝑒] −→
Ω
𝑒 , then either the root reduction

rule is (Ev Cxt) or every 𝑒𝑖 is a value.

Proof. Straightforward case analysis □

Lemma 12 (Transformation and substitution). If 𝑒 { 𝑒′ and 𝑣 { 𝑣 ′, then {𝑣/𝑥}𝑒 {
{𝑣 ′/𝑥}𝑒′.
Proof. Straightforward case analysis over 𝑒 { 𝑒′. □

Definition 7 (Query children). Query children of an evaluation step 𝑒1 −→
Ω

𝑒2 are all the

derivations of the form 𝑒 −→
Ω

∗ 𝑣 that appear in the premises of (PrimEv Filter), (PrimEv Proj), and

(PrimEv Agg) corresponding to the instances of (Ev OpQuery) in 𝑒1 −→
Ω
𝑒2.

Definition 8 (Query height). Evaluation step 𝑒1 −→
Ω
𝑒2 has query height 0 iff it has no query

children, and query height ℎ + 1, ℎ ≥ 0, iff all its query children use only evaluation steps with height

at most ℎ, and at least one query child has evaluation step with height ℎ.

Definition 9 (Transformation correctness up to qery height). For any 𝜌 {𝑆 𝜌
′
, Ω

satisfying 𝜌 , Ω′ = encrVal(Ω, 𝜌 ′), 𝑒 { 𝑒′, and Γ ≀ 𝜌 ′ ⊢𝑑 𝑒′ : ^ , transformation is correct up to query
height ℎ ≥ 0 iff for any 𝑒 −→

Ω

∗ 𝑣 including only evaluation steps with query height less than ℎ, there
exists 𝑣 ′, s.t., 𝑒′ −−→

Ω′
∗ 𝑣 ′ and 𝑣 { 𝑣 ′.

Lemma 13 (Transformation correct up to 0). Transformation is correct up to query height 0.

Proof. As there can be no evaluation steps with query height less than 0, 𝑒 = 𝑣 . Applying Lem. 9
to 𝑣 { 𝑒′, we have two cases either 𝑒′ is a value and we are done, or there exists 𝑒′′, s.t., 𝑒′ −−→

Ω′
𝑒′′

and 𝑣 { 𝑒′. In the latter case we revert to induction on the total number 𝑘 of encr and decr nodes
in 𝑒′. Base case, 𝑘 = 0 is impossible according to Lem. 10. Inductive case, 𝑘 = 𝑘 ′ + 1 by Lem. 10
𝑒′′ has one less encr or decr node, hence we apply an induction hypothesis to conclude that there
exists 𝑣 ′, s.t., 𝑣 { 𝑣 ′ and 𝑒′′ −−→

Ω′
∗ 𝑣 ′, so that also 𝑒′ −−→

Ω′
∗ 𝑣 ′. □

Lemma 14 (Encryption is related). For any Ω satisfying 𝜌 , 𝜌 {𝑆 𝜌
′
, Ω′ = encrVal(Ω, 𝜌 ′), and

any 𝑛, Ω(𝑛) { Ω′ (𝑛)
Proof. Induction over 𝜌 {𝑆 𝜌

′. □

Lemma 15 (Transformed progress). For anyℎ ≥ 0, 𝜌 {𝑆 𝜌
′
,Ω satisfying 𝜌 ,Ω′ = encrVal(Ω, 𝜌 ′),

𝑒1 { 𝑒′1, and Γ ≀ 𝜌 ′ ⊢𝑑 𝑒′1 : ^, if transformation is correct up to height ℎ and 𝑒1 −→
Ω
𝑒2 has height ℎ,

then there exists 𝑒′2, s.t., 𝑒
′
1 −−→Ω′

𝑒′2 and either 𝑒1 { 𝑒′2 or 𝑒2 { 𝑒′2.
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Proof. Induction over 𝑒1 { 𝑒′1

• Cases (Tx Const) and (Tx Func) are impossible as values cannot reduce.
• Case (Tx Encr), 𝑒′1 = encr(𝑒′1, 𝑠), 𝑒1 { 𝑒′1. Applying induction hypothesis to the latter we
get 𝑒′2, s.t., 𝑒′1 −→

Ω
𝑒′2 and either 𝑒1 { 𝑒′2 or 𝑒2 { 𝑒′2. We set 𝑒′2 = encr(𝑒′2, 𝑠) and use (Ev

Cxt) to derive encr(𝑒′1, 𝑠) −→
Ω

encr(𝑒′2, 𝑠) and (Tx Encr) to derive either 𝑒1 { encr(𝑒′2, 𝑠) or
𝑒2 { encr(𝑒′2, 𝑠).

• Case (Tx Decr), 𝑒′1 = decr(𝑒′1), 𝑒1 { 𝑒′1. Applying induction hypothesis to the latter we
get 𝑒′2, s.t., 𝑒′1 −→

Ω
𝑒′2 and either 𝑒1 { 𝑒′2 or 𝑒2 { 𝑒′2. We set 𝑒′2 = decr(𝑒′2) and use

(Ev Cxt) to derive decr(𝑒′1) −→
Ω

decr(𝑒′2) and (Tx Decr) to derive either 𝑒1 { decr(𝑒′2) or
𝑒2 { decr(𝑒′2).

• Case (Tx Refl), where subcases 𝑒1 = 𝑓 or 𝑒1 = 𝑐∅ or 𝑒1 = 𝑥 are impossible as they can-
not reduce, hence we are left with 𝑒1 = table(𝑛𝑎𝑚𝑒). The only evaluation rule matching
table(𝑛𝑎𝑚𝑒) −→

Ω
𝑒2 is (Ev Tbl), inverting which we get Ω(𝑛𝑎𝑚𝑒) = 𝑣 . Since Ω(𝑛𝑎𝑚𝑒) satisfies

𝜌 , by Lem. 14 Ω′ (𝑛𝑎𝑚𝑒) = 𝑣 ′ and 𝑣 { 𝑣 ′ and we can set 𝑒′2 = 𝑣
′.

• Case (Tx Ret), 𝑒1 = [𝑣]CLNT, 𝑒′1 = [𝑒′]𝑑 , and 𝑣 { 𝑒′. The only typing rule matching Γ ≀ 𝜌 ′ ⊢𝑑
[𝑒′] :^ is (T-Return), inverting which we get 𝜌 ≀ Γ ⊢

𝑑
𝑒′ : ^ Now we can apply Lem. 9, and

there are two cases:
– 𝑒′ is a value. We set 𝑒′2 = 𝑒

′, use (Ev Return) to derive [𝑒′]
𝑑
−−→
Ω′

𝑒′, and we already have
𝑣 { 𝑒′.

– There exists 𝑒′, s.t. 𝑒′ −−→
Ω′

𝑒′ and 𝑣 { 𝑒′. We set 𝑒′2 = [𝑒′]
𝑑
, use (Ev Cxt) to derive 𝑒′1 −→Ω 𝑒′2

and (Tx Ret) to derive 𝑒1 { 𝑒′2.
• Case (Tx Cxt), 𝑒1 = T [𝑒], 𝑒′1 = T [𝑒′], and 𝑒 { 𝑒′. Applying Lem. 11, there are two cases:
either 𝑒1 −→

Ω
𝑒2 has (Ev Cxt) as a top reduction rule or every 𝑒𝑖 is a value.

Subcase (Ev Cxt), 𝑒1 = C[𝑒1], 𝑒2 = C[𝑒2], 𝑒1 −→
Ω
𝑒2. By Lem. 7 and injectivity of T , there

exist 𝑗 , s.t., 𝑒1, . . . 𝑒 𝑗−1 are values and 𝑒 𝑗 = 𝑒1. We can apply Lem. 9 to 𝑒1 { 𝑒′1, . . . , 𝑒 𝑗−1 { 𝑒′𝑗−1
There are two cases:
– Each such 𝑒′𝑖 is a value. We use Lem. 5 to derive Γ′ ≀ 𝜌 ′ ⊢𝑑 ′ 𝑒′𝑗 : ^ 𝑗 and apply the induction
hypothesis to 𝑒 𝑗 −→

Ω
𝑒2, getting 𝑒′, s.t., 𝑒 𝑗 −−→

Ω′
𝑒′ and either 𝑒1 { 𝑒′ or 𝑒2 { 𝑒′. We set

𝑒′2 = C[𝑒′], use (Ev Cxt) to derive C[𝑒 𝑗 ] −−→
Ω′

𝑒′, and use (Tx Cxt) to derive either 𝑒1 { 𝑒′2
or 𝑒2 { 𝑒′2.

– There exists some 𝑘 < 𝑗 and 𝑒′, s.t., 𝑒′
𝑘
−−→
Ω′

𝑒′, 𝑒𝑘 { 𝑒′
𝑘
, and all 𝑒′1, . . . 𝑒

′
𝑘−1 are values.

By Lem. 6, there exists C′, s.t., 𝑒′1 = C′ [𝑒′
𝑘
], C′ [𝑒′] = T [𝑒′1, . . . 𝑒′𝑘−1, 𝑒

′, . . . 𝑒′𝑛]. We set
𝑒′2 = C′ [𝑒′] and use (Ev Cxt) to derive 𝑒′1 −−→Ω′

𝑒′2, and (Tx Cxt) to derive 𝑒1 = T [𝑒] { 𝑒′2.

Subcase, all 𝑒𝑖 are values. Let 𝑣𝑖 = 𝑒𝑖 . We can apply Lem. 9 to 𝑒 { 𝑒′. There are two options:
either each 𝑒′𝑖 is a value, or there exists some 𝑗 such that 𝑒′𝑗 evaluates, we consider the latter
first.
Subsubcase, for some 𝑘 , 𝑒′

𝑘
{ 𝑒′, 𝑣𝑘 { 𝑒′, and 𝑒′1, . . . , 𝑒

′
𝑘−1 are values. This case is exactly

the same as the second case in Subcase (Ev Cxt).
Subsubcase, all 𝑒′𝑖 are values. Let 𝑣

′
𝑖 = 𝑒

′
𝑖 . Case analysis over 𝑒1 −→Ω 𝑒2.

– Cases (Ev Tbl), (Ev Enc), (Ev Decr), and (Ev Return) are impossible as there is no matching
T .
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– Case (Ev RecSelect), 𝑒1 = {𝑓 : 𝑣}.𝑓𝑖 , 𝑒2 = 𝑣𝑖 , 𝑒′1 = {𝑓 : 𝑣 ′}, and 𝑣 { 𝑣 ′. The only typing
rule matching Γ ≀ 𝜌 ′ ⊢𝑑 {𝑓 : 𝑣 ′} : ^ is (T-Record) inverting which we get 𝜌 ≀ Γ ⊢𝑑 𝑣 ′ : (𝑝𝑠 , 𝑙).
We set 𝑒′2 = 𝑣

′
𝑖 , use (Ev RecSelect) to derive {𝑓 : 𝑣 ′} −−→

Ω′
𝑣 ′𝑖 , and we already have 𝑣𝑖 { 𝑣 ′𝑖 .

– Case (Ev Op), 𝑒1 = ⊕(𝑐𝑠 ), 𝑒2 = 𝑐𝑠 , 𝑒′1 = ⊕(𝑣 ′), 𝜑ev (⊕, 𝑐𝑠 ) = 𝑐𝑠 , and 𝑐𝑠 { 𝑣𝑒′. The only
typing rule matching Γ ≀ 𝜌 ′ ⊢𝑑 ⊕(𝑣 ′) : ^ is (T-Op), inverting which we get for some 𝑠′:

𝜌 ≀ Γ ⊢𝑑 𝑣 ′ : (𝑝𝑠 , 𝑙) (5a) 𝜑 ty (⊕) = 𝑝𝑠 → 𝑝𝑠 (5b)

The only typing rule matching (5a) is (T-Const), inverting which we get 𝑣 ′ = 𝑐′
𝑠
and

𝜑 ty (𝑐, 𝑠) = 𝑝𝑠 . Combining the latter with (5b) and using (op-progress), we get there exists
some 𝑐 and 𝑠 , s.t., 𝜑ev (⊕, 𝑐, 𝑠) = 𝑐𝑠 . We set 𝑒′2 = 𝑐𝑠 , using (Ev Op) to derive ⊕(𝑐′

𝑠
) −−→

Ω′
𝑒′2.

The only transformation rules matching 𝑐𝑠 { 𝑐′
𝑠
are (Tx Const) and (Tx Refl), both imply

that 𝑠 = ∅ and 𝑐∅ = decrVal(𝑐′
𝑠
). Hence, we can apply (phe-correct) to the latter deriving

𝑐𝑠 = decrVal(𝑐𝑠 ), finally, the latter allows us to use (Tx Const) for deriving 𝑐𝑠 { 𝑐𝑠 .
– Case (Ev OpQuery) 𝑒1 = \ (𝑣), 𝑒′1 = \ (𝑣 ′), 𝜑ev (\, 𝑣) = 𝑣 , and 𝑒2 = 𝑣 . Case analysis over \ :
∗ Case \ = filter, by inversion of (PrimEv Filter)

∀𝑘. 𝑣2 ({𝑓𝑗 : 𝑣 𝑗,𝑘
𝑗∈ 𝐽 }) −→

Ω

∗ 𝑣∗
𝑘

(6a) 𝐾true = {𝑘 ∈ 𝐾 : 𝑣∗
𝑘
= true} (6b)

𝑣1 = 𝑇 {𝑓𝑖 : 𝑣𝑖,𝑘
𝑖∈𝐼 𝑘∈𝐾 } (6c) ∀𝑘. 𝑣𝑘 ∈ {true, false} (6d)

𝑒2 = 𝑇 {𝑓𝑖 : 𝑣𝑖,𝑘
𝑖∈𝐼 𝑘∈𝐾true

} (6e)

The only rule, matching 𝑣1 { 𝑇 {𝑓𝑖 : 𝑣𝑖,𝑘
𝑖∈𝐼 𝑘∈𝐾 } is (Tx Cxt), inverting which we get

𝑣 { 𝑣 , hence we can use (Tx Cxt) twice to derive for each 𝑘 , 𝑣2 ({𝑓𝑗 : 𝑣 𝑗,𝑘
𝑗∈ 𝐽 }) {

𝑣2 ({𝑓𝑗 : 𝑣 𝑗,𝑘
𝑗∈ 𝐽 }). Note, that since 𝑒1 −→

Ω
𝑒2 is has height ℎ, (6a) has height at most

(ℎ − 1), so we can use an assumption that transformation is correct up to the level ℎ to
derive that for each 𝑘 , there exists 𝑣∗

𝑘
, s.t. 𝑣2 ({𝑓𝑗 : 𝑣 𝑗,𝑘

𝑗∈ 𝐽 }) −−→
Ω′

𝑣∗
𝑘
and 𝑣∗

𝑘
{ 𝑣∗

𝑘
. The only

transformation rule matching 𝑣∗ { 𝑣∗ and Equation 6d is (Tx Refl), hence 𝑣∗ = 𝑣∗. We

set 𝑒′2 = 𝑇 {𝑓𝑖 : 𝑣𝑖,𝑘
𝑖∈𝐼 𝑘∈𝐾true

} use (PrimEv Filter) and (Ev OpQuery) to derive 𝑒′1 −→Ω 𝑒′2
and (Tx Cxt) to derive 𝑒2 { 𝑒′2.

∗ Case \ = agg, by inversion of (PrimEv Agg):

𝑣1 = 𝑇 {𝑓𝑖 : 𝑣𝑖,𝑘
𝑖
𝑘∈𝐾

} (7a) 𝑣2 = 𝑓𝑗 (7b) 𝑣∗𝑐,0 = 𝑣3 (7c)

𝑣4 ({𝑓𝑖 : 𝑣𝑖,𝑘𝑐,𝑠
𝑖 }, 𝑣∗𝑐,𝑠−1) −→

Ω

∗ 𝑣∗𝑐,𝑠 (7d) {𝑘𝑐,1, . . . , 𝑘𝑐,𝑚𝑐
} = {𝑘 : 𝑣 𝑗,𝑘 = 𝑐} (7e)

The only transformation rule matching𝑇 {𝑓𝑖 : 𝑣𝑖,𝑘
𝑖
𝑘∈𝐾

} { 𝑣1 is (Tx Cxt), inverting which

we get 𝑣1 = 𝑇 {𝑓𝑖 : 𝑣𝑖,𝑘
𝑖
𝑘∈𝐾

} and 𝑣 { 𝑣 .
It is straightforward to show for each 𝑐 by induction on 𝑠 that there exist 𝑣∗𝑐,𝑠 , s.t., 𝑣∗𝑐,𝑠 {
𝑣∗𝑐,𝑠 and 𝑣4 ({𝑓𝑖 : 𝑣𝑖,𝑘𝑐,𝑠

𝑖 }, 𝑣∗𝑐,𝑠−1) −→Ω
∗ 𝑣∗𝑐,𝑠 . Base case follows from 𝑣3 { 𝑣3 Inductive case
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use the fact that each of (7d) has height at least ℎ and transformation is assumed to be
correct up to height ℎ. The set 𝐶 of keys is the same in the transformed case due to
(eq-correct). We set 𝑒′2 = 𝑇 {key : 𝑐, aggVal : 𝑣∗𝑐,𝑚𝑐

𝑐∈𝐶 } and use (PrimEv Agg) with (Ev

OpQuery) to show 𝑒′1 { 𝑒′2, we finally use (Tx Cxt) to show 𝑒2 { 𝑒′2.
∗ Case \ = cross, by inversion of (PrimEv Join) 𝐼1 ∩ 𝐼2 = ∅, and:

𝑣1 = 𝑇 {𝑓𝑖 : 𝑣𝑖,𝑘
𝑖∈𝐼1

𝑘∈𝐾1

} (8a) 𝑣2 = 𝑇 {𝑓𝑖 : 𝑣𝑖,𝑘
𝑖∈𝐼2

𝑘∈𝐾2

} (8b)

𝑒2 = 𝑇 {𝑓𝑖 : 𝑣𝑖,𝑘1
𝑖∈𝐼1

, 𝑓𝑖 : 𝑣𝑖,𝑘2
𝑖∈𝐼2

𝑘1,𝑘2∈𝐾1×𝐾2

} (8c)

