
1

New Alternatives to Optimize Policy Classifiers
Vitalii Demianiuk, Sergey Nikolenko, Pavel Chuprikov, Kirill Kogan

Abstract—Growing expressiveness of services increases the size
of a manageable state at the network data plane. A service policy
is an ordered set of classification patterns (classes) with actions;
the same class can appear in multiple policies. Previous studies
mostly concentrated on efficient representations of a single policy
instance. In this work, we study space efficiency of multiple
policies, cutting down a classifier size by sharing instances of
classes between policies that contain them. In this paper we
identify conditions for such sharing, propose efficient algorithms
and analyze them analytically. The proposed representations can
be deployed transparently on existing packet processing engines.
Our results are supported by extensive evaluations.

I. INTRODUCTION

Transport networks satisfy requests to forward data in a
given topology. To guarantee desired data properties during
forwarding, network operators impose economic models im-
plementing various policies such as security or quality-of-
service. As network infrastructure becomes more intelligent,
the complexity of these policies is constantly growing.

Unfortunately, increasing manageable state on the data
plane has its limitations. Traditionally, service policies are
represented by packet classifiers whose implementations are
usually expensive (e.g., ternary content-addressable memories,
or TCAMs). Most existing works optimize each policy instance
separately (see Section VIII). In this work, we exploit other
alternatives to achieve additional efficiency of policy state
represented on the data plane. Our ideas hinge on the fact
that similar “classification patterns” (classes) are reused in
different policies, where each class consists of ternary-bit filters
determining a set of matched packet headers. Various vendors
already support the notion of classes in policy declarations [2],
[3] allowing to abstract and manage classification patterns
more efficiently. For instance, Cisco IOS supports up to 256
different QoS policies and up to 4096 classes per box [4].
In real deployments, the number of classes per policy ranges
from tens to hundreds depending on the application model [4].

The preliminary version of this paper entitled “New Alternatives to Optimize
Policy Classifiers” has been appeared at ICNP 2018 [1]. The work V. Demianiuk
and K. Kogan was partially supported by the Ariel Cyber Innovation Center in
cooperation with the Israel National Cyber Directorate in the Prime Minister’s
Office, and by the Data Science and Artificial Intelligence Research Center
at Ariel University. The work of Sergey Nikolenko shown in Sections III, IV,
and V (in particular, Theorems 2, 8, 9, 10) has been supported by the Russian
Science Foundation grant no. 17-11-01276.

V. Demianiuk and K. Kogan are with Ariel University, 40700 Ariel, Israel
(e-mail: vitalii@ariel.ac.il, kirillk@ariel.ac.il). S. Nikolenko is with National
Research University Higher School of Economics, 199034 St. Petersburg,
Russia, and also with Steklov Institute of Mathematics at St. Petersburg,
191023 St. Petersburg, Russia (e-mail: snikolenko@gmail.com). P. Chuprikov
is with IMDEA Networks Institute, 28918, Leganes, Spain, and also with USI
Lugano, 6900 Lugano, Switzerland (email: pavel.chuprikov@usi.ch).

© 2020 IEEE. Personal use of this material is permitted. Permission from
IEEE must be obtained for all other uses, in any current or future media,
including reprinting/republishing this material for advertising or promotional
purposes, creating new collective works, for resale or redistribution to servers
or lists, or reuse of any copyrighted component of this work in other works.
https://doi.org/10.1109/TNET.2020.2979400

A1,1c1

A1,2c2

A1,3c3

P1

A2,1c1

c4 A2,4

A2,2c2

P2A3,1c1

A3,3c3

A3,4c4

P3

Pcomb

A3,1

A2,1
A1,1

∗ ∗ ∗∣c1

0 ∗ 0∣c4

∗ ∗ 0∣c2

∗0 ∗ ∣c3

00 ∗ ∣c4

A2,4
A1,2
A2,2A1,3A3,3

A3,4

(a)

(b)

Fig. 1: (a) separate policies P1,P2,P3; (b) a representation
Pcomb that emulates the policies; class instances that have been
cut in Pcomb are shown in gray.

The size of a class depends on the complexity of represented
pattern.

Traditionally, a separate class instance is allocated for each
policy instance that contains it (see policies P1,P2, and P3 in
Fig. 1a). Each allocated class instance has an attached action
specified by the corresponding policy (in Fig. 1a, an action Ai,j

is attached to the instance of cj in the policy Pi). Since classes
are used in different policies, it allows us to look at combined
service policy representations, where ideally each class appears
only once, providing substantial savings in representations of
underlying classifiers in expensive memory such as TCAM.
Usually, the complexity of structural properties of classifiers
can be alleviated with additional classification lookups, but
this is a shareable resource for the overall processing. The
number of classification lookups per packet is one of the major
constraints limiting line-rate characteristics. For instance, Cisco
C12000 [5] supports at most six TCAM lookups per packet at
line-rate for all services. As a result, in this work we prefer to
consider combined policy representations that do not increase
the number of classification lookups. Informally, proposed
combined policy representations “emulate” the behaviours of
represented policies.

Figure 1 illustrates major differences between the traditional
attachment model, where a class instance is allocated per policy
containing it, and the proposed combined representation Pcomb.
Note that Pcomb stores a single instance of classes c1, c2, c3.
Class c4 is duplicated since c4 should be applied before c2 in
policy P2 and after c3 in policy P3.