The only rule matching 𝑇 {𝑓𝑖 : 𝑣𝑖,𝑘
𝑖∈𝐼𝑟

𝑘∈𝐾𝑟

} { 𝑣𝑟 is (Tx Cxt), hence

𝑣𝑟 = 𝑇 {𝑓𝑖 : 𝑣𝑖,𝑘
𝑖∈𝐼𝑟

𝑘∈𝐾𝑟

}, and 𝑣𝑖,𝑘 { 𝑣𝑖,𝑘
𝑖∈𝐼𝑟

𝑘∈𝐾𝑟

. We set

𝑒′2 = 𝑇 {𝑓𝑖 : 𝑣𝑖,𝑘1
𝑖∈𝐼1

, 𝑓𝑖 : 𝑣𝑖,𝑘2
𝑖∈𝐼2

𝑘1,𝑘2∈𝐾1×𝐾2

} and use (PrimEv Join) and (Ev OpQuery) to
derive 𝑒′1 −−→Ω′

𝑒′2 and (Tx Cxt) to derive 𝑒2 { 𝑒′2.
∗ Case \ = proj, by inversion of (PrimEv Proj):

𝑣1 = 𝑇 {𝑓𝑖 : 𝑣𝑖,𝑘
𝑖∈𝐼 𝑘∈𝐾 } (9a)

𝑣2 ({𝑓𝑖 : 𝑣𝑖,𝑘
𝑖∈𝐼 }) −→

Ω

∗ {𝑓𝑖 : 𝑣 ′𝑖,𝑘
𝑖∈ 𝐽 } (9b)

𝑒2 = 𝑇 {𝑓𝑖 : 𝑣 ′𝑖,𝑘
𝑖∈ 𝐽 𝑘∈𝐾 } (9c)

The only rule, matching 𝑣1 { 𝑇 {𝑓𝑖 : 𝑣𝑖,𝑘
𝑖∈𝐼 𝑘∈𝐾 } is (Tx Cxt), inverting which we get

𝑣 { 𝑣 , hencewe can use (TxCxt) twice to derive for each𝑘 , 𝑣2 ({𝑓𝑖 : 𝑣𝑖,𝑘
𝑖∈𝐼 }) { 𝑣2 ({𝑓𝑖 : 𝑣𝑖,𝑘

𝑖∈𝐼 }).
Note, that since 𝑒1 −→

Ω
𝑒2 is has height ℎ, (9a) has height at most (ℎ − 1), so we can use an

assumption that transformation is correct up to the level ℎ to derive that for each 𝑘 , there
exists 𝑣∗

𝑘
, s.t. 𝑣2 ({𝑓𝑖 : 𝑣𝑖,𝑘

𝑖∈𝐼 }) −−→
Ω′

𝑣∗
𝑘
and {𝑓𝑖 : 𝑣 ′𝑖,𝑘

𝑖∈ 𝐽 } { 𝑣∗
𝑘
. The only transformation

rule matching {𝑓𝑖 : 𝑣 ′𝑖,𝑘
𝑖∈ 𝐽 } { 𝑣∗

𝑘
is (Tx Cxt), hence 𝑣∗ = {𝑓𝑖 : 𝑣 ′𝑖,𝑘

𝑖∈ 𝐽 } for some 𝑣 ′
𝑖,𝑘
. We

set 𝑒′2 = 𝑇 {𝑓𝑖 : 𝑣 ′𝑖,𝑘
𝑖∈ 𝐽 𝑘∈𝐾 } and use (PrimEv Proj) and (Ev OpQuery) to derive 𝑒′1 −−→Ω′

𝑒′2
and (Tx Cxt) to derive 𝑒2 { 𝑒2.

– Case (Ev Apply), 𝑒1 = _[𝑑] (𝑥 : ^).𝑒 (𝑣), 𝑒′1 = 𝑣 ′
_
(𝑣 ′), _[𝑑] (𝑥 : ^).𝑒 { 𝑣 ′, 𝑒 { 𝑣 ′, and 𝑒2 =

[{𝑣/𝑥}𝑒]𝑑 . The only typing rule matching the shape of 𝑒′1 is (T-Apply), inverting which we
get

𝜌 ≀ Γ ⊢𝑑 𝑣 ′_ : ˜̂ →𝑑
˜̂ (10a) 𝜌 ≀ Γ ⊢𝑑 𝑣 ′ : ^ (10b)

The only typing rule matching (10a) is (T-Fun), inverting which we get 𝑣 ′
_
= _[𝑑] (𝑥 : ˜̂) . 𝑒′.

We set 𝑒′2 = [{𝑣 ′/𝑥}𝑒]
𝑑
and use (Ev Apply) to derive 𝑒′1 −−→Ω′

𝑒′2. The only transformation rule

matching _[𝑑] (𝑥 : ^). 𝑒 { _[𝑑] (𝑥 : ˜̂). 𝑒′ is (Tx Func), inverting which we get 𝑒 { 𝑒′ and
𝑑 = CLNT. We apply Lem. 12 to derive {𝑣/𝑥}𝑒 { {𝑣 ′/𝑥}𝑒 , and then use (Tx Ret), to derive
𝑒2 { 𝑒′2.

□

Lemma 16. For any two values 𝑣 and 𝑣 ′, if 𝑣 { 𝑣 ′, then decrVal(𝑣 ′) = 𝑣 .
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Value v ::= 𝑇 {𝑓 : v} | {𝑓 : v} | _[𝑑] (𝑥 : ^). e |
⟨𝑣 | 𝑣⟩ | 𝑣

Expression e ::= v | e(e) | ⊕(e) | {𝑓 : e} | e.𝑓 | \ (e) |
encr(e, 𝑠) | decr(e) | [e]𝑑 | ⟨𝑒 | 𝑒⟩ | 𝑒

Fig. 23. Expressions and values in the extended language.

Proof. Straightforward induction on 𝑣 { 𝑣 ′. □

Proof. Proof of Th. 3.
We first prove that transformation is correct up to an arbitrary query height ℎ using induction

on ℎ. Base case follows from Lem. 13. Inductive case we assume that transformation is correct
up to a level ℎ and we show that it is correct up to a level ℎ + 1. Consider some 𝑒 −→

Ω

∗ 𝑣 that only
includes evaluation steps with query height at most ℎ and 𝑒 { 𝑒′, next we perform an induction
over 𝑒 −→

Ω

∗ 𝑣 , where the base case follows from the same argument as in the proof of 𝐿𝑒𝑚. 13.
Hence, 𝑒 −→

Ω
𝑒 −→

Ω

∗ 𝑣 . We apply Lem. 15 to 𝑒 −→
Ω
𝑒 and 𝑒 { 𝑒′ and get some 𝑒′, s.t., 𝑒′ −−→

Ω′
𝑒′, more

over, due to Th. 4 Γ ≀ 𝜌 ′ ⊢𝑑 𝑒′ : ^. There are two cases:
• Case 𝑒 { 𝑒′. We apply the induction hypothesis to 𝑒 −→

Ω

∗ 𝑣 and we are done.
• Case 𝑒 { 𝑒′. We perform inner induction on the number of decr and encr nodes 𝑒 has. By
Lem. 10, there is one less such node each time 𝑒 { 𝑒′, hence, after a finite number of steps
we will get 𝑒 { 𝑒′, when we would proceed as in the first case.

We have, thus, shown that the transformation is correct up to an arbitrary query height ℎ.
Now consider an arbitrary 𝜌 , a table store Ω satisfying 𝜌 , and expression 𝑒 . Let (𝜌 ′, 𝑒′) = 𝜏⟦𝜌, 𝑒⟧

and Ω′ = encrVal(Ω, 𝜌 ′). By the definition of a query transformation, we know that 𝑒 { 𝑒′ and
𝜌 {𝑆 𝜌

′. Using the assumption that 𝑒 −→
Ω

∗ 𝑣 and 𝜌 ′ ⊢𝑑 𝑒′ : ^ and the fact that transformation is
correct up to an arbitrary query height we conclude that there exists 𝑣 ′, s.t., 𝑒′ −−→

Ω′
∗ 𝑣 ′ and 𝑣 { 𝑣 ′.

It remains to apply Lem. 16 to get decrVal(𝑣 ′) = 𝑣 . □

F Soundness Proof

F.1 Extended language

Extension to our core language (see Fig. 4) is presented in Fig. 23, in essence, we add a bracket
construct representing two evaluating programs to the set of values and expressions.
There is a projection function presented in Fig. 24 that allows us to recover either branch of

the extended language, and an encoding function presented in Fig. 25 that allows to combine two
original expressions into a single extended expression. It is straightforward to check that binary
encoding and projection have a natural correspondence, which fact we state as Lem. 17.

Lemma 17 (Projection of binary encoding).

∀𝑖 ∈ {1, 2}. ⌊𝑣1 ★ 𝑣2⌋𝑖 = 𝑣𝑖
Proof. Induction on the structure of 𝑣1 and 𝑣2. □

Next in Fig. 26 we present operational semantics for the extended language, parameterized by a
branch ] where a computation takes place, and a table store 
 mapping table names to extended
relations, i.e., 𝑇 {𝑓 : v}. Branch ] can be either • for the top level, i.e., affecting both branches, 1 for
the first branch, and 2 — for the second branch. Note, the definition and the structure of the context
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⌊e⌋𝑖 =



𝑒𝑖 if e = ⟨𝑒1 | 𝑒2⟩
⌊e1⌋𝑖 , ..., ⌊e𝑛⌋𝑖 if e = e = (e𝑗 ) 𝑗∈{1,...,𝑛}
⊕(⌊e⌋𝑖 ) if e = ⊕(e)
\ (⌊e⌋𝑖 ) if e = \ (e)
⌊e′⌋𝑖 .𝑓 if e = e′ .𝑓
encr(⌊e′⌋𝑖 , 𝑠) if e = encr(e′, 𝑠)
decr(⌊e′⌋𝑖 ) if e = decr(e′)
[⌊e′⌋𝑖 ]𝑑 if e = [e′]𝑑
⌊e′⌋𝑖 (⌊𝑒⌋𝑖 ) if e = e′ (e)
_[𝑑] (𝑥 : ^). ⌊e′⌋𝑖 if e = _[𝑑] (𝑥 : ^). e′
{𝑓 : ⌊e⌋𝑖 } if e = {𝑓 : e}
𝑇 {𝑓 : ⌊v⌋𝑖 } if e = 𝑇 {𝑓 : v}
e if e = 𝑐 or e = table(𝑛𝑎𝑚𝑒)

Fig. 24. Projection ⌊e⌋𝑖 of a term e

𝑣 ★𝑤 =


𝑣 if 𝑣 = 𝑤
{𝑓 : 𝑣 ★𝑤} if 𝑣 = {𝑓 : 𝑣} and𝑤 = {𝑓 : 𝑤}
𝑇 {𝑓 : 𝑣 ★𝑤} if 𝑣 = {𝑓 : 𝑣} and𝑤 = {𝑓 : 𝑤}
⟨𝑣 | 𝑤⟩ otherwise

Fig. 25. Binary encoding

remains the same. We present operational rules pushing operations from the original language
across the bracket construct in a separate figure, Fig. 27.
F.2 Properties of Extended Evaluation

In this part we show the soundness and completeness of evaluation relation =⇒



with respect to

original evaluation −→
Ω

. Soundness means that =⇒



does not introduce any bogus evaluation rules,
and completeness essentially says that any terminating computation from the original language
can be over to extended language. The two are connected by projection function ⌊ ⌋𝑖 .
F.2.1 Some technical lemmata Before we can actually attack the above properties, we introduce a
projection of context C in Fig. 28.
And in addition, we use the following technical lemmata: Lem. 20 showing that projection

distributes over substitution and Lem. 19 showing that projection distributes over putting an
expression into a context.

Lemma 18 (Projection and encoding cancel). For a non-function value v, v = ⌊v⌋1 ★ ⌊v⌋1.
Proof. Induction over structure of v. □

Lemma 19 (Projection distributes over context application). Let k ∈ {1, 2}. ∀e,∀C if

e = C[e′], then ⌊e⌋𝑘 = ⌊C⌋𝑘 [⌊e′⌋𝑘 ].
Proof. By induction on the structure of e we consider the different shapes e can take. For each

shape of e we look at its possible decomposition into a context whose hole is occupied with a
subterm. We pick w.l.o.g. some 𝑘 ∈ {1, 2}. The property we set out to prove,

⌊e⌋𝑘 = ⌊C⌋𝑘 [⌊e′⌋𝑘 ] (11)
In all cases, from the premise of the lemma we have

e = C[e′] (12)
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(Ext-Ctx)

e1
]
=⇒



e2

C[e1]
]
=⇒



C[e2]

(Ext-Op)

𝜑ev (⊕, 𝑐, 𝑠) = (𝑐, 𝑠)

⊕(𝑐𝑠 ) ]
=⇒



𝑐𝑠

(Ext-Encr)

𝜑ev (encr, 𝑐, 𝑠) = 𝑐1 𝑠 ≠ ∅

encr(𝑐∅, 𝑠) ]
=⇒



𝑐𝑠1

(Ext-Decr)

𝜑ev (decr, 𝑐, 𝑠) = 𝑐1 𝑠 ≠ ∅

decr(𝑐𝑠 ) ]
=⇒



𝑐∅1

(Ext-Tbl)


(𝑛𝑎𝑚𝑒) = v

table(𝑛𝑎𝑚𝑒) •
=⇒



v

(Ext-TblProj)


(𝑛𝑎𝑚𝑒) = v ] ∈ {1, 2}

table(𝑛𝑎𝑚𝑒) ]
=⇒



⌊v⌋]
(Ext-Return)

[v]𝑑
]
=⇒



v

(Ext-RecSelect)

{𝑓 : v}.𝑓𝑘
]
=⇒



v𝑘

(Ext-OpQuery)

v = (v𝑖 )𝑖∈𝐼 ∀𝑘 ∈ 𝐼 . v𝑘 ≠ ⟨𝑇 {𝑓 : 𝑣𝑘,1} | 𝑇 {𝑓 : 𝑣𝑘,2}⟩ 𝜑𝑂 (\, ⌊v⌋1) = 𝑣 ′1 𝜑𝑂 (\, ⌊v⌋2) = 𝑣 ′2
\ (v) ]

=⇒



𝑣 ′1 ★ 𝑣
′
2

(Ext-Apply)

_[𝑑] (𝑥 : ^).e(v) ]
=⇒



[{v/𝑥}e]𝑑

(Ext-Bracket)

𝑒]
]
=⇒



𝑒′] 𝑒Z = 𝑒′
Z

{], Z } = {1, 2}

⟨𝑒1 | 𝑒2⟩
•
=⇒



⟨𝑒′1 | 𝑒′2⟩

Fig. 26. Translation of the original operational semantics to the extended language. In general ] ∈ {•, 1, 2}.
The premises in rules (Ext-Op), (Ext-Encr), (Ext-Decr) hold only for “non-bracket" values, hence implicitly

] ∈ {1, 2}. In (Ext-OpQuery), a “bracket" could appear at a non-root level.

(Ext-LiftOp)

v = (v𝑖 )𝑖∈𝐼 v𝑘 = ⟨𝑣𝑘1 | 𝑣𝑘2⟩

⊕(v) •
=⇒



⟨⊕(⌊v⌋1) | ⊕(⌊v⌋2)⟩

(Ext-LiftOpQuery)

v = (v𝑖 )𝑖∈𝐼 v𝑘 = ⟨𝑇 {𝑓 : 𝑣𝑘,1} | 𝑇 {𝑓 : 𝑣𝑘,2}⟩

\ (v) •
=⇒



⟨\ (⌊v⌋1) | \ (⌊v⌋2)⟩

(Ext-LiftEncr)

v = ⟨𝑣1 | 𝑣2⟩ 𝑠 ≠ ∅

encr(v, 𝑠) •
=⇒



⟨encr(𝑣1, 𝑠) | encr(𝑣2, 𝑠)⟩

(Ext-LiftDecr)

v = ⟨𝑣1 | 𝑣2⟩

decr(v) •
=⇒



⟨decr(𝑣1) | decr(𝑣2)⟩

(Ext-LiftRecSelect)

⟨{𝑓 : 𝑣} | {𝑓 : 𝑤}⟩.𝑓𝑘
•
=⇒



⟨{𝑓 : 𝑣}.𝑓𝑘 | {𝑓 : 𝑤}.𝑓𝑘⟩
(Ext-LiftApply)

⟨𝑣1 | 𝑣2⟩(v)
•
=⇒



⟨𝑣1⌊v⌋1 | 𝑣2⌊v⌋2⟩

Fig. 27. Lifting rules added to original operational semantics of the extended language.

From induction hypothesis for immediate subterms e𝑠 of e it holds that

∀e𝑠 ,∀C′ . ⌊e𝑠⌋𝑘 = ⌊C′ [e′𝑠 ]⌋𝑘 = ⌊C′⌋𝑘 [⌊e′𝑠⌋𝑘 ]
𝑤𝑖𝑡ℎ e𝑠 = C′ [e′𝑠 ]

(13)

• Case e = ⊕(e)
Following sub-case arise in the decomposition of e.
– Sub-case C = ⊕(v, •, e)
We have e = C[e′] = ⊕(v, e′, e) from (12).
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⌊C⌋𝑖 =



[•]𝑑 if C = [•]𝑑
⊕(⌊v⌋𝑖 , •, ⌊e⌋𝑖 ) if C = ⊕(v, •, e)
\ (⌊v⌋𝑖 , •, ⌊e⌋𝑖 ) if C = \ (v, •, e)
encr(•, 𝑠) if C = encr(•, 𝑠)
decr(•) if C = decr(•)
•(⌊e⌋𝑖 ) if C = •(e)
⌊v⌋𝑖 (⌊v⌋𝑖 , •, ⌊e⌋𝑖 ) if C = v(v, •, e)
•.𝑓 if C = •.𝑓
{𝑓 : ⌊v⌋𝑖 , 𝑓 : •, 𝑓 : ⌊e⌋𝑖 }if C = {𝑓 : v, 𝑓 : •, 𝑓 : e}

Fig. 28. Projection ⌊C⌋𝑖 of a context C

From Fig. 24
⌊e⌋𝑘 = ⊕(⌊v⌋𝑘 , ⌊e′⌋𝑘 , ⌊e⌋𝑘 ) (14)

From Fig. 28, 14, and C′ = ⊕(⌊v⌋𝑘 , •, ⌊e⌋𝑘 ) we have

⌊e⌋𝑘 = C′ [⌊e′⌋𝑘 ] (15)

The result - (11) follows from noting that C′ = ⌊C⌋𝑘 due to Fig. 28.
• Case e = \ (e) is similar to the previous case.
• Case e = v (i.e., e = 𝑥 , e = 𝑐𝑠 , e = 𝑓 , e = 𝑇 {𝑓 : v}, e = {𝑓 : v}, e = _[𝑑] (𝑥 : ^). e, ...) cannot
be decomposed into a context whose hole is filled with a subterm.