To emulate the classification of an incoming packet header by
a policy Pi, the lookup process in Pcomb should be performed
only on class instances corresponding to the classes in Pi.
For instance, in Fig. 1b, during the classification by P3 the
first instance of c4 and c2 in Pcomb should be ignored. To
achieve this, we prepend filters of every class instance in
Pcomb and incoming headers by special extra bits as described
in Section III; e.g., on Fig. 1b the filters in c3 are prepended
by *0*, which indicates that c3 belongs to P1 and P3.

In this work we propose equivalent combined representations

https://doi.org/10.1109/TNET.2020.2979400

2

for a given set of policies. We show the condition for the
existence of ideal representations that contain only a single
instance for every class of all policies and methods for
constructing these representations. For the general case, we
propose methods for minimizing the total number of filters in
duplicated class instances. All proposed representations do not
increase the number of classification lookups, that is, we say
that they satisfy the single lookup constraint; in other words,
the lookup time complexity in such a representation is the
same as in a single policy of the same size.

The paper is organized as follows. In Section III we explore
ideal representations containing a single instance of every
class in combined policy representations. Section IV proves
that the proposed problem is intractable in the general case
and shows how to deal with non-ideal representations. In
Section V we propose two approximation algorithms and
study them analytically for the offline case. Although the
proposed algorithms can be extended for dynamic updates,
in Section VI we propose a new algorithm that captures the
right balance between time complexity and optimization results
with dynamic updates. All proposed algorithms are evaluated
in various settings in Section VII.

II. MODEL DESCRIPTION

In this section we first define the entities involved in the
packet classification process and introduce our notation. A
packet header H = (h1, . . . ,hw) is a sequence of bits hi ∈ H ,
hi ∈ {0, 1}, 1 ≤ i ≤ w; e.g., (1 0 0 0) is a 4-bit header.
We denote by H the set of all possible headers. A filter F =

(f1, . . . , fw) is a sequence of w values corresponding to the
header bits, but with possible values 0, 1, or ∗ (“don’t care”).
A header H matches a filter F if for every bit of H the
corresponding bit of F has either the same value or ∗. Two
filters are disjoint if there is no header that matches both filters.

Classes represent an intermediate level of abstraction: a class
c is a set of filters. We denote by w(c) the number of filters
in c. A header H matches a class c if H matches at least one
filter in c. Two classes (sets of filters) c and c

′ are disjoint,
denoted by c ⊥ c

′, if there are no headers matching both c and
c
′ (all filters of c and c′ are pairwise disjoint), otherwise, they

intersect.
To define a policy P over a given set of classes C, one

needs to select a set of classes CP ⊆ C belonging to P ,
specify a sequence S(P) containing each class from CP only
once, and associate an action with each class in CP . For an
incoming header, the action of a first matched class in S(P) is
returned. If an incoming header is not matched by any class in
S(P) then the policy default action is returned. Since classes
can intersect, a policy is defined by a sequence rather than
a set. Originally, classes were introduced to define common
classification patterns [2], [3] that can significantly simplify
policy management. In this way a single classification pattern
should not be redefined during the declaration of another policy.

Two policies P1 and P2 are equivalent if for every given
header both yield the same action. Note that different sequences
on the same set of classes CP can lead to several equivalent
policies due to possible pairwise disjointness of classes in

(a) (b)

Class Filter #1 #2 #3 #4 Action
c3 F1 0 1 ∗ ∗ A1

F2 ∗ 1 ∗ 0 A1

c2 F3 ∗ ∗ 0 0 A2

c1 F4 1 0 ∗ ∗ A3

c4 F5 0 0 ∗ ∗ A4
c1

c2

c3

c4

Fig. 2: (a) definition of the policy S(P) = c3, c2, c1, c4; (b)
partial order ≺P : c3 ⊥ c1, c3 ⊥ c4, and c1 ⊥ c4.

Cp. For instance, Figure 2a shows a policy P defined by
the sequence S(P) = c3, c2, c4, c1, which is equivalent to P ′

defined by S(P ′) = c3, c2, c1, c4 since c1 and c4 are disjoint.
To define policies that are equivalent to P on CP , we

introduce the following partial order ≺P of classes in CP .
We say that ci ≺P cj if at least one of the following conditions
is satisfied:

• ci intersects with cj , ci appears before cj in S(P), and
the actions assigned to ci and cj in P are different
(disjointness constraint);

• there is a class ck ∈ P such that ci ≺P ck and ck ≺P cj
(transitivity of the partial order).

For instance, Fig. 2a defines a policy P whose corresponding
partial order ≺P is illustrated on Fig. 2b. In all illustrations
of partial orders we omit arrows showing that ci ≺P cj if ci
precedes cj in ≺P that follow from transitivity.

Observation 1. The policy P ′ is equivalent to a policy P if
≺P ′ coincide with ≺P and each class in P ′ has the same action
as in P (the default actions in P and P ′ should coincide).

Informally, if we represent a policy P as a graph G with
vertices corresponding to classes of P and edges corresponding
to partial order constraints of ≺P , then any topological order
on the vertices of G forms a sequence of classes in the policy
that is equivalent to P .

We denote by P = {P1,P2, . . . P∣P∣} a set of ∣P∣ policies
over the same set of classes C; by ∣C∣, the number of classes
in C. Note that for an incoming header H , the corresponding
policy P is retrieved from internal switch data structures, where
the classification of H should be performed; in this case, we say
that H is coming in the context of the policy P . A combined
policy Pcomb representing a group of policies P ′

⊆ P emulates
P ′ if for any header H and any policy Pi ∈ P ′, the lookup
of H in Pi and the lookup of H in Pcomb in the context of
Pi yield the same action. Informally, this means that Pcomb

mimics the behaviour of any policy in P ′.
In general, a representation Pcomb implementing the classi-

fication in P can consist of more than one combined policy.
Due to the single lookup constraint, a policy in P should
be represented only by a single combined policy in Pcomb.
Therefore, in order to construct Pcomb, the policies in P should
be assigned into multiple disjoint groups P1

,P2
, . . . ,Pm,

where each group Pi is represented by a separate combined
policy P i

comb. By m we denote the number of groups. For every
header incoming in the context of a policy P ∈ P , the lookup
is done in P

i
comb corresponding to the group Pi containing

P . We say that Pcomb emulates P if each P
i
comb ∈ Pcomb

emulates the corresponding group of policies Pi.

3

III. IDEAL REPRESENTATIONS

In traditional policy representations, if a single class (clas-
sification pattern) participates in multiple policies, per-policy
instances of the class are allocated for every policy. Intuitively,
structural properties of induced policy classifiers should have
a significant impact on memory requirements. We say that
a combined representation Pcomb of multiple policies P is
ideal if Pcomb contains a single instance of every class from C.
For a given P , we propose a criteria of the existence of ideal
representations (satisfying the single lookup constraint) and
explain how to construct them. At this point, we assume that
original policies from P are represented by Pcomb consisting
of a single combined policy Pcomb; we will reconsider this
assumption in Section III-D.

A. Disjoint classes

We begin with the simplest structural property, class dis-
jointness, where any two different classes in C do not match
the same headers. In this case we can construct an ideal policy
Pcomb that contains all classes from C in any order. A header
H can be looked up in Pcomb instead of a configured policy
Pi, and if the first matched class c belongs to Pi (this can be
verified with any set membership data structure), the action
of c in Pi is returned. Otherwise, the classification result is
the default action in Pi since only a single class in Pcomb can
match H .

B. Price of generalization

We have seen that class disjointness guarantees the existence
of ideal representations. In Section III-C we will show that
this structural property is not a necessary condition for the
existence of ideal representations. Unlike the previous case,
if the first class in Pcomb matching a header H incoming
in the context of a policy Pi ∈ P does not belong to Pi,
there is no guarantee that Pcomb does not contain a class from
Pi matching H . Hence, to deal with more general structural
properties, where classes in C are not pairwise disjoint, we
must guarantee that the matched class c ∈ Pcomb belongs to
Pi. To implement this requirement, we prepend each filter of a
class c in Pcomb with the ternary policy prefix pp(c), and each
header H incoming in the context of Pi with the binary header
prefix ppi satisfying the following property: pp(c) matches
ppi if and only if c ∈ Pi. Note that both policy and header
prefixes have the same length. Such representations allow to
match a header incoming in the context of Pi only against the
classes in Pcomb belonging to the original policy Pi. One of
the possible variants of pp(c) and ppi satisfying the defined
above property can be the following: pp(c) is a ternary string
of length ∣P∣ such that pp(c)i = ∗ if c ∈ Pi and pp(c)i = 0
otherwise; ppi is a bit string 0 . . . 010 . . . 0 of length ∣P∣ that
has a 1 only at position i.

Fig. 3a shows a sample lookup of a header H to P1 in
Pcomb representing P = {P1,P2}, where C contains non-
disjoint classes (e.g., c1 and c2 are not disjoint in P1). Observe
that Pcomb with policy prefixes emulates P and is ideal. The
values in policy prefixes guarantee that only classes from P1

(a)

S(P1) = c3c1c2 S(P2) = c1c4c2

Pcomb ∶ pp

c1

c2

c3

∗ ∗ ∣c1

0 ∗ ∣c4

∗0 ∣c3

∗ ∗ ∣c2

c1

c2

c4

Lookup H in P1

1 0 H

1 0 H

1 0 H

(b)

c1

c2 c3

c4

Fig. 3: (a) P = {P1,P2} with C containing non-disjoint classes,
ideal Pcomb and policy prefixes; (b) Gjnt(P).

participate in the lookup. Theorem 2 shows that adding ∣P∣
extra bits per filter in Pcomb is unavoidable.

Theorem 2. For any l > 2, there exists a set P of l policies
such that P can be represented by an ideal Pcomb and the
length of prefixes should be at least l in any possible variant
pp(c) and ppi satisfying that pp(c) matches ppi if and only
if c ∈ Pi.

Proof. Consider a set P consisting of l policies over a set
C of 2

l − 1 different classes. A class ci ∈ C belongs to the
policy Pj ∈ P iff the jth bit in the binary representation of
i is 1. E.g., c5=001012 belongs to the policies P1 and P3. In
each policy P ∈ P , a class ci ∈ P precedes the class cj ∈ P
(ci ≺P cj) if i < j. Hence, for such P the order of classes in
the ideal Pcomb is unique and is defined by the class indices.

Note that each class ci in C belongs to a unique set of policies,
hence, there are should be at least 2

l different policy prefixes.
Thus, the length of pp(c) should be at least l

log23
= O(l). In

the remaining part of the proof, we are to show that the lower
bound on the policy prefix length is exactly l.