• Case e = [e′]𝑑
– Sub-case C = [•]𝑑
We have e = [e′]𝑑 . From Fig. 24 and Fig. 28

⌊e⌋𝑘 = ⌊[e′]𝑑⌋𝑘 = [⌊e′⌋𝑘 ]𝑑 = C′ [⌊e′⌋𝑘 ] = ⌊C⌋𝑘 [⌊e′⌋𝑘 ] (16)

• Case e = e_ (e)
– Sub-case C = v(v, •, e)
From Fig. 24 and Fig. 28

⌊e⌋𝑘 = ⌊e_ (e)⌋𝑘 = ⌊e_ (v, e′, e)⌋𝑘 = ⌊e_⌋𝑘 (⌊v⌋𝑘 , ⌊e′⌋𝑘 , ⌊e⌋𝑘 ) = ⌊C⌋𝑘 [⌊e′⌋𝑘 ] (17)

– Sub-case C = •(e) is similar to the above sub-case.
• Case e = {𝑓 : e}
– C = {𝑓 : v, 𝑓 : •, 𝑓 : e}. Straightforward from Fig. 24 and Fig. 28.

• Case e = e′ .𝑓 . Straightforward from Fig. 24 and Fig. 28.
– Sub-case C = •.𝑓

• Case e = encr(e′, 𝑠)
– Sub-case C = encr(•, 𝑠)
We have e = encr(e′, 𝑠). From Fig. 24

⌊e⌋𝑘 = encr(⌊e′⌋𝑘 , 𝑠) = C′ [⌊e′⌋𝑘 ] = ⌊C⌋𝑘 [⌊e′⌋𝑘 ] (18)

• Case e = decr(e′) is similar to the previous case.
□

Lemma 20 (projection distributes over substition).

∀𝑖 ∈ {1, 2}. ⌊{v/𝑥}e⌋𝑖 = {⌊v⌋𝑖/𝑥}⌊e⌋𝑖
Proof. Induction over the structure of e. □
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F.2.2 Soundness

Theorem 6 (Soundness of extended evaluation). If e
]
=⇒



e′ then for any 𝑖 ∈ {1, 2} either
⌊e⌋𝑖 −−−→⌊
⌋𝑖

⌊e′⌋𝑖 or ⌊e⌋𝑖 = ⌊e′⌋𝑖 .

Proof. By an induction on the final evaluation rule in the derivation of e −→
Ω

e′. We proceed by
case analysis on the rules from Fig. 26.
From the premise of the lemma, in all cases we have

e
]
=⇒



e
′ (19)

We pick w.l.o.g. some 𝑖 ∈ {1, 2} for showing that either ⌊e⌋𝑖 −−−→⌊
⌋𝑖
⌊e′⌋𝑖 or ⌊e⌋𝑖 = ⌊e′⌋𝑖 holds.

• Case (Ext-Op). From the premise of (Ext-Op) it holds that

𝑣 = (𝑣𝑖 )𝑖∈𝐼 ∀𝑘 ∈ 𝐼 . 𝑣𝑘 ≠ ⟨𝑣𝑘1 | 𝑣𝑘2⟩ 𝜑𝑂 (⊕, 𝑣) = 𝑣 ′ (20)

From Fig. 24 and (20), we have

⌊⊕(𝑣)⌋𝑖 = ⊕(⌊𝑣⌋𝑖 ) = ⊕(𝑣) ⌊𝑣 ′⌋𝑖 = 𝑣 ′ (21)

From (20), (21) and (Ev Op) we have that ⌊⊕(𝑣)⌋𝑖 −→
Ω

⌊𝑣 ′⌋𝑖 .
• Case (Ext-OpQuery). From the premise of (Ext-OpQuery) it holds that

v = (v𝑖 )𝑖∈𝐼 ∀𝑘 ∈ 𝐼 . v𝑘 ≠ ⟨𝑣𝑘1 | 𝑣𝑘2⟩
𝜑𝑂 (\, ⌊v⌋1) = 𝑣 ′1 𝜑𝑂 (\, ⌊v⌋2) = 𝑣 ′2

(22)

Hence from (Ev OpQuery) we know that for any 𝑖 ∈ {1, 2}: \ (⌊v⌋𝑖 )
𝑖−−−→

⌊Ω⌋𝑖
𝑣 ′𝑖

By definition of ⌊_⌋𝑖 and Lem. 17 we also have for any 𝑖 ∈ {1, 2}:
⌊\ (v)⌋𝑖 = \ (⌊v⌋𝑖 ) ⌊𝑣 ′1 ★ 𝑣 ′2⌋𝑖 = 𝑣

′
𝑖 (23)

And the conclusion follows both for 𝑖 = 1 and 𝑖 = 2 using (Ev OpQuery).
• Cases (Ext-Encr), (Ext-Decr) are similar to case (Ext-Op).
• Case (Ext-Apply). By the definition of projection:

⌊_[𝑑] (𝑥 : ^).e(v)⌋𝑖 = _[𝑑] (𝑥 : ^).⌊e⌋𝑖 (⌊v⌋𝑖 ) (24)

By the definition of projection Fig. 24 and Lem. 20

⌊[{v/𝑥}e]𝑑⌋𝑖 = [⌊{v/𝑥}e⌋𝑖 ]𝑑 = [{⌊v⌋𝑖/𝑥}⌊e⌋𝑖 ]𝑑 (25)

Hence, by (Ev Apply) the conclusion holds for both 𝑖 = 1 and 𝑖 = 2.
• Case (Ext-RecSelect). From Fig. 24, we have

⌊{𝑓 : v}.𝑓𝑗 ⌋𝑖 = {𝑓 : ⌊v⌋𝑖 }.𝑓𝑗
= {𝑓1 : ⌊v1⌋𝑖 , ..., 𝑓𝑗 : ⌊v𝑗 ⌋𝑖 , ..., 𝑓𝑛 : ⌊v𝑛⌋𝑖 }.𝑓𝑗 = ⌊v𝑗 ⌋𝑖

(26)

Hence, when the last rule applied in the evaluation derivation is (Ext-RecSelect), we have
that ⌊e⌋𝑖 = ⌊e′⌋𝑖 .

• Case (Ext-LiftOp). From (19) we have

⊕(v) •
=⇒



⟨⊕(⌊v⌋1) | ⊕(⌊v⌋2)⟩ (27)

From Fig. 24, we have

⌊⊕(v)⌋𝑖 = ⊕(⌊v⌋𝑖 ) ⌊⟨⊕(⌊v⌋1) | ⊕(⌊v⌋2)⟩⌋𝑖 = ⊕(⌊v⌋𝑖 ) (28)
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From (28), we have that
⌊e⌋𝑖 = ⌊e′⌋𝑖 (29)

• Cases (Ext-LiftOpQuery), (Ext-LiftEncr), (Ext-LiftDecr), (Ext-LiftRecSelect), (Ext-LiftApply)
are similar to case (Ext-LiftOp).

• Case (Ext-Ctx). That is the last rule used in the evaluation derivation is,

C[e1]
]
=⇒



C[e2] (30)

By an inversion on rule (Ext-Ctx), we have

e1
]
=⇒



e2 (31)

And from induction hypothesis on (31), we have
𝐸𝑖𝑡ℎ𝑒𝑟 ⌊e1⌋𝑖 −−−→⌊
⌋𝑖

⌊e2⌋𝑖 𝑜𝑟 ⌊e1⌋𝑖 = ⌊e2⌋𝑖 (32)

From Lem. 19, we have
⌊C[e1]⌋𝑖 = ⌊C⌋𝑖 [⌊e1⌋𝑖 ] ⌊C[e2]⌋𝑖 = ⌊C⌋𝑖 [⌊e2⌋𝑖 ] (33)

The result follows from (32), (33) and (Ev Cxt) with context as ⌊C⌋𝑖 .
• Case (Ext-Bracket). From inversion on (Ext-Bracket), conclusion is straightforward from
the premises.

□

F.2.3 Completeness For completeness we first show in Lem. 21 that extended evaluation does not
get stuck unless one of the branches are stuck.

Lemma 21 (Enough lifting rules). If e is stuck wrt =⇒



, then ⌊e⌋𝑖 is stuck wrt −−−→
⌊
⌋𝑖

for some

𝑖 ∈ {1, 2}.
Proof. By induction on structure of e.

• Case e = 𝑇 {𝑓 : v} | {𝑓 : v} | _[𝑑] (𝑥 : ^). e | ⟨𝑣 | 𝑣⟩ | 𝑣
e is a value, hence e is not stuck. Therefore Lem. 21 holds.

• Case e = e′ (e′′).
As e is stuck, (Ext-Apply) is not applicable. Hence, e′ ≠ _[𝑑] (𝑥 : ^). e𝑏 and from Fig. 24 we
have ⌊e′⌋𝑖 ≠ _[𝑑] (𝑥 : ^). ⌊e𝑏⌋𝑖 and ⌊e⌋𝑖 ≠ _[𝑑] (𝑥 : ^) . ⌊e𝑏⌋𝑖 (e′′) for 𝑖 ∈ {1, 2}. Hence, ⌊e⌋𝑖
is also stuck.
(Ext-LiftApply) is not applicable as e is stuck and hence e′ ≠ ⟨e1 | e2⟩. Consequently,
⌊e′⌋𝑖 ≠ e𝑖 and ⌊e⌋𝑖 ≠ e𝑖 (e′′) for 𝑖 ∈ {1, 2}. Hence, ⌊e⌋𝑖 is also stuck.

• Case e = \ (v).
– (Ext-LiftOpQuery) is not applicable⇒∀𝑖 . 𝑣𝑖 ≠ ⟨_, _⟩
– ∀𝑖 . 𝑣𝑖 ≠ ⟨_, _⟩ ∧ (Ext-OpQuery) is not applicable ⇒ 𝜑𝑂 (\, ⌊v⌋1) = ⊥ ∨ 𝜑𝑂 (\, ⌊v⌋2) = ⊥
– Wlog 𝜑𝑂 (\, ⌊v⌋1) = ⊥⇒ ⌊e⌋1 = ⌊\ (v)⌋1 = \ (⌊v⌋1) is stuck.

• Case e = ⊕(v).
By contradiction. If both ⊕(⌊v⌋1) and ⊕(⌊v⌋2) are not stuck, then rule (Ev Op) applies for
both projection, then, by Fig. 24, there are only two subcases:
– v = 𝑣 and 𝜑ev (⊕, 𝑣) = 𝑣 ′, where (Ext-Op) applies; or
– there exists 𝑖 , s.t. v𝑖 = ⟨𝑣𝑖1 | 𝑣𝑖2⟩, where (Ext-LiftOp) applies.

• Case e = v.𝑓 .
By contradiction. If both ⌊v⌋1 .𝑓 and ⌊v⌋2.𝑓 are not stuck, then rule (Ev RecSelect) applies
for both projection, then, by Fig. 24, there are only two subcases:
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– v = {𝑓 : v} and 𝑓 = 𝑓𝑘 , where (Ext-RecSelect) applies; or
– v = ⟨𝑓 : 𝑣1 | 𝑓 : 𝑣2⟩ and 𝑓 = 𝑓𝑘 = 𝑓𝑗 , where (Ext-LiftRecSelect) applies.

• Case e = encr(v, 𝑠) where 𝑠 ≠ ∅. By contradiction. If both encr(⌊v⌋1, 𝑠) and encr(⌊v⌋2, 𝑠)
are not stuck, then (Ev Enc) applies for both projection, then, by Fig. 24, there are only two
subcases:
– v = 𝑐 and 𝜑ev (encr, 𝑐, 𝑠) = 𝑐𝑠 , where (Ext-Encr) applies.
– v = ⟨𝑐1 | 𝑐2⟩, where (Ext-LiftEncr) applies.

• Case e = decr(v) where 𝑠 ≠ ∅.
By contradiction. If both decr(⌊v⌋1) and decr(⌊v⌋2) are not stuck, then (Ev Decr) applies for
both projection, then, by Fig. 24, there are only two subcases:
– v = 𝑐𝑠 and 𝜑ev (decr, 𝑐𝑠 ) = 𝑐 , where (Ext-Decr) applies.
– v = ⟨𝑐𝑠1 | 𝑐𝑠2⟩, where (Ext-LiftDecr) applies.

• Case e = table(𝑛𝑎𝑚𝑒).
Since (Ext-Tbl) does not apply 𝑛𝑎𝑚𝑒 is not in dom(
), hence 𝑛𝑎𝑚𝑒 is not in any of dom(⌊
⌋𝑖 )
and (Ev Tbl) does not apply.

• Case e = [v]𝑑 .
Impossible as (Ext-Return) applies.

• Case e = C[e1].
As e is stuck, it should be the case that e1 is stuck, lest e can take a step of evaluation by
(Ext-Ctx).
For e1 to be a subterm of e, it should hold that C ≠ [ ] (i.e., C is not an empty context). Then,
induction hypothesis is applicable to e1 - a subterm of e, and thus we have

⌊e1⌋𝑖 is stuck for some 𝑖 ∈ {1, 2} (34)

From Lem. 19, we have

⌊e⌋𝑖 = ⌊C[e1]⌋𝑖 = ⌊C⌋𝑖 [⌊e1⌋𝑖 ] (35)

By inspection of the reduction rules in Fig. 26, we notice only (Ext-Ctx) concerns itself with
evaluation of non normal subterms enclosed in a non-empty context. Other rules evaluate
expressions with either subterms in normal form enclosed in a non-empty context or subterms
in non normal form enclosed in a ⟨· | ·⟩ construct.
Hence, by (34) and (Ext-Ctx), for all C′, C′ [⌊e1⌋𝑖 ] is stuck for some 𝑖 ∈ {1, 2}; in particular,
for C′ = ⌊C⌋𝑖 the expression in (35) stuck.

• Case e = ⟨𝑒1 | 𝑒2⟩.
From the premise of (Ext-Bracket) it must be the case that 𝑒1 and 𝑒2 are stuck for e to be
stuck. Noting that ⌊e⌋𝑖 = 𝑒𝑖 , the lemma holds.

□

Theorem 7 (Completeness of extended language evaluation). If for all 𝑖 ∈ {1, 2} ⌊e⌋𝑖 −−−→⌊
⌋𝑖
𝑣𝑖

then there exists v such that e =⇒



∗
v, and for all 𝑗 ∈ {1, 2}, ⌊v⌋ 𝑗 = 𝑣 𝑗 .

Proof. We first establish that terms of the extended language do not admit an infinite evaluation
sequence. Due to Th. 6 the image under projection of a valid evaluation sequence in the extended
language becomes a valid evaluation sequence in the original language if consecutive equal elements
are removed. It is straightforward to show by the induction on evaluation relation Fig. 26 that
consecutive equal elements are precisely the reductions involving “lift” rules. No infinite reduction
sequence can consist purely of “lift” reduction rules as each “lift” rule moves the ⟨· | ·⟩ construction
closer to term’s root, hence an infinite evaluation sequence remains infinite after removing repeated
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(Ext-T-TblCall)

𝜌 (𝑛𝑎𝑚𝑒) = 𝑇 {𝑓 : (𝑝𝑠 , 𝑙)}
∀𝑖 . (𝑝𝑠𝑖 , 𝑙𝑖 ) ⊑ 𝑑

𝜌 ≀ Γ ⊩𝑑/𝑑0 table(𝑛𝑎𝑚𝑒) : 𝑇 {𝑓 : (𝑝𝑠 , 𝑙)}

(Ext-T-Tbl)

∀𝑗 . 𝜌 ≀ Γ ⊩𝑑/𝑑0 v𝑖, 𝑗 : (𝑝𝑠𝑖 , 𝑙𝑖 )
∀𝑖 . (𝑝𝑠𝑖 , 𝑙𝑖 ) ⊑ 𝑑

𝜌 ≀ Γ ⊩𝑑/𝑑0 𝑇 {𝑓𝑖 : v𝑖, 𝑗
𝑖
𝑗

} : 𝑇 {𝑓 : (𝑝𝑠 , 𝑙)}

(Ext-T-Const)

𝜑 ty (𝑐, 𝑠) = 𝑝𝑠

𝜌 ≀ Γ ⊩𝑑/𝑑0 𝑐𝑠 : (𝑝𝑠 ,⊥)

(Ext-T-Record)

𝜌 ≀ Γ ⊩𝑑/𝑑0 e : (𝑝𝑠 , 𝑙)
𝜌 ≀ Γ ⊩𝑑/𝑑0 {𝑓 : e} : {𝑓 : (𝑝𝑠 , 𝑙)}

(Ext-T-RecSelect)

𝜌 ≀ Γ ⊩𝑑/𝑑0 {𝑓 : e} : {𝑓 : (𝑝𝑠 , 𝑙)}
𝜌 ≀ Γ ⊩𝑑/𝑑0 e.𝑓𝑖 : (𝑝𝑠𝑖 , 𝑙𝑖 )

(Ext-T-Var)

Γ(𝑥) = ^
^ ⊑ 𝑑

𝜌 ≀ Γ ⊩𝑑/𝑑0 𝑥 : ^

(Ext-T-Fun)

𝜌 ≀ Γ, 𝑥 : ^ ⊩
𝑑/𝑑0 e : ^

∀𝑖 . ^𝑖 ⊑ 𝑑
𝜌 ≀ Γ ⊩𝑑/𝑑0 _[𝑑] (𝑥 : ^). e : ^ →

𝑑
^

(Ext-T-Return)

𝜌 ≀ Γ ⊩
𝑑/𝑑0 e : ^

^ ⊑ 𝑑
𝜌 ≀ Γ ⊩𝑑/𝑑0 [e]𝑑 : ^

(Ext-T-ConfUp)