We say that the kth bit of a policy prefix pp(ci) is
aggregating if pp(ci)k is ’∗’ and at least two header prefixes
with two different values in the kth bit position are matched
by pp(ci). We denote by ∣pp(ci)∣∗ the number of aggregating
bits in ci. To prove the theorem, we are to show that for the
set of policies introduced above, ∣pp(c2l−1)∣∗ ≥ l in any valid
assignment of header and policy prefixes.

Consider a sequence of classes c7, c15, . . . , c2i−1, . . . , c2l−1.
The set of header prefixes matched by pp(c2i−1) consists of the
header prefixes matched by pp(c2i−1−1) and the header prefix
ppi. Thus, pp(c2i−1) contains aggregating bits at the same bit
positions as pp(c2i−1) and in at least one additional position.
Hence, ∣pp(c2i−1)∣∗ > ∣pp(c2i−1−1)∣∗ and ∣pp(c2l−1)∣∗ ≥

∣pp(c7)∣∗ + l − 3.
To finish the proof, it suffices to show that ∣pp(c7)∣∗ ≥ 3.

Consider the policy prefixes pp(c1), pp(c2), pp(c4) of the
classes c1 ∈ P1, c2 ∈ P2, c4 ∈ P3, where each one of them
belongs to a single policy. These prefixes do not contain
aggregating bits and at least two of them differs in at least
two positions not containing ∗. W.l.o.g., we can assume that
pp(c1), pp(c4) differ in at least two bit positions not containing
’∗’, hence, pp(c5) (c5 ∈ P1,P2) has two aggregating bits
at these positions. The policy prefix pp(c7) matches the
same header prefixes as pp(c5) and the prefix pp2. Thus,

4

∣pp(c7)∣∗ ≥ ∣pp(c5)∣∗ + 1 ≥ 3 and ∣pp(c2l−1)∣∗ ≥ l.

C. When are representations ideal?

In this part we formulate the condition that still guarantee
the existence of ideal representations and show how to build
them. For this purpose, we introduce the notion of a joint graph
G

jnt for a set of policies P over classes C; this is a directed
graph Gjnt(P) = (C,E

jnt), where Ejnt contains an edge from
ci to cj for ci, cj ∈ C if and only if ci ≺ cj in at least one
policy in P (see Fig. 4b for an example).

Theorem 3. For a given set of policies P , there exists an ideal
Pcomb if the corresponding Gjnt is acyclic.

Proof. If Gjnt is acyclic, we can construct an ideal representa-
tion from any topological order of the vertices of Gjnt: we put
classes into Pcomb in this order and prepend them by policy
prefixes. This representation is correct since for every Pi and
every c, c′ ∈ Pi such that c ≺Pi

c
′ the class c appears in Pcomb

before c′.

If Gjnt contains a cycle, then any possible linear ordering
of classes in Pcomb contradicts the order of classes in some
policy Pi, i.e., for each Pcomb there exists c, c′ ∈ Pi such that
c ≺Pi

c
′ but c′ appears before c in Pcomb. In this case, the

ideal representation Pcomb is correct only if for each pair of
classes c, c′ in Pcomb contradicting ≺Pi

, each header belonging
to the intersection of c and c′ is matched by a class preceding
c and c′ in S(Pi). Such property of Pcomb appears rarely on
practice and can not be verified in a polynomial time. Hence,
we suggest to use the acyclicity of Gjnt as a criteria of the
ideal representation existence.

The proof of Theorem 3 implies an algorithm that con-
structs an ideal representation if it exists. The time com-
plexity of this algorithm equals to the time TGjnt(P) =

O(∑P∈P (∣P ∣2 + ∣P ∣ ⋅D(P))) needed to construct Gjnt,
where D(P) is the number of intersecting class pairs from P
that have different attached actions.

D. Multiple combined policies

So far we have assumed that a given set of policies P
is represented by Pcomb consisting of a single Pcomb. In
this subsection, we consider Pcomb consisting of m combined
policies P 1

comb,P
2
comb, . . . ,P

m
comb.

Theorem 4. For a given set of policies P , if there exists an ideal
representation Pcomb consisting of multiple combined policies,
then there exists an ideal representation of P consisting of a
single combined policy Pcomb.

Proof. To prove the theorem, we construct an ideal Pcomb from
the ideal Pcomb in the following way: to obtain the sequence S
of classes in Pcomb we concatenate all class sequences defining
combined policies in Pcomb; then we prepend class instances
in S by policy prefixes as described in Section III-B. Since
each class in C appears only in a single combined policy of
Pcomb, the constructed Pcomb is an ideal representation.

Multiple combined policies in Pcomb can reduce two
different characteristics:

S(P1) = c2c1c3

S(P2) = c3c2c1c4

Pcomb: pp

c1

c2

c3

∗ ∗ ∣c1

0 ∗ ∣c4

∗0 ∣c3

∗ ∗ ∣c2

0 ∗ ∣c3

c1

c2

c3

c4

(a)

(b)

c1

c2 c3

c4

Fig. 4: (a) P = {P1,P2} and Pcomb with duplicated c3; (b)
G

jnt(P).

• plen(Pcomb), the total length of all extra prefixes in Pcomb

(in particular, if all class instances in P i
comb ∈ Pcomb are

disjoint then extra prefixes for P i
comb are unnecessary);

• lsize(Pcomb), the maximum number of filters involved
in a single lookup (which can optimize lookup energy
and time).