𝜌 ≀ Γ ⊩𝑑/𝑑0 e : ^
^ <: ˜̂
˜̂ ⊑ 𝑑

𝜌 ≀ Γ ⊩𝑑/𝑑0 e : ˜̂

(Ext-T-Apply)

𝜌 ≀ Γ ⊩𝑑/𝑑0 e_ : ^ →
𝑑
^

𝜌 ≀ Γ ⊩𝑑/𝑑0 e : ^
^ ⊑ 𝑑

𝜌 ≀ Γ ⊩𝑑/𝑑0 e_ (e) : ^

(Ext-T-Op)

𝜑 ty (⊕) = 𝑝𝑠 → 𝑝𝑠

𝑠, 𝑠 ∈ {𝑠′,∅}
𝜌 ≀ Γ ⊩𝑑/𝑑0 e : (𝑝𝑠 , 𝑙)

(𝑝𝑠 ,⊔𝑖𝑙𝑖 ) ⊑ 𝑑
𝜌 ≀ Γ ⊩𝑑/𝑑0 ⊕(e) : (𝑝𝑠 ,⊔𝑖𝑙𝑖 )

(Ext-T-Decr)

𝜌 ≀ Γ ⊩𝑑/𝑑0 e : (𝑝𝑠 , 𝑙)
𝜑 ty (decr) = 𝑝𝑠 → 𝑝

(𝑝, 𝑙) ⊑ 𝑑 𝑠 ≠ ∅
𝜌 ≀ Γ ⊩𝑑/𝑑0 decr(e) : (𝑝, 𝑙)

(Ext-T-Encr)

𝜌 ≀ Γ ⊩𝑑/𝑑0 e : (𝑝∅, 𝑙)
𝜑 ty (encr) = 𝑝 → 𝑝𝑠

(𝑝𝑠 , 𝑙) ⊑ 𝑑 𝑠 ≠ ∅
𝜌 ≀ Γ ⊩𝑑/𝑑0 encr(e, 𝑠) : (𝑝𝑠 , 𝑙)

Fig. 29. Typing judgements for the extended language: function declaration and application, encryption and

decryption, etc.

elements. However, from the assumption of the current lemma, the term from the original language
does evaluate to a final value in a finite number of evaluation steps. Thus we have a contradiction
and hence a term of the extended language cannot admit an infinite evaluation sequence.
The possibility remains that a term from the extended language is stuck due to lack of appropriate

lifting rules. By Lem. 21, the term’s projection is also stuck. However, this contradicts the assumption
of the current lemma that the term’s projection evaluates to a value. □

F.3 Subject Reduction

F.3.1 Several technical properties of typing

Lemma 22 (Projection preserves typing). If 𝜌 ≀ Γ ⊩𝑑/𝑑0 e : ^ then 𝜌 ≀ Γ ⊩𝑑/𝑑0 ⌊e⌋𝑖 : ^

Proof. By induction on the derivation of 𝜌 ≀ Γ ⊩𝑑/𝑑0 e : ^ expanding projection with Fig. 24.
When e is a binary term, by inversion on the typing rules (Ext-T-Bracket), (Ext-T-Bracket-Enc),
and (Ext-T-Bracket-Tbl) it holds that 𝜌 ≀ Γ ⊢𝑑 𝑒1 : ^ and 𝜌 ≀ Γ ⊢𝑑 𝑒2 : ^, and the claim follows. □

Lemma 23 (Type preservation across domains). If 𝜌 ≀ Γ ⊩𝑑/𝑑0 e : ^ and ^ ⊑ 𝑑 ′ then 𝜌 ≀ Γ ⊩𝑑 ′/𝑑0
e : ^, i.e., the type of an expression is preserved across compatible domains.

Proof. By induction on the derivation of 𝜌 ≀ Γ ⊩𝑑/𝑑0 e : ^. We proceed by case analysis on the
final typing rule in the derivation. In the induction hypothesis, we assume that the desired type
preservation across domains property holds for all subderivations.
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(Ext-T-Filter)

𝜌 ≀ Γ ⊩𝑑/𝑑0 e𝑡 : 𝑇 {𝑓𝑖 : (𝑝𝑠𝑖 , 𝑙𝑖 )}𝑖∈𝐼 𝜌 ≀ Γ ⊩𝑑/𝑑0 e_ : {𝑓𝑖 : (𝑝𝑠𝑖 , 𝑙𝑖 )}𝑖∈𝐼 ′ →𝑑 ′ (Bool, 𝑙)
𝐼 ′ ⊆ 𝐼 ∀𝑖 . (𝑝𝑠𝑖 , 𝑙𝑖 ⊔ 𝑙) ⊑ 𝑑

𝜌 ≀ Γ ⊩𝑑/𝑑0 filter(e𝑡 , e_) : 𝑇 {𝑓𝑖 : (𝑝𝑠𝑖 , 𝑙𝑖 ⊔ 𝑙)}𝑖∈𝐼

(Ext-T-Cross)
𝜌 ≀ Γ ⊩𝑑/𝑑0 e1 : 𝑇 {𝑓𝑖 : (𝑝𝑠𝑖 , 𝑙𝑖 )}𝑖∈𝐼 𝜌 ≀ Γ ⊩𝑑/𝑑0 e2 : 𝑇 {𝑓𝑗 : (𝑝𝑠𝑗 , 𝑙 𝑗 )} 𝑗∈ 𝐽

𝐽 ∩ 𝐼 = ∅ ∀𝑘 ∈ 𝐼 ∪ 𝐽 .(𝑝𝑠
𝑘
, 𝑙𝑘 ⊔ (⊓𝑖∈𝐼 𝑙𝑖 ) ⊔ (⊓𝑗∈ 𝐽 𝑙 𝑗 )) ⊑ 𝑑

𝜌 ≀ Γ ⊩𝑑/𝑑0 cross(e1, e2) : 𝑇 {𝑓𝑘 : (𝑝𝑠
𝑘
, 𝑙𝑘 ⊔ (⊓𝑖∈𝐼 𝑙𝑖 ) ⊔ (⊓𝑗∈ 𝐽 𝑙 𝑗 ))}𝑘∈𝐼∪𝐽

(Ext-T-Proj) 𝜌 ≀ Γ ⊩𝑑/𝑑0 e𝑡 : 𝑇 {𝑓𝑖 : (𝑝𝑠𝑖 , 𝑙𝑖 )}𝑖∈𝐼 𝐼 ′ ⊆ 𝐼

𝜌 ≀ Γ ⊩𝑑/𝑑0 e_ : {𝑓𝑖 : (𝑝𝑠𝑖 , 𝑙𝑖 )}𝑖∈𝐼 ′ →𝑑 ′ {𝑓𝑗 : (𝑝𝑠𝑗 , 𝑙 𝑗 )} 𝑗∈ 𝐽 ∀𝑗 ∈ 𝐽 . (𝑝𝑠𝑗 , 𝑙 𝑗 ⊔ (⊓𝑖∈𝐼 𝑙𝑖 )) ⊑ 𝑑
𝜌 ≀ Γ ⊩𝑑/𝑑0 proj(e𝑡 , e_) : 𝑇 {𝑓𝑗 : (𝑝𝑠𝑗 , 𝑙 𝑗 ⊔ (⊓𝑖∈𝐼 𝑙𝑖 ))} 𝑗∈ 𝐽

(Ext-T-Agg)
𝜌 ≀ Γ ⊩𝑑/𝑑0 e𝑡 : 𝑇 {𝑓𝑖 : (𝑝𝑠𝑖 , 𝑙𝑖 )}𝑖∈𝐼 𝜌 ≀ Γ ⊩𝑑/𝑑0 e0 : (𝑝𝑠 , 𝑙 ′) 𝐼 ′ ⊆ 𝐼 𝑗 ∈ 𝐼
𝜌 ≀ Γ ⊩𝑑/𝑑0 e_ : ({𝑓𝑖 : (𝑝𝑠𝑖 , 𝑙𝑖 )}𝑖∈𝐼 ′ , (𝑝𝑠 , 𝑙 ′)) →𝑑 ′ (𝑝𝑠 , 𝑙 ′) (𝑝𝑠 , 𝑙 ′ ⊔ 𝑙 𝑗 ) ⊑ 𝑑

𝜌 ≀ Γ ⊩𝑑/𝑑0 agg(e𝑡 , 𝑓𝑗 , e0, e_) : 𝑇 {key : (𝑝𝑠𝑗 , 𝑙 𝑗 ), aggVal : (𝑝𝑠 , 𝑙 ′ ⊔ 𝑙 𝑗 )}

Fig. 30. Typing judgements for the extended language: query operators filter, join (i.e., cross-product), project,

and aggregate.

In all cases, from the assumption of the lemma, we have
𝜌 ≀ Γ ⊩𝑑/𝑑0 e : ^

^ ⊑ 𝑑 ′ (36)

• Case (Ext-T-Const) is immediate since from the conclusion it holds that 𝜌 ≀ Γ ⊩𝑑/𝑑0 e : (_,⊥).
We know that ∀𝑑 ′ . ⊥ ⊑ 𝑑 ′.
Hence, 𝜌 ≀ Γ ⊩𝑑 ′/𝑑0 e : (_,⊥).

• Case (Ext-T-Tbl). By inversion on (Ext-T-Tbl), we know that

∀𝑖 . (𝑝𝑠𝑖 , 𝑙𝑖 ) ⊑ 𝑑 (37)

From induction hypothesis on the first premise of (Ext-T-Tbl), we know that

∀𝑗 . 𝜌 ≀ Γ ⊩𝑑 ′/𝑑0 v𝑖, 𝑗 : (𝑝𝑠𝑖 , 𝑙𝑖 ) (38)

From Equation 38, Equation 37, and (Ext-T-Tbl), the result follows.
• Case (Ext-T-Var). By inversion on (Ext-T-Var), we have

𝑥 : ^ ∈ Γ and ^ ⊑ 𝑑 (39)

From (36), (39), and (Ext-T-Var) we have 𝜌 ≀ Γ ⊩𝑑 ′/𝑑0 𝑥 : ^.
• Case (Ext-T-Op). From (36), we have

𝜌 ≀ Γ ⊩𝑑/𝑑0 ⊕(e) : (𝑝𝑠 ,⊔𝑙𝑖 ) ⊔ 𝑙𝑖 ⊑ 𝑑 ′ (40)

By inversion on (Ext-T-Op), we have

𝜑𝑇 = 𝑝𝑠 → 𝑝𝑠 𝜌 ≀ Γ ⊩𝑑/𝑑0 e : (𝑝𝑠 , 𝑙) ⊔ 𝑙𝑖 ⊑ 𝑑 (41)

From induction hypothesis, we have 𝜌 ≀Γ ⊩𝑑 ′/𝑑0 e : (𝑝𝑠 , 𝑙). Using this, (40), (41), and (Ext-T-Op)
we have 𝜌 ≀ Γ ⊩𝑑 ′/𝑑0 ⊕(e) : (𝑝𝑠 ,⊔𝑙𝑖 ).

• Case (Ext-T-ConfUp). From (36), we have

𝜌 ≀ Γ ⊩𝑑/𝑑0 e : ˜̂ ˜̂ ⊑ 𝑑 ′ (42)
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By inversion on (Ext-T-ConfUp), we have

𝜌 ≀ Γ ⊩𝑑/𝑑0 e : ^ ^ <: ˜̂ ˜̂ ⊑ 𝑑 (43)

From induction hypothesis, we have 𝜌 ≀ Γ ⊩𝑑 ′/𝑑0 e : ^. This along with ˜̂ ⊑ 𝑑 ′, ^ <: ˜̂ , and
(Ext-T-ConfUp) gives us the result.

• Case (Ext-T-Fun) is similar to case (Ext-T-Tbl) and case (Ext-T-Const).
• Case (Ext-T-Apply). From (36), we have

𝜌 ≀ Γ ⊩𝑑/𝑑0 e_ (e) : ^ (44a) ^ ⊑ 𝑑 ′ (44b)
By inversion on (Ext-T-Apply), we have

𝜌 ≀ Γ ⊩𝑑/𝑑0 e_ : ^ →
𝑑
^ (45a)

𝜌 ≀ Γ ⊩𝑑/𝑑0 e : ^ (45b) ^ ⊑ 𝑑 (45c)
From induction hypothesis on (45a) and (45b), we have

𝜌 ≀ Γ ⊩𝑑 ′/𝑑0 e_ : ^ →
𝑑
^ 𝜌 ≀ Γ ⊩𝑑 ′/𝑑0 e : ^ (46)

Using (44b), (46), and (Ext-T-Apply) we have 𝜌 ≀ Γ ⊩𝑑 ′/𝑑0 e_ (e) : ^.
• Case (Ext-T-Decr). From (36), we have

𝜌 ≀ Γ ⊩𝑑/𝑑0 decr(e) : (𝑝, 𝑙) (47a) (𝑝, 𝑙) ⊑ 𝑑 ′ (47b)
By inversion on (Ext-T-Decr), we have

𝜌 ≀ Γ ⊩𝑑/𝑑0 e : (𝑝𝑠 , 𝑙) (48a) 𝜑 ty (decr) = 𝑝𝑠 → 𝑝 (48b)

(𝑝, 𝑙) ⊑ 𝑑 (48c) 𝑠 ≠ ∅ (48d)
From induction hypothesis on (48a), we have

𝜌 ≀ Γ ⊩𝑑 ′/𝑑0 e : (𝑝𝑠 , 𝑙) (49)

From (49), (48b), (48d), (47b), and (Ext-T-Decr) we have 𝜌 ≀ Γ ⊩𝑑 ′/𝑑0 decr(e) : (𝑝, 𝑙)
• Case (Ext-T-Encr). From (36), we have

𝜌 ≀ Γ ⊩𝑑/𝑑0 encr(e, 𝑠) : (𝑝𝑠 , 𝑙) (50a) (𝑝𝑠 , 𝑙) ⊑ 𝑑 ′ (50b)
By inversion on (Ext-T-Encr), we have

𝜌 ≀ Γ ⊩𝑑/𝑑0 e : (𝑝∅, 𝑙) (51a) 𝜑 ty (encr) = 𝑝 → 𝑝𝑠 (51b)

(𝑝𝑠 , 𝑙) ⊑ 𝑑 (51c) 𝑠 ≠ ∅ (51d)
From induction hypothesis on (51a), we have

𝜌 ≀ Γ ⊩𝑑 ′/𝑑0 e : (𝑝∅, 𝑙) (52)

From (52), (51b), (51d), (50b), and (Ext-T-Encr) we have 𝜌 ≀ Γ ⊩𝑑 ′/𝑑0 encr(e, 𝑠) : (𝑝𝑠 , 𝑙).
• Case (Ext-T-Record). From (36), we have

𝜌 ≀ Γ ⊩𝑑/𝑑0 {𝑓 : e} : {𝑓 : (𝑝𝑠 , 𝑙)} 𝑙 ⊑ 𝑑 ′ (53)

By inversion on (Ext-T-Record), we have

𝜌 ≀ Γ ⊩𝑑/𝑑0 e : (𝑝𝑠 , 𝑙) (54)

From induction hypothesis on (54), we have

𝜌 ≀ Γ ⊩𝑑 ′/𝑑0 e : (𝑝𝑠 , 𝑙) (55)

From (55), and (Ext-T-Record) we have 𝜌 ≀ Γ ⊩𝑑 ′/𝑑0 {𝑓 : e} : {𝑓 : (𝑝𝑠 , 𝑙)}
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• Case (Ext-T-RecSelect). Similar to case (Ext-T-Record).
□

Lemma 24 (Well-typedness preserved within context). If 𝜌 ≀ Γ ⊩𝑑/𝑑0 C[e] : ^ for some e,

then there exist ^′ and 𝑑 ′, s.t., for all e′ we have 𝜌 ≀ Γ ⊩𝑑 ′/𝑑0 e′ : ^′ ⇔ 𝜌 ≀ Γ ⊩𝑑/𝑑0 C[e′] : ^.

Proof. Proceed by induction on different shapes of C (see Fig. 4) while doing case analysis on
𝜌 ≀ Γ ⊩𝑑/𝑑0 C[e] : ^ (see Fig. 29). For simplicity we assume that 𝜌 ≀ Γ ⊩𝑑/𝑑0 C[e] : ^ does not include
instances of (Ext-T-ConfUp), which can easily be addressed with the inner induction on the number
of (Ext-T-ConfUp) at the root. In all cases, by assumption of the lemma

𝜌 ≀ Γ ⊩𝑑/𝑑0 C[e] : ^ (56)

• For C = ⊕(v, •, e), by Fig. 4, we have C[e] = ⊕(v, e, e).
The only rule that matches C[e]’s shape is (T-Op).
By the inversion of (Ext-T-Op): (1) 𝜌 ≀ Γ ⊩𝑑/𝑑0 v𝑖 : (𝑝𝑠𝑖 , 𝑙𝑖 ) for 1 ≤ 𝑖 ≤ |v|; (2) 𝜌 ≀ Γ ⊩𝑑/𝑑0
e𝑖 : (𝑝𝑠𝑖 , 𝑙𝑖 ) for |v| + 2 ≤ 𝑖 ≤ |v| + 1 + |e|; (3) 𝜌 ≀ Γ ⊩𝑑/𝑑0 e : (𝑝𝑠

𝑘
, 𝑙𝑘 ), where 𝑘 = |v| + 1;

(4) 𝜑 ty (⊕) = 𝑝𝑠 → 𝑝𝑠 ; and (5) (𝑝𝑠 ,⊔𝑖𝑙𝑖 ) ⊑ 𝑑 .
Applying induction hypothesis to (3) we get some ^′ and 𝑑 ′, s.t. for all e′ 𝜌 ≀ Γ ⊢𝑑 ′ e′ : ^′ ⇔
𝜌 ≀ Γ ⊢𝑑 C′ [e′] : (𝑝𝑠

𝑘
, 𝑙𝑘 ).

It remains to show that for all e′, 𝜌 ≀ Γ ⊢𝑑 e′ : (𝑝𝑠𝑘 , 𝑙𝑘 ) ⇔ 𝜌 ≀ Γ ⊢𝑑 ⊕(v, e′, e) : ^.
The⇐ direction follows from (T-Op) combined with (1), (2), (4), and (5).
The⇒ direction follows from the inversion of (T-Op).