By the definition of an ideal Pcomb, the corresponding
partition P1

,P2
, . . . ,Pm of P into m disjoint groups satisfies

the following sharing condition: if Pi,Pj share a class then Pi

and Pj belong to the same group. The following observation
immediately follows from Theorems 3 and 4.

Observation 5. If there exists an ideal representation of a
given set of policies P , then any partition of P satisfying the
sharing condition defines an ideal Pcomb emulating P .

Let Pmax be a partition of P satisfying the sharing condition
with a maximal number of groups.

Theorem 6. If there exists an ideal representation of P , then
Pmax defines an ideal Pcomb with the minimum values of
plen(Pcomb) and lsize(Pcomb) among all ideal representa-
tions.

Proof. By definition of the sharing condition, Pmax is unique
and any partition of P satisfying the sharing condition can be
obtained from Pmax by merging the groups in Pmax. Since
merging groups can only increase the values of plen(Pcomb)
and lsize(Pcomb), the theorem immediately follows.

IV. NON-IDEAL REPRESENTATIONS

In this section we discuss how to deal with a given set of
policies whose representations cannot be ideal.

A. Conflict resolution among partial orders

We begin with an example. Fig. 4a illustrates two policies
P1 and P2. Since c2 ≺P1

c3 and c3 ≺P2
c2, there is no ideal

Pcomb satisfying partial orders of classes in both P1 and P2.
Fig. 4b shows the corresponding joint graph, and it indeed
contains a cycle. To satisfy the partial orders of P1 and P2 at
the same time, we can add an additional instance of c3 to Pcomb

with the corresponding bits of the policy prefix. In particular,
the sequence of classes in Pcomb shown on Fig. 4a is S =

5

c3c2c3c4c1; its subsequence c2c3c1 is compatible with partial
order ≺P1

, and another subsequence c3c2c4c1 is compatible
with partial order ≺P2

. Now Pcomb contains two instances of
c3: the first is used during classification in P2, and its policy
prefix is 0∗; the second instance is used during classification in
P1, and its policy prefix is ∗0. In this case Pcomb is non-ideal
but still emulates P1 and P2.

In general, to deal with incompatible partial orders in policies
we duplicate some instances of classes. Formally, a sequence
S defining the order of class instances in Pcomb is compatible
with a policy Pi if there exists a subsequence S′ of S that
consists of a single instance of every class in Pi and for any
two classes cj , ct in Pi, if cj ≺Pi

ct then cj appears before ct in
S′. Only instances of classes from this subsequence participate
in the classification by policy Pi, i.e., in the corresponding
Pcomb only for them the ith bit of the policy prefix is set to
∗, while for all other instances the ith bit of the policy prefix
is set to zero. Header prefixes are exactly the same as in the
case of ideal policies. The following observation immediately
follows.

Observation 7. There exists a Pcomb emulating a given P if
duplications of classes from C are allowed.

B. Problem statement

Clearly, the number of filters in classes should be taken into
account during class duplications. We denote by W

+(S) the
total overhead in filters from duplicated class instances in the
resulting sequence of classes S, i.e., the difference between
the total number of filters in all class instances from S and the
total number of filters in original classes without duplications.

Problem 1 (Policy Sequence Packing, PSP). Given a set of
policies P , find a sequence of classes S compatible with all
policies in P that minimizes W

+(S).

Theorem 8. PSP is NP-hard even for two policies, ∣P∣ = 2.

The proof can be found in the appendix. In the following,
we denote by ∣S∣ a number of class instances in S.

C. Optimal solution for PSP problem

If the partial orders of all policies in P are linear, the PSP
problem is a weighted version of the classical Shortest Common
Supersequence (SCS) problem [6]. For a set of strings, SCS
finds a string with a minimal total length containing all these
strings as subsequences. The algorithm in [6] finds an optimal
solution for the weighted version of SCS in O(∣C∣∣P∣) time,
hence, this algorithm can find an optimal solution of the PSP
problem but only if the number of policies is relatively small
and the partial orders of all policies in P are linear.

D. Multiple combined policies again

Similar to ideal representations, Pcomb consisting of multiple
combined policies does not reduce the number of maintained
filters compared to a representation consisting of a single Pcomb.
Note that the benefits from having multiple combined policies

Pcomb described in Section III-D remain the same for non-
ideal representations. For instance, the lengths of policy prefixes
can affect the memory requirements of a resulting Pcomb; to
incorporate them into the final objective, we can minimize
the total number of ternary bits in all maintained filters
(including policy prefix bits). Also, representations consisting
of multiple policies allow to reduce lookup complexity that
can be incorporated by bounding the number of filters in each
combined policy in Pcomb. The partition of P into multiple
groups addresses two fundamental tradeoffs: (1) the total length
of policy prefixes versus the number of filters in duplicated
class instances; and (2) the maximum number of filters in each
combined policy versus the number of filters in duplicated
class instances.

Recall that any Pcomb is obtained from a partition of P into
multiple groups, where each group is represented in Pcomb

by a single combined policy. For a fixed partition of P into
groups, the minimization of memory requirements (in bits) is
obtained from the minimization of the number of entries in
each combined policy since the lengths of the proposed policy
prefixes depends only on the number of policies in every group.
In the case of lookup complexity, the situation is similar. Hence,
the construction of a combined policy for each group can be
done by the proposed methods described below. We leave for
the future study the development of methods partitioning P
into multiple groups addressing both tradeoffs.

V. APPROXIMATION ALGORITHMS

In this section, we introduce several approximation algo-
rithms for PSP and study them analytically.

A. Feedback Vertex Set as a tool

Our algorithms for PSP will use algorithms for the Weighted
Feedback Vertex Set (WFVS) problem [7], which is NP-
complete. The feedback vertex set is a set of vertices in
a directed graph G = (V ,E) with weighted vertices such
that removing them forms an acyclic graph, and the WFVS
problem is to find a feedback vertex set of minimal total weight.
For instance, the work [8] proposes an algorithm for WFVS
with approximation factor O(log ∣V ∣ log log ∣V ∣), but there are
other alternatives [9]. In what follows we denote by α(G) the
approximation factor of an algorithm for the WFV S problem
on a graph G. Note that WFVS is not harder than PSP (see
the proof of Theorem 8). This is why the algorithms proposed
below exploit WFVS as a building block.

B. Algorithm ALLORONE

By Theorem 3 the main reason for class duplications are
cycles in the joint graph. The algorithm ALLORONE (AO)
constructs Gjnt and transforms it into an acyclic graph G

∗

whose topological order produces a valid sequence of classes
S for Pcomb.

AO finds a feedback vertex set V wfvs in Gjnt with minimal
total weight, where vertex weight equals the number of filters
in the corresponding class. By W (V) we denote the total
weight of vertices in V . An induced subgraph on vertices that

6

c1

c2 c3

c4

(a) (b) (c)

c1

c3

c4

c2c2

c1

c4

c2

c3

c2

c1

c2

c4

c3c3

c1

c4

c3

c2

c3

Fig. 5: (a) Gjnt; (b)-(c) two solutions depending on the values
of w(c3) and w(c2).

Algorithm 1 AO(P)

1: construct a graph Gjnt(P1, . . . ,Pl);
2: V

wfvs
←WFV S(Gjnt), with vertex weights w(c) = ∣c∣;

3: initialize G∗ as a subgraph of Gjnt induced by V \ V wfvs;
4: for each c ∈ V wfvs do
5: for each Pi containing c do
6: add to G∗ an instance c̃i of c;
7: for each Pi do
8: for each c ≺Pi

c
′ s.t. c or c′ are in V wfvs do

9: add edge (c̃i, c̃′i) to G∗; ▷ here c̃i = c if c ∉ V
wfvs

10: let S be a topological ordering of the vertices of G∗;
11: return S.

are not in V wfvs is acyclic, therefore, the corresponding classes
appear only once in S. For a class c ∈ V wfvs, the sequence S
contains a separate c instance for each policy containing c.

To transform G
jnt into an acyclic graph G∗, the algorithm

AO first removes all classes that are in V
wfvs (line 3 in

Algorithm 1). Then for every class c ∈ V
wfvs and every

policy Pi containing c, a vertex c̃i is added into G
∗ (lines

4-6); other vertices in G∗ will be connected with c̃i by edges
induced by the partial order on ≺Pi

(lines 7-9). A topological
order of the vertices of G∗ (line 10) forms a correct solution
for the PSP problem (see Theorem 9). Since G

∗ can be
constructed in at most TGjnt(P) time, the running time of
AO is TFVS(Gjnt)+ TGjnt(P), where TFVS(G) is the running
time of the algorithm for the WFVS problem.

Theorem 9. AO correctly solves the PSP problem.

Proof. If a graph G∗ is acyclic, its topological order of vertices
forms a correct S since all constraints introduced by partial
orders of policies are represented by edges in G

∗. So it is
sufficient to show acyclicity of G∗. The first step of AO
removes V wfvs from V , making the graph G

∗ acyclic. Note
that after adding a single vertex c̃i corresponding to the instance
of c in Pi with incident edges, the graph G∗ remains acyclic.
This invariant holds since adding c̃i does not connect any new
pair of vertices due to transitivity of ≺Pi

. Therefore, after
adding c̃i a new cycle in G∗ cannot appear.

As we have already mentioned, a joint graph Gjnt contains
edges induced by partial orders of originally given policies. To
test whether Gjnt is acyclic, it suffices to maintain only edges

c1

c2

c3

c4

S(P1) = c1c2c3c4

c1

c2

c3

c4

S(P2) = c1c2c3c4

c4

c3

c2

c1

S(P3) = c4c3c2c1

(b)

(a)

c1

c2 c3

c4

Fig. 6: PSP instance with ∣P∣ = 3 policies showing the lower
bound of AO: (a) the input P = P1,P2,P3; (b) the graph Gjnt.

for non-disjoint pairs of classes since other edges result from a
transitive closure of policy partial orders and cannot introduce
a cycle to Gjnt. On the other hand, for the correctness of AO
it is necessary to consider all edges of Gjnt, otherwise the
resulting feedback vertex set can lead to incorrect solutions.

Example 1. The following example illustrates AO running on
two policies from Fig. 4. The joint graph for these policies
has a cycle (see Fig. 5a); its FVS can be either V wfvs

= {c2}
or V wfvs

= {c3}. If w(c2) ≤ w(c3) then V
wfvs

= {c2} and
c2 is duplicated (Fig. 5b shows the corresponding G∗ and S).
Otherwise, AO duplicates c3 (see Fig. 5c).

Theorem 10. AO has an approximation factor at most (∣P∣−
1) ⋅ α(Gjnt).