• For C = \ (v, •, e), by Fig. 4, we have C[e] = \ (v, e, e).
Different sub-cases arise for \ = filter | proj | cross | agg (see Fig. 30).
– For \ = filter the only rule that matches C[e]’s shape is (T-Filter). Two sub-cases arise:
∗ For C[e′] = filter(e′, e_), by the inversion of (T-Filter): (1) 𝜌 ≀ Γ ⊩𝑑/𝑑0 e′ : 𝑇 {𝑓𝑖 :
(𝑝𝑠𝑖 , 𝑙𝑖 )}𝑖∈𝐼 (2) 𝜌 ≀ Γ ⊩𝑑/𝑑0 e_ : {𝑓𝑗 : (𝑝𝑠𝑗 , 𝑙 𝑗 )} 𝑗∈ 𝐽 →𝑑 ′ (Bool, 𝑙) (3) 𝐽 ⊆ 𝐼

Applying the induction hypothesis to (1) we get some ^′ and 𝑑 ′, s.t. for all e′ 𝜌 ≀ Γ ⊩𝑑 ′/𝑑0
e′ : ^′ ⇔ 𝜌 ≀ Γ ⊩𝑑/𝑑0 C′ [e′] : 𝑇 {𝑓𝑖 : (𝑝𝑠𝑖 , 𝑙𝑖 )}𝑖∈𝐼 .
It remains to show that for all e′, 𝜌 ≀ Γ ⊩𝑑/𝑑0 e′ : 𝑇 {𝑓𝑖 : (𝑝𝑠𝑖 , 𝑙𝑖 )}𝑖∈𝐼 ⇔ 𝜌 ≀ Γ ⊩𝑑/𝑑0
filter(e𝑡 , e_) : 𝑇 {𝑓𝑖 : (𝑝𝑠𝑖 , 𝑙𝑖 ⊔ 𝑙)}.
The ⇒ direction follows from (T-Filter) combined with (2) and (3).
The ⇐ direction follows from the inversion of (T-Filter).

∗ For C = filter(e𝑡 , e′), by the inversion of (T-Filter): (1) 𝜌 ≀ Γ ⊩𝑑/𝑑0 e𝑡 : 𝑇 {𝑓𝑖 : (𝑝𝑠𝑖 , 𝑙𝑖 )}𝑖∈𝐼
(2) 𝜌 ≀ Γ ⊩𝑑/𝑑0 e′ : {𝑓𝑗 : (𝑝𝑠𝑗 , 𝑙 𝑗 )} 𝑗∈ 𝐽 →𝑑 ′ (Bool, 𝑙) (3) 𝐽 ⊆ 𝐼

Applying the induction hypothesis to (2) we get some ^′ and 𝑑 ′, s.t. for all e′ 𝜌 ≀ Γ ⊩𝑑 ′/𝑑0
e′ : ^′ ⇔ 𝜌 ≀ Γ ⊩𝑑/𝑑0 C′ [e′] : {𝑓𝑗 : (𝑝𝑠𝑗 , 𝑙 𝑗 )} 𝑗∈ 𝐽 →𝑑 ′ (Bool, 𝑙).
It remains to show that forall e′, 𝜌 ≀ Γ ⊩𝑑/𝑑0 e′ : {𝑓𝑗 : (𝑝𝑠𝑗 , 𝑙 𝑗 )} 𝑗∈ 𝐽 →𝑑 ′ (Bool, 𝑙) ⇔
𝜌 ≀ Γ ⊩𝑑/𝑑0 filter(e𝑡 , e′) : 𝑇 {𝑓𝑖 : (𝑝𝑠𝑖 , 𝑙𝑖 ⊔ 𝑙)}.
The ⇒ direction follows from (T-Filter) combined with (1) and (3).
The ⇐ direction follows from the inversion of (T-Filter).

– For \ = proj: similar to filter.
– For \ = cross: similar to filter.
– For \ = agg: similar to filter.

• For C = encr(•, 𝑠), from (56) and Fig. 4, we have C[e] = encr(e, 𝑠). (Ext-T-Encr) is the
only rule whose conclusion matches C[e]’s shape. From inversion on (Ext-T-Encr), we
have (1) 𝜌 ≀ Γ ⊩𝑑/𝑑0 e : (𝑝∅, 𝑙) (2) 𝜑 ty (encr) = 𝑝 → 𝑝𝑠 (3) (𝑝𝑠 , 𝑙) ⊑ 𝑑 (4) 𝑠 ≠ ∅ , and by

Proc. ACM Program. Lang., Vol. 7, No. PLDI, Article 117. Publication date: June 2023.



117:48 Shamiek Mangipudi, Pavel Chuprikov, Patrick Eugster, Malte Viering, and Savvas Savvides

induction hypothesis on (1) we get for some ^′ and 𝑑 ′, s.t. for all e′ 𝜌 ≀ Γ ⊩𝑑 ′/𝑑0 e′ : ^′ ⇔
𝜌 ≀ Γ ⊩𝑑/𝑑0 C′ [e′] : (𝑝∅, 𝑙)
It remains to show that for all e′, 𝜌 ≀ Γ ⊩𝑑/𝑑0 e′ : (𝑝∅, 𝑙) ⇔ 𝜌 ≀ Γ ⊩𝑑/𝑑0 encr(e, 𝑠) : (𝑝𝑠 , 𝑙).
The⇒ direction follows from (Ext-T-Encr) combined with (2), (3) ,and (4).
The⇐ direction follows from the inversion of (Ext-T-Encr).

• For C = decr(•), from (56) and Fig. 4, we have C[e] = decr(e′). Similar to case C = encr(•, 𝑠).
• For C = •(e), from (56) and Fig. 4, we have C[e_] = e_ (e). (Ext-T-Apply) is the only
rule whose conclusion matches C[e_]’s shape. From inversion on (Ext-T-Apply), we have
(1) 𝜌 ≀ Γ ⊩𝑑/𝑑0 e_ : ^ →

𝑑
^ (2) 𝜌 ≀ Γ ⊩𝑑/𝑑0 e : ^ (3) ^ ⊑ 𝑑 , and by induction hypothesis on (1)

we get for some ^′ and 𝑑 ′, s.t. for all e′ 𝜌 ≀ Γ ⊩𝑑 ′/𝑑0 e′ : ^′ ⇔ 𝜌 ≀ Γ ⊩𝑑 ′/𝑑0 C′ [e′] : ^ →
𝑑
^

It remains to show that for all e′ 𝜌 ≀ Γ ⊩𝑑/𝑑0 e′ : ^ →
𝑑
^ ⇔ 𝜌 ≀ Γ ⊩𝑑/𝑑0 e′ (e) : ^.

The⇒ direction follows from (Ext-T-Apply) combined with (2), and (3).
The⇐ direction follows from the inversion of (Ext-T-Apply).

• For C = v(v, •, e), from (56) and Fig. 4, we have C[e] = v(v, e, e). (Ext-T-Apply) is the only
rule whose conclusion matches C[e]’s shape. From inversion on (Ext-T-Apply), we have
𝜌 ≀ Γ ⊩𝑑/𝑑0 e : ^𝑘 for 𝑘 = |𝑣 | + 1, and the induction hypothesis applies.

• For C = •.𝑓 , from (56) and Fig. 4, we have C[e] = e.𝑓 . (Ext-T-RecSelect) is the only rule
whose conclusion matches C[e]’s shape. From inversion on (Ext-T-RecSelect), we have
𝜌 ≀ Γ ⊩𝑑/𝑑0 e′ : {𝑓 : (𝑝𝑠 , 𝑙)}, and the induction hypothesis applies.

• For C = {𝑓 : v, 𝑓 : •, 𝑓 : e}, from (56) and Fig. 4, we have C[e] = {𝑓 : 𝑣, 𝑓 : e, 𝑓 : e}. (Ext-T-
Record) is the only rule whose conclusion matches C[e]’s shape. From inversion on (Ext-

T-Record), we have 𝜌 ≀ Γ ⊩𝑑/𝑑0 e : (𝑝𝑠𝑘 , 𝑙𝑘 ) for 𝑘 = |𝑓 : v| + 1, and the induction hypothesis
applies.

• For C = [•]𝑑 ′ , from (56) and Fig. 4 we have C[e] = [e]𝑑 ′ . (Ext-T-Return) is the only
rule whose conclusion matches C[e]’s shape. From inversion on (Ext-T-Return), we have
𝜌 ≀ Γ ⊩𝑑 ′/𝑑0 e : ^, and applying induction hypothesis yields 𝜌 ≀ Γ ⊩𝑑 ′/𝑑0 e : ^′ for some ^′.

□

F.3.2 Substitution lemma

Lemma 25 (Substitution). Let 𝜌 ≀Γ ⊩𝑑 ′ v : ^ and 𝜌 ≀Γ, 𝑥 : ^ ⊩𝑑/𝑑0 e : ^′. Then 𝜌 ≀Γ ⊩𝑑/𝑑0 {v/𝑥}e :
^′.

Proof. By induction on the derivation of 𝜌 ≀ Γ, 𝑥 : ^ ⊩𝑑/𝑑0 e : ^′, i.e., rules in Fig. 11, Fig. 29, and
Fig. 30. In all cases, 𝜌 ≀ Γ ⊢𝑑 ′ v : ^ by assumption.

• Case (Ext-T-Const), e = 𝑐𝑠 and {v/𝑥}e = 𝑐𝑠 .
By (Ext-T-Const), 𝜌 ≀ ∅ ⊩𝑑/𝑑0 𝑐𝑠 : ^′, and the claim follows.

• Case (Ext-T-Op), e = ⊕(e) and {v/𝑥}e = ⊕({v/𝑥}e).
From the conclusion of (Ext-T-Op), ^′ = (𝑝𝑠 ,⊔𝑖𝑙𝑖 ).
By the inversion of (Ext-T-Op):

𝜑 ty (⊕) = 𝑝𝑠 → 𝑝𝑠 (57a) 𝜌 ≀ Γ, 𝑥 : ^ ⊩𝑑/𝑑0 e : (𝑝𝑠 , 𝑙) (57b)

(𝑝𝑠 ,⊔𝑖𝑙𝑖 ) ⊑ 𝑑 (57c)

Applying induction hypothesis to (57b) we get 𝜌 ≀ Γ ⊩𝑑/𝑑0 {v/𝑥}e : (𝑝𝑠 , 𝑙).
Applying (Ext-T-Op) to the last along with 57a and 57c, it follows that 𝜌 ≀ Γ ⊩𝑑/𝑑0 ⊕({v/𝑥}e) :
(𝑝𝑠 ,⊔𝑙𝑖 ).

• Case (Ext-T-Var), e = 𝑦.
By the inversion of (Ext-T-Var): (1) ^′ = (Γ, 𝑥 : ^) (𝑦) (2) ^′ ⊑ 𝑑
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– If 𝑦 ∉ dom(𝑥 : ^), then {v/𝑥}e = 𝑦.
It follows that Γ(𝑦) = (Γ, 𝑥 : ^) (𝑦) = ^′, and we get the claim by applying (Ext-T-Var).

– If 𝑦 ∈ dom(𝑥 : ^), then 𝑦 = 𝑥𝑖 and {v/𝑥}e = v𝑖 for some 𝑖 .
It follows that ^′ = (Γ, 𝑥 : ^) (𝑦) = (Γ, 𝑥 : ^) (𝑥𝑖 ) = ^𝑖 .
By assumption we have 𝜌 ≀ Γ ⊩𝑑 ′/𝑑0 v𝑖 : ^𝑖 , by applying Lem. 23 to this assumption and (2),
we get 𝜌 ≀ Γ ⊩𝑑/𝑑0 v𝑖 : ^𝑖 .

• Case (Ext-T-Return), e = [e′]𝑑 ′ and {v/𝑥}e = [{v/𝑥}e′]𝑑 ′ .
By the inversion of (Ext-T-Return): 𝜌 ≀Γ, 𝑥 : ^ ⊩𝑑 ′/𝑑0 e′ : ^′, applying the induction hypothesis
gives (1) 𝜌 ≀ Γ ⊩𝑑 ′/𝑑0 {v/𝑥}e′ : ^′ , and it remains to apply (Ext-T-Return) on (1) to prove
what we had set out to prove.

• Case (Ext-T-ConfUp).
By the inversion of (Ext-T-ConfUp): (1) 𝜌 ≀ Γ, 𝑥 : ^ ⊩𝑑/𝑑0 e : ^; (2) ^ <: ˜̂ ; and (3) ˜̂ ⊑ 𝑑 .
Applying the induction hypothesis to (1) we get 𝜌 ≀ Γ ⊩𝑑/𝑑0 {v/𝑥}e : ^.
Applying (Ext-T-ConfUp) to the last, (2) and (3), we get 𝜌 ≀ Γ ⊩𝑑/𝑑0 {v/𝑥}e : ˜̂ .

• Case (Ext-T-Fun), e = _[𝑑∗] (𝑥∗ : ^∗). e∗.
We can alpha-convert the bound variables 𝑥∗ : ^∗ in _[𝑑∗] (𝑥∗ : ^∗). e∗ so that they are different
from both: (a) the variables 𝑥 being substituted, and (b) the free variables of v. After the
conversion it would hold that {v/𝑥}e = _[𝑑∗] (𝑥∗ : ^∗). {v/𝑥}e∗.
By the inversion of (Ext-T-Fun): (1) ^′ = ^∗ →𝑑∗ ^

∗, and (2) 𝜌 ≀ Γ, 𝑥 : ^, 𝑥∗ : ^∗ ⊩𝑑∗/𝑑0 e∗ : ^∗

By the standard permutation lemma and (2) we have 𝜌 ≀ Γ, 𝑥∗ : ^∗, 𝑥 : ^ ⊩𝑑∗/𝑑0 e∗ : ^∗.
By the standard weakening lemma applied to the assumption 𝜌 ≀ Γ ⊩𝑑/𝑑0 v : ^ we have
𝜌 ≀ Γ, 𝑥∗ : ^∗ ⊩𝑑/𝑑0 v : ^.
Applying the induction hypothesis with Γ = (Γ, 𝑥∗ : ^∗) to the last two, we derive

𝜌 ≀ Γ, 𝑥∗ : ^∗ ⊩𝑑∗/𝑑0 {v/𝑥}e∗ : ^∗,

and (T-Fun) lets us conclude 𝜌 ≀ Γ ⊩𝑑/𝑑0 _[𝑑∗] (𝑥∗ : ^∗). {v/𝑥}e∗ : ^∗ →𝑑∗ ^
∗ as needed.

• Case (Ext-T-Apply), e = e_ (e), and {v/𝑥}e = {v/𝑥}e_ ({v/𝑥}e).
By the inversion of (Ext-T-Apply):

𝜌 ≀ Γ, 𝑥 : ^ ⊩𝑑/𝑑0 e_ : ^∗ →𝑑 ′ ^ (58a)

𝜌 ≀ Γ, 𝑥 : ^ ⊩𝑑/𝑑0 e : ^∗ (58b) ^ ⊑ 𝑑 (58c)

Applying the induction hypothesis to (58a) and (58b), we get 𝜌 ≀ Γ ⊩𝑑/𝑑0 {v/𝑥}e_ : ^∗ →𝑑 ′ ^

and 𝜌 ≀ Γ ⊩𝑑/𝑑0 {v/𝑥}e : ^∗.
Applying (Ext-T-Apply) to the above derivations and (58c) we get the claim.

• Case (Ext-T-Decr), e = decr(e′), and {v/𝑥}e = decr({v/𝑥}e′).
By the inversion of (Ext-T-Decr):

𝜌 ≀ Γ, 𝑥 : ^ ⊩𝑑/𝑑0 e
′ : (𝑝𝑠 , 𝑙) (59a) 𝑠 ≠ ∅ (59b)

𝜑 ty (decr) = 𝑝𝑠 → 𝑝 (59c) (𝑝, 𝑙) ⊑ 𝑑 (59d)
Applying the induction hypothesis to (59a) we get 𝜌 ≀ Γ ⊩𝑑/𝑑0 {v/𝑥}e′ : (𝑝𝑠 , 𝑙).
Applying (Ext-T-Decr) to the last, (59c), (59b), and (59d) we get the claim.

• Case (Ext-T-Record), e = {𝑓 : e}, and {v/𝑥}e = {𝑓 : {v/𝑥}e}.
By the inversion of (Ext-T-Record):

𝜌 ≀ Γ, 𝑥 : ^ ⊩𝑑/𝑑0 e : (𝑝𝑠 , 𝑙) (60a) ∀𝑖 . (𝑝𝑠𝑖 , 𝑙𝑖 ) ⊑ 𝑑 (60b)
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Applying the induction hypothesis to (60a), we get 𝜌 ≀ Γ ⊢𝑑 {v/𝑥}e : (𝑝𝑠 , 𝑙).
Applying (Ext-T-Record) to the last and (60b), we get the claim.

• Case (Ext-T-Encr), e = encr(e′, 𝑠), and {v/𝑥}e = encr({v/𝑥}e′, 𝑠).
By the inversion of (T-Encr):

𝜌 ≀ Γ, 𝑥 : ^ ⊩𝑑/𝑑0 e
′ : (𝑝, 𝑙) (61a) 𝑠 ≠ ∅ (61b)

𝜑 ty (encr) = 𝑝 → 𝑝𝑠 (61c) (𝑝𝑠 , 𝑙) ⊑ 𝑑 (61d)
Applying the induction hypothesis to (61a) we get 𝜌 ≀ Γ ⊢𝑑 {v/𝑥}e′ : (𝑝, 𝑙).
Applying (Ext-T-Encr) to last, (61c), (61b) and (61d) we get the claim.

• Case (Ext-T-RecSelect), e = e′ .𝑓𝑗 , and {v/𝑥}e = ({v/𝑥}e′).𝑓𝑗
By the inversion of (Ext-T-RecSelect): (1) 𝜌 ≀ Γ, 𝑥 : ^ ⊩𝑑/𝑑0 {𝑓 : e′} : {𝑓 : (𝑝𝑠 , 𝑙)}.
Applying the induction hypothesis to (1), we get 𝜌 ≀ Γ ⊩𝑑/𝑑0 {𝑓 : {v/𝑥}e′} : {𝑓 : (𝑝𝑠 , 𝑙)}.
Applying (Ext-T-RecSelect) to the last, the claim follows.