Proof. Recall that in AO the found V
wfvs defines classes

appearing more than once in the resulting S, therefore,
W

+(S) ≤ (∣P∣ − 1) ⋅ W (V wfvs). Note that W (V wfvs) ≤

α(Gjnt)W (V wfvs
OPT), where V wfvs

OPT is FVS with the minimal total
weight. Thus, W

+(S) ≤ (∣P∣ − 1) ⋅ α(Gjnt)W (V wfvs
OPT).

To finish the proof it suffices to show that W (V wfvs
OPT) is less

than W
+(Sopt) for an optimal solution Sopt of the PSP problem.

In any solution of the PSP problem, classes appearing more than
once form a FVS in the graph Gjnt. The value of W (V wfvs

OPT)
is less than W (VSOPT

), where VSOPT
is a FVS corresponding

to Sopt. Thus, W (V wfvs
OPT) ≤W (VSOPT

) ≤ W
+(SOPT).

Theorem 11. The approximation factor of the AO algorithm
is at least ∣P∣ − 1.

Proof. The proof is by showing a hard example, where ∣P ∣ = l
policies are constructed from n different classes; each class
contains exactly one filter. The partial order of the first l − 1
policies is linear c1c2 . . . cn; the partial order of the last policy
is also linear but contains the same classes in the reversed
order cncn−1 . . . c1 (see Fig. 6a). In the corresponding graph
G

jnt each pair of vertices is connected by two edges with
different directions (see Fig. 6b). Any feedback vertex set of
G

jnt consists of (n − 1) vertices, therefore, the total overhead
W

+(S) incurred by AO is equal to (n − 1)(l − 1). For an
optimal solution SOPT = c1c2 . . . cn . . . c2c1, the overhead is
equal to W

+(SOPT) = n − 1.

Note that AO either creates a separate instance of a class

7

(a)

c1 c2

c3

c4

S(P1) = c1c2c3c4

c4

c1 c2

S(P2) = c4c1c2

c4

c3

c2

S(P3) = c4c3c2

(b)

c1,2
2 c1,3

2 c2,3
2

c1,2
4 c1,3

4 c2,3
4

c1,2
1 c1,3

3

(c)

c2,3
4

c1,2
1

c1,2
2

c1,3
3

c1
4

c3
2

Fig. 7: Illustration of the CS algorithm: (a) the input P = {P1,P2,P3}; (b)Gpair; the dashed line encloses V wfvs; (c) G∗.

c in S for every policy or has a common instance of c in S
for all policies limiting the optimization capabilities of the
algorithm. In the proof of Theorem 11, AO finds a suboptimal
S due to this limitation. One possible way to fix this is to
apply additional optimization described in Section V-D. For
the PSP instance in the proof of Theorem 11 these optimizations
allow to produce an optimal S, but in the general case they
do not provide guarantees on W

+(S). In Section V-C we will
introduce algorithms based on alternative principles that do
not require unnecessary constraints.

In the following theorem we show the inapproximability of
PSP by reduction from the SCS problem.

Theorem 12. Unless P = NP, there is no polynomial algorithm
for the PSP problem with a constant approximation factor on
W

+(S).

Proof. We reduce SCS on alphabet Σ to PSP of the same size
by setting C = Σ, and assigning a unit weight w(ci) = 1 to
every class ci ∈ C. Also, we interpret each string s ∈ Σ

∗ as a
separate policy in P whose partial order is linear and coincides
with s.

It is known that there is no algorithm for SCS with a constant
factor on the length of SCS unless P = NP [10]. The reduction
described above is correct only for SCS instances where all
letters in the same input string are different, which corresponds
to the natural constraint for classifiers that classes are not
repeated in the same input policy. However, the instance of
SCS used in [10] to show inapproximability of SCS never
uses a letter twice in the same input string. Thus, there is no
algorithm for the PSP problem with a constant approximation
ratio on the total weight W (S) of class instances in S and on
W

+(S) since W
+(S) ≤W (S) (unless P = NP).

Existence of sublinear approximation algorithms with respect
to ∣P∣ for the PSP problem is unclear; due to the reduction
in Theorem 12, such an algorithm would solve a special case
of the SCS problem with a sublinear approximation factor.
To the best of our knowledge, even for this special case the
existence of sublinear approximation algorithms for SCS is an
open problem.

C. Algorithm CLIQUESHARE

The efficiency of an algorithm based on WFVS heavily
depends on the information about S provided by FVS. In
the AO algorithm this information is very limited: FVS only
provides the set of classes appearing in S more than once.
To overcome this limitation, we propose another algorithm

Algorithm 2 CS(P)

1: construct the graph Gpair(P1, . . . ,Pl);
2: V

wfvs
←WFV S(Gpair), with vertex weights w(c) = ∣c∣;

3: for every c ∈ C do
4: Pc ← min. size partition of Pc into admissible subsets;
5: construct G∗ from ⋃c∈C Pc and P;
6: let S be a topological ordering of the vertices of G∗;
7: return S.

CLIQUESHARE (CS): for each class c, FVS in CS provides
the pairs of policies containing c that are not sharing the same
instance of c in S.

In the CS algorithm we construct another graph G
pair

allowing to operate with a finer resolution. Denote by Pc

the set of policies containing a class c. For each class c and
each subset A of two policies in Pc, Gpair contains a vertex
c
A. For each Pi and any two classes c1 ≺Pi

c2, Gpair has an
edge (cA1 , c

A
′

2) for all pairs of policies A,A
′
⊂ P containing

Pi (e.g., Fig. 7b shows a Gpair graph for the input P shown
on Fig. 7a).