• Case (Ext-T-Filter), e = filter(e𝑡 , e_),
and {v/𝑥}e = filter({v/𝑥}e𝑡 , {v/𝑥}e_).
We have ^′ = 𝑇 {𝑓𝑖 : (𝑝𝑠𝑖 , 𝑙𝑖 ⊔ 𝑙)}.
By the inversion of (Ext-T-Filter):

𝜌 ≀Γ, 𝑥 : ^ ⊩𝑑/𝑑0 e𝑡 : 𝑇 {𝑓𝑖 : (𝑝𝑠𝑖 , 𝑙𝑖 )}𝑖∈𝐼 (62a) 𝐽 ⊆ 𝐼 (62b)

𝜌≀Γ, 𝑥 : ^ ⊩𝑑/𝑑0 e_ : {𝑓𝑗 : (𝑝𝑠𝑗 , 𝑙 𝑗 )} 𝑗∈ 𝐽 →𝑑 ′ (Bool, 𝑙)
(62c)

∀𝑖 . (𝑝𝑠𝑖 , 𝑙𝑖 ⊔ 𝑙) ⊑ 𝑑 (62d)

Applying the induction hypothesis to (62a) and (62c), we get

𝜌 ≀ Γ ⊩𝑑/𝑑0 {v/𝑥}e𝑡 : 𝑇 {𝑓𝑖 : (𝑝𝑠𝑖 , 𝑙𝑖 )}𝑖∈𝐼
(63a)

𝜌≀Γ ⊩𝑑/𝑑0 {v/𝑥}e_ : {𝑓𝑗 : (𝑝𝑠𝑗 , 𝑙 𝑗 )} 𝑗∈ 𝐽 →𝑑 ′ (Bool, 𝑙)
(63b)

Applying (T-Filter) to the 63a and 63b and also to (62b) and (62d) we get the claim.
• Case (Ext-T-Proj) is similar to (Ext-T-Filter).
• Case (Ext-T-Cross) is similar to (Ext-T-Filter).
• Case (Ext-T-Agg), e = agg(e𝑡 , 𝑓𝑗 , e0, e_), and
{v/𝑥}e = agg({v/𝑥}e𝑡 , 𝑓𝑗 , {v/𝑥}e0, {v/𝑥}e_).
We have ^′ = 𝑇 {key : (𝑝𝑠𝑗 , 𝑙 𝑗 ), aggVal : (𝑝𝑠 , 𝑙 ′)}.
By the inversion of (Ext-T-Agg):

𝜌 ≀Γ, 𝑥 : ^ ⊩𝑑/𝑑0 e𝑡 : 𝑇 {𝑓𝑖 : (𝑝𝑠𝑖 , 𝑙𝑖 )}𝑖∈𝐼 (64a) 𝜌 ≀ Γ, 𝑥 : ^ ⊩𝑑/𝑑0 e0 : (𝑝𝑠 , 𝑙 ′) (64b)

𝜌≀Γ, 𝑥 : ^ ⊩𝑑/𝑑0 e_ : ({𝑓𝑖 : (𝑝𝑠𝑖 , 𝑙𝑖 )}𝑖∈𝐼 ′ , (𝑝𝑠 , 𝑙 ′)) →𝑑 ′ (𝑝𝑠 , 𝑙 ′)
(64c)

𝐼 ′ ⊆ 𝐼 (64d)

𝑗 ∈ 𝐼 (64e) (𝑝𝑠 , 𝑙 ′ ⊔ 𝑙 𝑗 ) ⊑ 𝑑 (64f)
Applying the induction hypothesis to (64a), (64b), and (64c), we get:
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𝜌 ≀ Γ ⊩𝑑/𝑑0 {v/𝑥}e𝑡 : 𝑇 {𝑓𝑖 : (𝑝𝑠𝑖 , 𝑙𝑖 )}𝑖∈𝐼
(65a)

𝜌 ≀ Γ ⊩𝑑/𝑑0 {v/𝑥}e0 : (𝑝𝑠 , 𝑙 ′) (65b)

𝜌≀Γ ⊩𝑑/𝑑0 {v/𝑥}e_ : ({𝑓𝑖 : (𝑝𝑠𝑖 , 𝑙𝑖 )}𝑖∈𝐼 ′ , (𝑝𝑠 , 𝑙 ′)) →𝑑 ′ (𝑝𝑠 , 𝑙 ′)
(65c)

Applying (T-Agg) to (65a),(65b), (65c),(64e), and (64f), we get the claim.
• Case (Ext-T-Bracket), e = ⟨𝑒1 | 𝑒2⟩, and {v/𝑥}e = ⟨{⌊v⌋1/𝑥}𝑒1 | {⌊v⌋2/𝑥}𝑒2⟩
By the inversion of (Ext-T-Bracket):

𝜌 ≀ Γ, 𝑥 : ^ ⊢𝑑 𝑒1 : ^ (66a) 𝜌 ≀ Γ, 𝑥 : ^ ⊢𝑑 𝑒2 : ^ (66b)

^ ̸⊑ 𝑑0 (66c)

By applying Lem. 22 to the assumption of the lemma, we derive: (i) 𝜌 ≀ Γ ⊢𝑑 ′ ⌊v⌋1 : ^, and
(ii) 𝜌 ≀ Γ ⊢𝑑 ′ ⌊v⌋2 : ^.
Applying the induction hypothesis to (66a) and (i), and also to (66b) and (ii), we get (1) 𝜌 ≀ Γ ⊢𝑑
{⌊v⌋1/𝑥}𝑒1 : ^ , and (2) 𝜌 ≀ Γ ⊢𝑑 {⌊v⌋2/𝑥}𝑒2 : ^ Applying (Ext-T-Bracket) to (1), (2), and (66c)
we get the claim.

• Case (Ext-T-Bracket-Enc) is similar to (Ext-T-Bracket).
• Case (Ext-T-Bracket-Tbl) is similar to (Ext-T-Bracket).

□

F.3.3 Proof of subject reduction

Theorem 8 (Subject Reduction). Let ⊩/𝑑0 
 : 𝜌 , 𝜌 ≀ Γ ⊩𝑑/𝑑0 e : ^ and e =⇒



e′ then 𝜌 ≀ Γ ⊩𝑑/𝑑0
e′ : ^.

Proof. By the induction on the size of derivation for evaluations 𝑒
]
=⇒



𝑒′ for ] ∈ {•, 1, 2}. We
proceed by case analysis on the final evaluation rule in the derivation.

• Case (Ext-Ctx)

e = C[e′1] (67a) C[e′1]
]
=⇒



C[e′2] (67b) e
′
1

]
=⇒



e
′
2 (67c)

By applying Lem. 24 to the premise of the lemma and (67a) we get ^′ and 𝑑 ′, s.t. for any 𝑒′:

𝜌 ≀ Γ ⊩𝑑 ′/𝑑0 e′ : ^′ ⇔ 𝜌 ≀ Γ ⊩𝑑/𝑑0 C[e′] : ^
(68a)

for 𝑒′1, 𝜌 ≀ Γ ⊩𝑑 ′/𝑑0 e
′
1 : ^

′ (68b)
Applying the induction hypothesis to (68b) and (67c) we get 𝜌 ≀ Γ ⊩𝑑 ′/𝑑0 e′2 : ^′, which we
wrap back into the context with (68a).

• Case (Ext-Op)
e = ⊕(𝑐𝑠 ) (69a) 𝑐𝑠 = (𝑐𝑠𝑖 )𝑖∈𝐼 (69b)

e
′ = v

′ = 𝑐𝑠 = 𝜑ev (⊕, 𝑐, 𝑠) (69c) ∀𝑖 ∈ 𝐼 . 𝑐𝑠𝑖 = ⌊𝑐𝑠𝑖 ⌋1 = ⌊𝑐𝑠𝑖 ⌋2 (69d)
By the inversion of (Ext-T-Op), which is the only rule matching (69a):

^ = (𝑝𝑠 ,⊔𝑙𝑖 ) (70a) 𝜑𝑇 = 𝑝𝑠 → 𝑝𝑠 (70b)

𝜌 ≀ Γ ⊩𝑑/𝑑0 e : (𝑝𝑠 , 𝑙) (70c) (𝑝𝑠 ,⊔𝑙𝑖 ) ⊑ 𝑑 (70d)
Due to (69d), only rule (Ext-T-Const) could result in (70c), inverting each we get for every 𝑖:
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𝜑 ty (e𝑖 ) = 𝜑 ty (𝑐𝑠𝑖 ) = 𝑝𝑠𝑖 (71a)
Applying (op-comp) to (70b), and (71a) for every 𝑖 , we derive:

𝜑 ty (v′) = 𝜑 ty (𝜑ev (⊕, 𝑐, 𝑠)) = 𝑝𝑠 (72)

Applying (Ext-T-Const) to (72) we conclude 𝜌 ≀ Γ ⊢𝑑 v′ : (𝑝𝑠 ,⊥) and since ⊥ ≤ ⊔𝑙𝑖 , we can
use (Ext-T-ConfUp) and (70d) to bump the label and get the claim for e′.

• Case (Ext-Encr)

e = encr(𝑐∅, 𝑠) (73a)

𝜑ev (encr, 𝑐, 𝑠) = v
′ = e

′

(73b)

𝑣 = ⌊𝑐∅⌋1 = ⌊𝑐∅⌋2
(73c)

By the inversion of (Ext-T-Encr), the only rule whose conclusion matches (73a):
^ = (𝑝𝑠 , 𝑙) (74a) 𝜌 ≀ Γ ⊩𝑑/𝑑0 𝑣 : (𝑝, 𝑙) (74b)

𝜑𝑇 (encr) = 𝑝 → 𝑝𝑠 (74c) (𝑝𝑠 , 𝑙) ⊑ 𝑑 (74d)
Due to (73c), only (Ext-T-Const) could result in (74b), inverting which gives:

𝜑 ty (𝑣) = 𝑝 (75)

Applying (encr-comp) to (74c) and (75) we get:

𝜑 ty (𝑣 ′) = 𝜑 ty (𝜑ev (encr, 𝑣, 𝑠)) = 𝑝𝑠 (76)

Due to monotonicity of −𝑐 ◦ S and (74d) we get (𝑝𝑠 ,⊥) ⊑ 𝑑 , which can be used to apply
(Ext-T-Const) to (76) and get 𝜌 ≀ Γ ⊢𝑑 v′ : (𝑝𝑠 ,⊥). Since ⊥ ≤ 𝑙 , we can use (Ext-T-ConfUp)
and (74d) to bump the label and get the claim for e′.

• Case (Ext-Decr)

e = decr(𝑐𝑠 ) (77a)

𝑒′ = 𝜑ev (decr, 𝑐, 𝑠) = v
′

(77b)

𝑣 = 𝑐𝑠 = ⌊𝑐𝑠⌋1 = ⌊𝑐𝑠⌋2
(77c)

By the inversion of (Ext-T-Decr), the only rule whose conclusion matches (77a):
^ = (𝑝, 𝑙) (78a)

𝜌 ≀ Γ ⊩𝑑/𝑑0 𝑣 : (𝑝𝑠 , 𝑙) (78b)

𝜑𝑇 (decr) = 𝑝𝑠 → 𝑝 (78c) (𝑝, 𝑙) ⊑ 𝑑 (78d)
Due to (77c), only (T-Const) could result in (78b), inverting which gives:

𝜑 ty (𝑣) = 𝑝𝑠 (79)

Applying (decr-comp) to (78c) and (79) we get:

𝜑 ty (v′) = 𝜑 ty (𝜑ev (decr, 𝑣)) = 𝑝 (80)
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Due to −𝑐 ◦ S being order-preserving and (78d) we get (𝑝𝑠 ,⊥) ⊑ 𝑑 , which can be used to
apply (T-Const) to (80) and get 𝜌 ≀ Γ ⊩𝑑/𝑑0 v′ : (𝑝,⊥). Since ⊥ ≤ 𝑙 , we can use (Ext-T-ConfUp)
and (78d) to bump the label and get the claim for e′.

• Case (Ext-Tbl)

e = table(𝑛𝑎𝑚𝑒) (81a) Ω(𝑛𝑎𝑚𝑒) = v (81b) e
′ = v (81c)

By the inversion of (T-TblCall), the only rule matching (81a):

^ = 𝑇 {𝑓 : (𝑝𝑠 , 𝑙)} (82a)

𝜌 (𝑛𝑎𝑚𝑒) = 𝑇 {𝑓 : (𝑝𝑠 , 𝑙)}
(82b)

∀𝑖 . (𝑝𝑠𝑖 , 𝑙𝑖 ) ⊑ 𝑑 (82c)
Applying ⊩/𝑑0 
 : 𝜌 to (82b) and (81b) we get:

v = 𝑇 {𝑓𝑖 : 𝑣𝑖 𝑗 𝑗
𝑖

} (83a) 𝜑 ty (𝑣𝑖, 𝑗 ) = 𝑝𝑠𝑖 (83b)

Applying (Ext-T-Const) to (83b) and (82c), resetting the latter to ⊥ using monotonicity of
−𝑐 ◦ S, we get:

𝜌 ≀ Γ ⊩𝑑/𝑑0 𝑣𝑖, 𝑗 : (𝑝𝑠𝑖 ,⊥) (84)

After bumping the labels in Proof of subject reduction back up using (Ext-T-ConfUp) and
(82c), we can, finally, apply (Ext-T-Tbl) to get the claim.

• Case (Ext-TblProj) similar to (Ext-Tbl), except for Lem. 22 applied at the end.
• Case (Ext-OpQuery), e is \ (v).

e = \ (v) (85a) v𝑘 ≠ ⟨𝑣1
𝑘
| 𝑣2
𝑘
⟩ (85b)

𝜑𝑂 (\, ⌊v⌋]) = 𝑣 ′]
(85c)

e
′ = 𝑣 ′1 ★ 𝑣

′
2 (85d)

– \ = filter, e = filter(v𝑡 , v_). By the inversion of (Ext-T-Filter) matching (85a)

𝜌 ≀ Γ ⊩𝑑/𝑑0 v𝑡 : 𝑇 {𝑓𝑖 : (𝑝𝑠𝑖 , 𝑙𝑖 )}𝑖∈𝐼
(86a) 𝐽 ⊆ 𝐼 (86b)

^ = 𝑇 {𝑓𝑖 : (𝑝𝑠𝑖 , 𝑙𝑖 ⊔ 𝑙)} (86c)

𝜌 ≀ Γ ⊩𝑑/𝑑0 v_ : {𝑓𝑗 : (𝑝𝑠𝑗 , 𝑙 𝑗 )} 𝑗∈ 𝐽 →𝑑 ′ (Bool, 𝑙)
(86d)

∀𝑖 . (𝑏𝑖 , 𝑙𝑖 ⊔ 𝑙) ⊑ 𝑑 (86e)

By the inversion of (Ext-T-Tbl), the only rule matching (86a) and (85b):

v𝑡 = 𝑇 {𝑓𝑖 : v𝑖, 𝑗
𝑖
𝑗

} (87a) 𝜌 ≀ Γ ⊩𝑑/𝑑0 v𝑖, 𝑗 𝑖 : (𝑝𝑠𝑖 , 𝑙𝑖 ) (87b)

Applying (Ext-T-Record) to (87b) using only indices 𝐽 ⊂ 𝐼 :

𝜌 ≀ Γ ⊩𝑑/𝑑0 {𝑓𝑖 : v𝑖, 𝑗
𝑖∈ 𝐽 } : {𝑓𝑖 : (𝑝𝑠𝑖 , 𝑙𝑖 )

𝑖∈ 𝐽 } (88)
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Applying (Ext-T-Apply) to (88), (86d), and (86e) stepped down using monotonicity of −𝑐 ◦S,
we get:

𝜌 ≀ Γ ⊩𝑑/𝑑0 v_ ({𝑓𝑗 : v𝑗,𝑘
𝑗∈ 𝐽 }) : (Bool, 𝑙) (89)

By the inversion of (PrimEv Filter) applied to (85c):

⌊v_⌋] ({𝑓𝑗 : ⌊v𝑗,𝑘⌋]
𝑗∈ 𝐽 }) −→

Ω

∗ 𝑣 ]
𝑘

(90a)

𝑣 ]
𝑘
∈ {true, false} (90b)

𝐾 ]true = {𝑘 ∈ 𝐾 : 𝑣 ]
𝑘
= true}
(90c)

𝜑ev (filter,𝑇 {𝑓𝑖 : ⌊v𝑖,𝑘⌋]
𝑖∈𝐼 𝑘∈𝐾 }, ⌊v_⌋]) =

𝑇 {𝑓𝑖 : ⌊v𝑖,𝑘⌋]
𝑖∈𝐼 𝑘∈𝐾

]
true

}
(91)

FromTh. 7 applied to (90a): v_ ({𝑓𝑗 : v𝑗,𝑘
𝑗∈ 𝐽 }) −→

Ω

∗
v𝑘 (92a)

Now, by induction on the number of reduction steps for (92a) and by using (89):

𝜌 ≀ Γ ⊩𝑑/𝑑0 v𝑘 : (Bool, 𝑙) (93)

There are two cases: v𝑘 ≠ ⟨𝑣1
𝑘
| 𝑣2
𝑘
⟩ for all 𝑘 or there exists some �̃� , s.t. v

�̃�
= ⟨𝑣1

�̃�
| 𝑣2
�̃�
⟩.

In the former case we have 𝐾1
true = 𝐾2

true = 𝐾true:

𝑇 {𝑓𝑖 : ⌊v𝑖,𝑘⌋1
𝑖∈𝐼 𝑘∈𝐾true

} ★𝑇 {𝑓𝑖 : ⌊v𝑖,𝑘⌋2
𝑖∈𝐼 𝑘∈𝐾true

}
=

𝑇 {𝑓𝑖 : ⌊v𝑖,𝑘⌋1 ★ ⌊v𝑖,𝑘⌋2
𝑖∈𝐼 𝑘∈𝐾true

}

(94)

Using Projection and encoding cancel to get ⌊v𝑖,𝑘⌋1 ★ ⌊v𝑖,𝑘⌋2 = v𝑖,𝑘 , we are done with this
case.
In the latter case, we have v𝑘∗ = ⟨𝑣1

𝑘∗ | 𝑣
2
𝑘∗⟩, by the inversion of (Ext-T-Bracket), the only

matching rule, we know that (𝑑0,∅) ∉ S(𝑙). Since 𝑙 ≼ ⊓𝑖 (𝑙𝑖 ⊔ 𝑙) we can use monotonicity
of −𝑐 ◦ S to derive (𝑑0,∅) ∉ S(⊓𝑖 (𝑙𝑖 ⊔ 𝑙)). Now we can use (Ext-T-Bracket-Tbl) to type
𝑣 ′1 ★ 𝑣

′
2.

– \ = proj, e = proj(v𝑡 , v_). By the inversion of (Ext-T-Proj), the only rule matching (85a):

𝜌 ≀ Γ ⊩𝑑/𝑑0 v𝑡 : 𝑇 {𝑓𝑖 : (𝑝𝑠𝑖 , 𝑙𝑖 )}𝑖∈𝐼 (95a) 𝐼 ′ ⊆ 𝐼 (95b)

𝜌 ≀ Γ ⊩𝑑/𝑑0 v_ : {𝑓𝑖 : (𝑝𝑠𝑖 , 𝑙𝑖 )}𝑖∈𝐼 ′ →𝑑 ′ {𝑓𝑗 : (𝑝𝑠𝑗 , 𝑙 𝑗 )} 𝑗∈ 𝐽 (95c)

∀𝑗 ∈ 𝐽 . (𝑝𝑠𝑗 , 𝑙 𝑗 ⊔ (⊓𝑖∈𝐼 𝑙𝑖 )) ⊑ 𝑑 (95d)

By the inversion of (Ext-T-Tbl), the only rule matching (95a) and (85b):

v𝑡 = 𝑇 {𝑓𝑖 : v𝑖,𝑘
𝑖
𝑘

} (96a) 𝜌 ≀ Γ ⊩𝑑/𝑑0 v𝑖,𝑘 𝑖 : (𝑝𝑠𝑖 , 𝑙𝑘 ) (96b)
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Applying (Ext-T-Record) to (96b) using only indices 𝐼 ′ ⊆ 𝐼 :

𝜌 ≀ Γ ⊩𝑑/𝑑0 {𝑓𝑖 : v𝑖,𝑘
𝑖∈𝐼 ′ } : {𝑓𝑖 : (𝑝𝑠𝑖 , 𝑙𝑖 )

𝑖∈𝐼 ′ } (97)

Applying (Ext-T-Apply) to (97), (95c), and (95d) stepped down using monotonicity of −𝑐 ◦S,
we get:

𝜌 ≀ Γ ⊩𝑑/𝑑0 v_ ({𝑓𝑖 : v𝑖,𝑘
𝑖∈𝐼 ′ }) : {𝑓𝑖 : (𝑝𝑠𝑖 , 𝑙𝑖 )

𝑖∈ 𝐽 } (98)

By the inversion of (PrimEv Proj) applied to (85c):

∀𝑘 ∈ 𝐾.⌊v_⌋] ({𝑓𝑖 : ⌊v𝑖,𝑘⌋]
𝑖∈𝐼 }) −→

Ω

∗ {𝑓𝑖 : 𝑣 ]𝑖,𝑘
𝑖∈ 𝐽 } (99a)

𝜑ev (proj,𝑇 {𝑓𝑖 : ⌊v𝑖,𝑘⌋]
𝑖∈𝐼 𝑘∈𝐾 }, ⌊v_⌋]) = 𝑇 {𝑓𝑖 : 𝑣 ]𝑖,𝑘

𝑖∈ 𝐽 𝑘∈𝐾 } (99b)

From Completeness of extended language evaluation applied to (99a):

v_ ({𝑓𝑗 : v𝑗,𝑘
𝑗∈ 𝐽 }) −→

Ω

∗
v
′
𝑘

(100)

Now, by induction on the number of reduction steps for (100) and by using (98):

𝜌 ≀ Γ ⊢𝑑 v′𝑘 : {𝑓𝑖 : (𝑝𝑠𝑖 , 𝑙𝑖 )
𝑖∈ 𝐽 } (101a) ⌊v′

𝑘
⌋
]
= {𝑓𝑖 : 𝑣 ]𝑖,𝑘

𝑖∈ 𝐽 } (101b)

By the inversion of (Ext-T-Record), the only rule matching (101a):
v
′
𝑘
= 𝑓𝑖 : v′𝑖,𝑘

𝑖∈ 𝐽
(102a) 𝜌 ≀ Γ ⊩𝑑/𝑑0 v′𝑖,𝑘

𝑖∈ 𝐽
: (𝑝𝑠𝑖 , 𝑙𝑘 ) (102b)

Since v′
𝑖,𝑘

= ⌊v′
𝑖,𝑘
⌋
1
★ ⌊v′

𝑖,𝑘
⌋
2
by Lem. 18 from (101b):

𝑇 {𝑓𝑖 : 𝑣1𝑖,𝑘
𝑖∈ 𝐽 𝑘∈𝐾

} ★𝑇 {𝑓𝑖 : 𝑣2𝑖,𝑘
𝑖∈ 𝐽 𝑘∈𝐾

}

= 𝑇 {𝑓𝑖 : v′𝑖,𝑘
𝑖∈ 𝐽 𝑘∈𝐾 }

(103)

Applying (T-Tbl) to (102b), we get the claim.
– \ = cross, e = cross(v1, v2). By the inversion of (Ext-T-Cross), the only rule matching
(85a):

𝜌 ≀ Γ ⊩𝑑/𝑑0 v1 : 𝑇 {𝑓𝑖 : (𝑝𝑠𝑖 , 𝑙𝑖 )}𝑖∈𝐼1 (104a) 𝐼1 ∩ 𝐼2 = ∅ (104b)

𝜌 ≀ Γ ⊩𝑑/𝑑0 v2 : 𝑇 {𝑓𝑖 : (𝑝𝑠𝑖 , 𝑙𝑖 )}𝑖∈𝐼2 (104c)
By the inversion of (Ext-T-Tbl), the only rule matching (104a), (104c), and (85b):

v1 = 𝑇 {𝑓𝑖 : v𝑖,𝑘
𝑖∈𝐼1

𝑘∈𝐾1

} (105a) v2 = 𝑇 {𝑓𝑖 : v𝑖,𝑘
𝑖∈𝐼2

𝑘∈𝐾2

} (105b)

∀𝑘 ∈ 𝐾1.𝜌 ≀ Γ ⊩𝑑/𝑑0 v𝑖,𝑘 𝑖∈𝐼1 : (𝑝𝑠𝑖 , 𝑙𝑘 )
(105c)

∀𝑘 ∈ 𝐾2.𝜌 ≀ Γ ⊩𝑑/𝑑0 v𝑖,𝑘 𝑖∈𝐼2 : (𝑝𝑠𝑖 , 𝑙𝑘 )
(105d)

By the inversion of (PrimEv Join) applied to (85c):

𝜑𝑂 (cross, ⌊v1⌋], ⌊v2⌋]) =

𝑇 {𝑓𝑖 : ⌊v𝑖,𝑘1⌋]
𝑖∈𝐼1

, 𝑓𝑖 : ⌊v𝑖,𝑘2⌋]
𝑖∈𝐼2

𝑘1,𝑘2∈𝐾1×𝐾2

}
(106)

It remains to apply (Ext-T-Tbl) to (105c) and (105d) to get the claim.
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– \ = agg, e = agg(v𝑡 , 𝑓𝑗 , v0, v_). By inverting (T-Agg), the only rule matching (85a):

𝜌 ≀ Γ ⊩𝑑/𝑑0 v𝑡 : 𝑇 {𝑓𝑖 : (𝑝𝑠𝑖 , 𝑙𝑖 )}𝑖∈𝐼 (107a) (𝑝𝑠 , 𝑙 ′ ⊔ 𝑙 𝑗 ) ⊑ 𝑑 (107b)

𝜌 ≀ Γ ⊩𝑑/𝑑0 v0 : (𝑝𝑠 , 𝑙 ′) (107c) 𝑗 ∈ 𝐼 (107d)

𝜌 ≀ Γ ⊩𝑑/𝑑0 v_ : ({𝑓𝑖 : (𝑝𝑠𝑖 , 𝑙𝑖 )}𝑖∈𝐼 , (𝑝𝑠 , 𝑙 ′)) →𝑑 ′ (𝑝𝑠 , 𝑙 ′) (107e)
By the inversion of (Ext-T-Tbl), the only rule matching (107a) and (85b):

v𝑡 = 𝑇 {𝑓𝑖 : v𝑖,𝑘
𝑖
𝑘

} (108a) ∀𝑘,∀𝑖 .𝜌 ≀ Γ ⊩𝑑/𝑑0 v𝑖,𝑘 : (𝑝𝑠𝑖 , 𝑙𝑘 ) (108b)
By the inversion of (PrimEv Agg) applied to (85c):

𝐶] = {⌊v𝑖,𝑘⌋] : 𝑘 ∈ 𝐾}; {𝑘]𝑐,1, . . . , 𝑘]𝑐,𝑚]
𝑐
}

= {𝑘 : ⌊v𝑗,𝑘⌋] = 𝑐}; 𝑣
]
𝑐,0 = ⌊v0⌋]

(109)

⌊v_⌋] ({𝑓𝑖 : ⌊v𝑖,𝑘]𝑐,𝑠 ⌋]
𝑖 }, 𝑣 ]𝑐,𝑠−1) −→

Ω

∗ 𝑣 ]𝑐,𝑠 (110)

𝜑ev (agg,𝑇 {𝑓𝑖 : ⌊v𝑖,𝑘⌋]
𝑖
𝑘∈𝐾

}, 𝑓𝑗 , ⌊v0⌋], ⌊v_⌋])

= 𝑇 {key : 𝑐, aggVal : 𝑣 ]
𝑐,𝑚]

𝑐∈𝐶]

}
(111)

There are two main cases: either for every 𝑘 , v𝑘,𝑗 ≠ ⟨⌊v𝑘,𝑗 ⌋1 | ⌊v𝑘,𝑗 ⌋2⟩ or there exists some
�̃� , s.t. v

�̃�, 𝑗
= ⟨⌊v

�̃�, 𝑗
⌋
1
| ⌊v

�̃�, 𝑗
⌋
2
⟩. In the latter case, by the inversion of (Ext-T-Bracket) the

only rule matching (108b) for �̃� we know that (𝑑0,∅) ∉ S(𝑙 𝑗 ). Since 𝑙 𝑗 = 𝑙 𝑗 ⊓ (𝑙 𝑗 ⊔ 𝑙 ′), we
can use (Ext-T-Bracket-Tbl) to type 𝑣 ′1 ★ 𝑣

′
2.

Now, the former case: for every 𝑘 , v𝑘,𝑗 ≠ ⟨⌊v𝑘,𝑗 ⌋1 | ⌊v𝑘,𝑗 ⌋2⟩, which due (107d) and (108b)
and inversion of (Ext-T-Const)means v𝑘,𝑗 = ⌊v𝑘,𝑗 ⌋] ,𝐶1 = 𝐶2 = 𝐶 ,𝑚1

𝑐 =𝑚
2
𝑐 =𝑚𝑐 , and 𝑘1𝑐,𝑠 =

𝑘2𝑐,𝑠 = 𝑘𝑐,𝑠 , which due to Completeness of extended language evaluation, implies that 𝑣 ]
𝑐,𝑚]

𝑐
=

⌊v′𝑐,𝑚𝑐
⌋
]
, where v′𝑐,𝑚𝑐

is defined recursively with v′𝑐,0 = v0 and v_ ({𝑓𝑖 : v𝑖,𝑘𝑐,𝑠
𝑖 }, v′𝑐,𝑠−1) −→Ω

∗

v′𝑐,𝑠 . Applying the induction hypothesis on the number of derivation steps for (110) and
(T-Apply)we have 𝜌 ≀ Γ ⊩𝑑/𝑑0 v′𝑐,𝑠 : (𝑝𝑠 , 𝑙 ′), so that (Ext-T-ConfUp) can bump it to 𝜌 ≀ Γ ⊩𝑑/𝑑0
v′𝑐,𝑠 : (𝑝𝑠 , 𝑙 ′ ⊔ 𝑙 𝑗 ), and we can use (Ext-T-Tbl) to type the result.

• Case (Ext-Apply)
e = _[𝑑 ′] (𝑥 : ^) .e′′ (v) (112a) e

′ = [{v/𝑥}e′′]𝑑 (112b)
By the inversion of (Ext-T-Apply), the only rule whose conclusion matches (112a):

𝜌 ≀ Γ ⊩𝑑/𝑑0 _[𝑑 ′] (𝑥 : ^).e′′ : ^ →𝑑 ′ ^

(113a)

𝜌 ≀ Γ ⊩𝑑/𝑑0 v : ^ (113b) ^ ⊑ 𝑑 (113c)
By the inversion of (Ext-T-Fun), the only rule whose conclusion matches (113a):

𝜌 ≀ Γ, 𝑥 : ^ ⊩𝑑 ′/𝑑0 e
′′ : ^ (114)

Applying Substitution to and (114) we further get:

𝜌 ≀ Γ ⊩𝑑 ′/𝑑0 {v/𝑥}e′′ : ^ (115)

Applying (Ext-T-Return) to (115) and (113c) we get the claim.
• Case (Ext-Return)

Proc. ACM Program. Lang., Vol. 7, No. PLDI, Article 117. Publication date: June 2023.



Generalized Policy-Based Noninterference for Efficient Confidentiality-Preservation 117:57

e = [v]𝑑 ′ (116a) e
′ = v (116b)

By the inversion of (Ext-T-Return), which is the only rule that matches (116a):
𝜌 ≀ Γ ⊩𝑑 ′/𝑑0 v : ^ (117a) ^ ⊑ 𝑑 (117b)

By applying Lem. 23 to (117a) and (117b) we get the claim.
• Case (Ext-RecSelect)

e = {𝑓 : v}.𝑓𝑘 (118a) e
′ = v𝑘 (118b)

By the inversion of (Ext-T-RecSelect), the only rule that matches (118a):

^ = (𝑝𝑠
𝑘
, 𝑙𝑘 ) (119a) 𝜌 ≀ Γ ⊩𝑑/𝑑0 {𝑓 : v} : {𝑓 : (𝑝𝑠 , 𝑙)} (119b)

By the inversion of (Ext-T-Record), the only rule that matches (119b), the claim follows.
• Case (Ext-LiftOp)

e = ⊕(v) (120a) v𝑘 = ⟨𝑣1
𝑘
| 𝑣2
𝑘
⟩ (120b) e

′ = ⟨⊕(⌊v⌋1) | ⊕(⌊v⌋2)⟩ (120c)
By the inversion of (Ext-T-Op), the only rule that matches (120a):

^ = (𝑝𝑠 ,⊔𝑖𝑙𝑖 ) (121a) 𝜑 ty (⊕) = 𝑝𝑠 → 𝑝𝑠 (121b) 𝜌 ≀ Γ ⊩𝑑/𝑑0 v : (𝑝𝑠 , 𝑙) (121c)

𝑝𝑠𝑖 = 𝑝
𝑠′
𝑖 ⇒ 𝑝𝑠 = 𝑝𝑠

′

(121d) (𝑝𝑠 ,⊔𝑖𝑙𝑖 ) ⊑ 𝑑 (121e) 𝑠, 𝑠 ∈ {𝑠′,∅} (121f)

Applying Lem. 22 to (121c) we get:
𝜌 ≀ Γ ⊩𝑑/𝑑0 ⌊v⌋1 : (𝑝𝑠 , 𝑙) (122a) 𝜌 ≀ Γ ⊩𝑑/𝑑0 ⌊v⌋2 : (𝑝𝑠 , 𝑙) (122b)

Applying (T-Op) to (121b), (121f),(121e), and both (122a) and (122b):
𝜌 ≀ Γ ⊩𝑑/𝑑0 ⊕(⌊v⌋1) : (𝑝𝑠 , 𝑙) (123a) 𝜌 ≀ Γ ⊩𝑑/𝑑0 ⊕(⌊v⌋2) : (𝑝𝑠 , 𝑙) (123b)

The case analysis on (121c) applied to v𝑘 from (120b):
– By the inversion of (Ext-T-Bracket): (𝑝𝑠

𝑘
, 𝑙𝑘 ) ̸⊑ 𝑑0, which, expanding the definition of ⊑

implies either of the two:
∗ 𝑝𝑠 = (𝑝𝑠

𝑘
, 𝑙𝑘 ) and (𝑑0, 𝑠) ∉ S(𝑙𝑘 ). The former together with Equation 121f implies 𝑝𝑠 = 𝑝𝑠

𝑘

for some 𝑝 , while the latter combined with monotonicity of −𝑐 ◦ S and 𝑙𝑘 ≼ ⊔𝑖𝑙𝑖 gives
(𝑑0, 𝑠) ∉ S(⊔𝑖𝑙𝑖 ), which implies:

𝑝𝑠 = 𝑝𝑠
𝑘
∧ (𝑝𝑠 ,⊔𝑖𝑙𝑖 ) ̸⊑ 𝑑0 (124)

∗ 𝑝𝑠 = (𝑝𝑘 , 𝑙𝑘 ) and (𝑑0,∅) ∉ S(𝑙𝑘 ). The latter implies (𝑑0,∅,⊔𝑖𝑙𝑖 ) ∉ 𝑑0 by and 𝑙𝑘 ≼ ⊔𝑖𝑙𝑖 ,
doing case analysis on 𝑝𝑠 we get:

𝑝𝑠 = 𝑝𝑠 ∧ (𝑝,⊔𝑖𝑙𝑖 ) ̸⊑ 𝑑0 (125a)

𝑝𝑠 = 𝑝 ∧ (𝑝,⊔𝑖𝑙𝑖 ) ̸⊑ 𝑑0 (125b)
– By the inversion of (Ext-T-Bracket-Enc):

𝑝𝑠 = (𝑝𝑠
𝑘
, 𝑙𝑘 ) (126a) (𝑑0,∅) ∉ S(𝑙) (126b)

By (126a) and (121f) we conclude that 𝑝𝑠 = 𝑝𝑠
𝑘

, while applying monotonicity of −𝑐 ◦ S to (126b) and 𝑙𝑘 ≼ ⊔𝑖𝑙𝑖 we get (𝑑0,∅) ∉ S(⊔𝑖𝑙𝑖 ).
Combining we get

𝑝𝑠 = 𝑝𝑠 ∧ (𝑝,⊔𝑖𝑙𝑖 ) ̸⊑ 𝑑0 (127)
To get the claim we either apply to (122a) and (122b) (Ext-T-Bracket), if we have (125b) or
(124), or (Ext-T-Bracket-Enc), if we have (127) or (125a).

• Case (Ext-LiftOpQuery)
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e = \ (v) (128a) v𝑘 = ⟨𝑣1
𝑘
| 𝑣2
𝑘
⟩ (128b) e

′ = ⟨\ (⌊v⌋1) | \ (⌊v⌋2)⟩ (128c)
– Case \ = proj, e = proj(v𝑡 , v_).
By the inversion of (Ext-T-Proj), the only rule matching (128a):

𝜌 ≀ Γ ⊩𝑑/𝑑0 v𝑡 : 𝑇 {𝑓𝑖 : (𝑝𝑠𝑖 , 𝑙𝑖 )}𝑖∈𝐼 (129a)
∀𝑗 ∈ 𝐽 . (𝑝𝑠𝑗 , 𝑙 𝑗 ⊔ (⊓𝑖∈𝐼 𝑙𝑖 )) ⊑ 𝑑 (129b)

𝐼 ′ ⊆ 𝐼 (129c)
^ = 𝑇 {𝑓𝑗 : (𝑝𝑠𝑗 , 𝑙 𝑗 ⊔ (⊓𝑙𝑖 ))} 𝑗∈ 𝐽 (129d)

𝜌 ≀ Γ ⊩𝑑/𝑑0 v_ : {𝑓𝑖 : (𝑝𝑠𝑖 , 𝑙𝑖 )}𝑖∈𝐼 ′ →𝑑 ′ {𝑓𝑗 : (𝑝𝑠𝑗 , 𝑙 𝑗 )} 𝑗∈ 𝐽 (129e)

We can only have (128b) for v𝑡 , since there is no typing rule for v_ , inverting the only match-
ing (Ext-T-Bracket-Tbl): (𝑑0,∅) ∉ S(⊓𝑙𝑖 ). since ⊓𝑙 𝑗 ⊆ ⊔(⊓𝑙𝑖 ), we can use monotonicity of
−𝑐 ◦ S and (Ext-T-Bracket-Tbl) to get the claim.

– \ = cross, e = cross(v1, v2). By the inversion of (Ext-T-Cross), the only rule matching
(85a):

𝜌 ≀ Γ ⊩𝑑/𝑑0 v1 : 𝑇 {𝑓𝑖 : (𝑝𝑠𝑖 , 𝑙𝑖 )}𝑖∈𝐼1 (130a)
𝜌 ≀ Γ ⊩𝑑/𝑑0 v2 : 𝑇 {𝑓𝑖 : (𝑝𝑠𝑖 , 𝑙𝑖 )}𝑖∈𝐼2 (130b)

^ = 𝑇 {𝑓𝑘 : (𝑝𝑠
𝑘
, 𝑙𝑘 ⊔ (⊓𝑖∈𝐼 𝑙𝑖 ) ⊔ (⊓𝑖∈ 𝐽 𝑙𝑖 ))}𝑘∈𝐼∪𝐽 (130c)

Without loss of generality, let us assume that (128b) holds for (130a) then by inversion of
the only matching rule (Ext-T-Bracket-Tbl), (𝑑0,∅) ∉ S(⊓𝑖∈𝐼1𝑙𝑖 ). Since

⊓𝑖∈𝐼 𝑙𝑖 ≤ ⊓𝑘∈𝐼∪𝐽 (𝑙𝑘 ⊔ (⊓𝑖∈𝐼 𝑙𝑖 ) ⊔ (⊓𝑖∈ 𝐽 𝑙𝑖 ))

by monotonicity of −𝑐 ◦ S we also have (𝑑0,∅) ∉ S(⊓𝑘∈𝐼∪𝐽 (𝑙𝑘 ⊔ (⊓𝑖∈𝐼 𝑙𝑖 ) ⊔ (⊓𝑖∈ 𝐽 𝑙𝑖 ))), and
we can use (Ext-T-Bracket-Tbl) to get the claim.

– \ = filter, e = filter(v𝑡 , v_). By the inversion of (Ext-T-Filter) the only rule matching
(128a):

𝜌 ≀ Γ ⊩𝑑/𝑑0 v𝑡 : 𝑇 {𝑓𝑖 : (𝑝𝑠𝑖 , 𝑙𝑖 )}𝑖∈𝐼 (131a) ^ = 𝑇 {𝑓𝑖 : (𝑝𝑠𝑖 , 𝑙𝑖 ⊔ 𝑙)} (131b)

It can only be (128b) for v𝑡 , and by the inversion of (Ext-T-Bracket-Tbl), (𝑑0,∅) ∉ S(⊓𝑖∈𝐼 𝑙𝑖 )
since ⊓𝑖∈𝐼 𝑙𝑖 ≼ ⊓𝑖∈𝐼 (𝑙𝑖 ⊔ 𝑙), using monotonicity of −𝑐 ◦ S we get (𝑑0,∅) ∉ S(⊓𝑖∈𝐼 𝑙 ⊔ 𝑙𝑖 ), and
it remains to apply (Ext-T-Bracket-Tbl) to get the claim.

– \ = agg, e = agg(v𝑡 , 𝑓𝑗 , v0, v_). By inverting (Ext-T-Agg), the only rule matching (128a):

𝜌 ≀ Γ ⊩𝑑/𝑑0 v𝑡 : 𝑇 {𝑓𝑖 : (𝑝𝑠𝑖 , 𝑙𝑖 )}𝑖∈𝐼
(132a)

𝜌 ≀ Γ ⊩𝑑/𝑑0 v0 : (𝑝𝑠 , 𝑙 ′) (132b)

𝑗 ∈ 𝐼 (132c)
Assume first that (128b) holds for v𝑡 , thenwe can invert (Ext-T-Bracket-Tbl) as the only rule
matching (132a) and get (𝑑0,∅) ∉ S(⊓𝑖∈𝐼 𝑙𝑖 ). Naturally, ⊓𝑖∈𝐼 𝑙𝑖 ≼ 𝑙 𝑗 , hence by monotonicity
of −𝑐 ◦ S we get (𝑑0,∅) ∉ S(𝑙 𝑗 ), and we can use (Ext-T-Bracket-Tbl) to get the claim.

• Case (Ext-LiftEncr)

e = encr(⟨𝑣1 | 𝑣2⟩, 𝑠) (133a) e
′ = ⟨encr(𝑣1, 𝑠) | encr(𝑣2, 𝑠)⟩ (133b)

^ = (𝑝𝑠 , 𝑙) (133c)
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By the inversion of (Ext-T-Encr), the only rule that matches (133a):
𝑠 ≠ ∅ (134a) 𝜌 ≀ Γ ⊩𝑑/𝑑0 ⟨𝑣1 | 𝑣2⟩ : (𝑝, 𝑙) (134b)

𝜑 ty (encr) = (𝑝, 𝑠) → 𝑝𝑠 (134c) (𝑝𝑠 , 𝑙) ⊑ 𝑑 (134d)
By the inversion of (Ext-T-Bracket), the only rule that matches (134b):

𝜌 ≀ Γ ⊢𝑑 𝑣𝑖 : (𝑝, 𝑙) (135a) (𝑝, 𝑙) ̸⊑ 𝑑0, (135b)
By applying (T-Encr) to (135a), (134a), (134c), and (134d):

𝜌 ≀ Γ ⊢𝑑 encr(𝑣𝑖 , 𝑠) : (𝑝𝑠 , 𝑙) (136)

By applying (Ext-T-Bracket) to (136) and (135b) we get the claim.
• Case (Ext-LiftDecr)

e = decr(⟨𝑣1 | 𝑣2⟩) (137a) e
′ = ⟨decr(𝑣1) | decr(𝑣2)⟩ (137b)

^ = (𝑝, 𝑙) (137c)
By the inversion of (Ext-T-Decr), the only rule that matches (137a):

𝑠 ≠ ∅ (138a) 𝜌 ≀ Γ ⊩𝑑/𝑑0 ⟨𝑣1 | 𝑣2⟩ : (𝑝𝑠 , 𝑙) (138b)

𝜑 ty (decr) = (𝑝𝑠 ) → 𝑝 (138c) (𝑝, 𝑙) ⊑ 𝑑 (138d)
There are sub-cases: either (138b) is derived using (Ext-T-Bracket) or (Ext-T-Bracket-Enc)
– By the inversion of (Ext-T-Bracket):

𝜌 ≀ Γ ⊢𝑑 𝑣𝑖 : (𝑝𝑠 , 𝑙) (139a) (𝑝𝑠 , 𝑙) ̸⊑ 𝑑0 (139b)
By applying using the fact that −𝑐 ◦ S maps to A and that adversaries are downwards
closed w.r.t. ≼𝑑𝑠 to (139b) we get:

(𝑝, 𝑙) ̸⊑ 𝑑0 (140)

– By the inversion of (Ext-T-Bracket-Enc):
𝜌 ≀ Γ ⊢𝑑 𝑣𝑖 : (𝑝𝑠 , 𝑙) (141a) (𝑝, 𝑙) ̸⊑ 𝑑0 (141b)

By applying (T-Decr) to (138c), (138a), (138d), and either (139a) or (141a), we get:

𝜌 ≀ Γ ⊢𝑑 decr(𝑣𝑖 ) : (𝑝, 𝑙) (142)

Applying (Ext-T-Bracket) to (142) and either (140) or (141b) we get the claim.
• Case (Ext-LiftRecSelect)

e = ⟨{𝑓 : 𝑣} | {𝑓 : 𝑤}⟩.𝑓𝑘 (143a) e
′ = ⟨{𝑓 : 𝑣}.𝑓𝑘 | {𝑓 : 𝑤}.𝑓𝑘⟩ (143b)

^ = (𝑝𝑠
𝑘
, 𝑙𝑘 ) (143c)

By the inversion of (Ext-T-RecSelect), the only rule that matches (143a):
𝜌 ≀ Γ ⊩𝑑/𝑑0 {𝑓 : ⟨{𝑓 : 𝑣} | {𝑓 : 𝑤}⟩} : {𝑓 : {𝑓 : (𝑝𝑠 , 𝑙)}} (144a)

No rule’s conclusion matches (144a).
• Case (Ext-LiftApply)

e = ⟨𝑣1 | 𝑣2⟩(v) (145a) e
′ = ⟨𝑣1⌊v⌋1 | 𝑣2⌊v⌋2⟩ (145b)

By the inversion of (Ext-T-Apply), the only rule that matches (145a):
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𝜌 ≀ Γ ⊩𝑑/𝑑0 ⟨𝑣1 | 𝑣2⟩ : ^ →
𝑑
^ (146a)

𝜌 ≀ Γ ⊩𝑑/𝑑0 v : ^ (146b)

^ ⊑ 𝑑 (146c)
There is no rule, whose conclusion matches (146a).

• Case (Ext-Bracket) w.l.o.g. ] = 1 and Z = 2

e = ⟨𝑒1 | 𝑒2⟩ (147a) 𝑒1
1
=⇒



𝑒′1 (147b) 𝑒′ = ⟨𝑒′1 | 𝑒2⟩ (147c)
By the inversion of either (Ext-T-Bracket), or (Ext-T-Bracket-Enc), or (Ext-T-Bracket-Tbl),
which are the only rules whose conclusion matches (147a):

𝜌 ≀ Γ ⊢𝑑 𝑒1 : ^ (148a) 𝜌 ≀ Γ ⊢𝑑 𝑒2 : ^ (148b) side condition on ^ (148c)
Applying the induction hypothesis to (148a) and (147b) we get:

𝜌 ≀ Γ ⊢𝑑 𝑒′1 : ^ (149)

Applying either (Ext-T-Bracket), or (Ext-T-Bracket-Enc), or (Ext-T-Bracket-Tbl) to (149),
(148b), and (148c) we get the claim.

□

F.4 Soundness

F.4.1 Inaccessible case

Lemma 26 (Inaccessible values are related). If (𝑑,∅) ∈ S(𝑙), then for any non-arrow type ^

and non-function values 𝑣1, 𝑣2, s.t., 𝜌 ⊢𝑑 𝑣1 : ^ and 𝜌 ⊢𝑑 𝑣2 : ^ it must hold that 𝑣1 ∼𝑑,𝑙 𝑣2.

Proof. Induction over ^ , where due to −𝑐 ◦S mapping to A and the elements of the latter being
downwards closed w.r.t. ≼𝑑𝑠 the premise of (EquivConstout) holds vacuously. □

Proof of Lem. 1. Follows from Th. 4 and Lem. 26. □

F.4.2 Encoding and decoding are correct

Proof of Lem. 4. We use induction over derivation of 𝜌 ⊩𝑑 v : ^ discarding cases that are
impossible for values:

• Cases (T-Tbl) and (T-Record): by the induction hypothesis we know that all the entries are
pair-wise related, hence we can apply (EquivTblPW

out
) and (EquivRec

out
), respectively.

• Case (T-Const): we can directly apply either (EquivEqout) or (EquivEncEqout).
• Case (Ext-T-Bracket): 𝑣 = ⟨𝑐𝑠1 | 𝑐𝑠2⟩, (𝑝𝑠 , 𝑙) ̸⊑ 𝑑 , but due to the branches being typeable in the
same domain we must have (𝑝𝑠 , 𝑙) ⊑ 𝑑 , a contradiction.

• Case (Ext-T-Bracket-Enc): 𝑣 = ⟨𝑐𝑠1 | 𝑐𝑠2⟩, (𝑑,∅, 𝑙) ∉ S/𝑙 , the latter implies 𝑙 ≼ 𝑙 . Due to branches
being typeable in 𝑑 , we have (𝑑, 𝑠, 𝑙) ∈ S/𝑙 , and, hence (𝑑, 𝑠) ∈ S(𝑙). Using monotonicity of
−𝑐 ◦ S we derive (𝑑, 𝑠) ∈ S(𝑙), and we can apply (EquivConst

out
).

• Case (Ext-T-Bracket-Tbl): (𝑑0,∅) ∉ S(⊓𝑖𝑙𝑖 ), which implies 𝑙 ≼ 𝑙𝑖 for any 𝑖 . Now we can apply
the reasoning similar to (Ext-T-Bracket-Enc) and relate all the entries by (EquivConst

out
)

then finally applying (EquivTblAllout).
□

Proof of Lem. 2. We consider each name 𝑛 in order and then perform induction over derivation
of 𝑣1 ∼𝑙𝜌 (𝑛) 𝑣2, where 𝑣1 = Ω1 (𝑛) and 𝑣2 = Ω2 (𝑛).
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• Cases (EquivEqin) and (EquivEncEq
in
) are trivial since there are no brackets involved.

• Cases (EquivRecin), and (EquivTblPW
in
) follow easily from the induction hypothesis and

either (T-Tbl) or (T-Record).
• Case (EquivConstin). We know from the premise of the rule that ^ = (𝑝𝑠 , 𝑙) and from the
premise of the theorem that (𝑑0,∅) ∉ S(𝑙), so we can conclude that (𝑝∅, 𝑙) ̸⊑ 𝑑0 and apply
either (Ext-T-Bracket-Enc) or (Ext-T-Bracket).

□

F.4.3 Non-interference

Lemma 27 (Compatibility is monotone w.r.t. policy). If for all 𝑙 S(𝑙) ⊆ S′ (𝑙), then ^ ⊑ 𝑑 w.r.t.

S implies ^ ⊑ 𝑑 w.r.t. S′
.

Proof. Straightforward from the definition of ^ ⊑ 𝑑 . □

Lemma 28 (Typing is monotone w.r.t. policy). If for all 𝑙 S(𝑙) ⊆ S′ (𝑙), then 𝜌 ⊢𝑑 𝑒 : ^ w.r.t. S

implies 𝜌 ⊢𝑑 𝑒 : ^ w.r.t. S′
.

Proof. Induction over derivation of 𝜌 ⊢𝑑 𝑒 : ^ applying Lem. 27 where needed. □

Proof of Lem. 3. It is easy to see that for all 𝑙 S(𝑙) ⊆ S/𝑙 (𝑙), so the claim follows from Lem. 28.
□

Proof of Th. 1. Due to Lem. 1 we assume (𝑑,∅) ∉ S(𝑙). Consider an expression 𝑒 for which
know 𝜌 ⊢𝑑 𝑒 : ^ w.r.t. a given S. Now let us consider any level 𝑙 and any two stores Ω1 and
Ω2 satisfying 𝜌 , s.t., Ω1 ∼𝑑,𝑙𝜌 Ω2 w.r.t S and two values 𝑢1 and 𝑢2, 𝑒1 −→

Ω

∗ 𝑢1 and 𝑒 −→
Ω

∗ 𝑢2. Let


 = Ω1 ★ Ω2, by Lem. 17 we have ⌊
⌋𝑖 = Ω𝑖 , 𝑖 ∈ {1, 2}. By Lem. 2 from Ω1 ∼𝑑,⊥𝜌 Ω2 we derive that
⊩/𝑑 Ω1 ★ Ω2 : 𝜌 . Also, it is easy to see that for all 𝑙 S(𝑙) ⊆ S/𝑙 (𝑙), hence 𝜌 ⊢𝑑 𝑒 : ^ holds w.r.t. S/𝑙 .
As the derivation rules for ⊩𝑑 are a superset of those for ⊢𝑑 , we have 𝜌 ⊩𝑑 𝑒 : ^ and by subject
reduction Th. 8 we have 𝜌 ⊩𝑑 v : ^. Hence, we can apply Th. 7 to 𝑒 −→

Ω

∗ 𝑢1 and 𝑒 −→
Ω

∗ 𝑢2, which

gives us v such that 𝑒 =⇒



∗
v and ⌊v⌋𝑖 = 𝑢𝑖 , 𝑖 ∈ {1, 2}. Finally, it remains to apply Lem. 4 to derive

that 𝑢1 = ⌊v⌋1 ∼𝑑,⊥^ ⌊v⌋2 = 𝑢2. Since we chose Ω1, Ω2, 𝑢1, 𝑢2, and 𝑙 arbitrarily, we have shown
S-NI(𝑒)𝜌,𝑑 . □
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