At the beginning, CS finds a feedback vertex set V wfvs in
G

pair with minimal total weight, where the weight of a vertex
is equal to the number of filters in the corresponding class
(line 2 in Algorithm 2). If cA is in V wfvs then the resulting S
contains different instances of c for the policies Pi,Pj ∈ A. A
set of policies can share the same instance of a class c if for
any two policies from this set, the corresponding vertex for a
class c in Gpair is not in V wfvs, we call such sets admissible
subsets of Pc.

For each class c, CS computes a partition Pc of Pc into
admissible subsets, minimizing the total number of sets in Pc

(line 4 in Algorithm 2). For a class appearing only in a single
policy in P , the partition consists of a single admissible subset
containing this policy. Each set in Pc corresponds to a separate
instance of c in S. After that CS constructs an acyclic G∗, for
which a topological order of vertices forms a valid S. For each
admissible subset B ∈ Pc, the graph G∗ has a vertex cB . The
edges of G∗ are defined similarly to G

pair: there is an edge
(cB1 , c

B
′

2) for all c1, c2 ∈ C, B ∈ Pc1 ,B
′
∈ Pc2 such that there

exists a policy P ∈ B ∩B′ for which c1 ≺P c2.
To find a partition into admissible subsets, CS can use

the algorithm that greedily constructs admissible subsets with
running time O(∣Pc∣2). Alternatively, it can use an algorithm
based on dynamic programming that finds a partition with
minimal number of subsets in time O(3∣Pc∣∣Pc∣2). For both

8

algorithms, CS has the same approximation factor but the first
one has better time complexity, while the second algorithm
finds an optimal partition into admissible subsets.

Example 2. The following example illustrates CS running
on three policies (see Fig. 7a). The weights of all classes are
the same. At first CS constructs Gpair (see Fig. 7b), which
has (3

2
) = 3 vertices for c2 and c4 and one vertex for c1

and c3. Gpair has many cycles; one of its feedback vertex
sets with minimal total weight is V wfvs

= {c1,32 , c
1,2
4 , c

1,3
4 }.

The partitions of Pc1 and Pc3 consist of a single set since
the vertices for c1 and c3 in G

pair do not appear in V
wfvs.

For c2 and c4 optimal partitions into admissible subsets can
be Pc2 = {{P1,P2}, {P3}} and Pc4 = {{P1}, {P2,P3}}. The
resulting G∗ is acyclic (see Fig. 7c). Every topological order
on G∗ yields a valid S, e.g., c2,34 c

1,2
1 c

1,2
2 c

1,3
3 c

1
4c

3
2.

Note that CS and AO coincide in the case of two policies.
Observe that CS finds an optimal S for the example in the
proof of Theorem 11. In the following we prove that CS works
correctly and estimate its approximation factor.

Theorem 13. CS correctly solves the PSP problem.

Proof. Similar to Theorem 9, we only need to show that G∗

is acyclic. The construction of G∗ from G
pair is equivalent

to the following three-step procedure: (1) initialize G
∗ as

a subgraph of G∗ induced by all vertices cA such that the
policies Pi,Pj ∈ A belong to the same admissible subset of
Pc; (2) for each c ∈ C add vertices into G∗ for all admissible
subsets of Pc consisting of a single policy; (3) for each c ∈ C,
“shrink” vertices corresponding to policies belonging to the
same admissible subset.

A graph G∗ is acyclic after the first step since at least all
vertices in found FVS of Gpair are not included in G∗. After
the second step G∗ remains acyclic due to transitivity of partial
orders, which is similar to the proof of Theorem 9. To prove
that G∗ will remain acyclic after the third step, it is sufficient
to show that G∗ remains acyclic after every shrink. A shrink
produces a cycle in G∗ if and only if before this shrink G∗

had a path between two vertices corresponding to class with
policies in the same admissible subset. Assume that there is
such path w for a class c. W.l.o.g. let P1 be a policy whose
partial order defines the first edge of w, and P2 be a policy
whose partial order defines the last edge of w. The vertex cA,
where P1,P2 ∈ A has an outgoing edge to the second vertex
of w and has an incoming edge from penultimate vertex of w.
Hence, there is a cycle in G∗ containing a vertex cA which is
a contradiction to the assumption that G∗ has no cycles before
the current shrink.

Theorem 14. CS has an approximation factor of at most
α(Gpair)⌊ ∣P∣2

4
⌋.

Proof. First, we are to show that for a produced sequence S by
CS, W+(S) does not exceed the weight of the corresponding
V

wfvs. Each class c appearing t times in S increases the value
of W

+(S) by (t− 1)w(c). On the other hand, the found FVS
in Gpair should contain at least t− 1 vertices for c. Otherwise,
at least two admissible subsets corresponding to the instances

c1,3
5 c1,4

5 c2,3
5 c2,4

5

c1,2
5 c3,4

5

c1,3
1 c1,4

2 c2,3
3 c2,4

4

(b)c1 c2

c5

S(P1) = c2c1c5

(a)

c3 c4

c5

S(P2) = c3c4c5

c1 c3

c5

S(P3) = c5c1c3

c2 c4

c5

S(P4) = c5c2c4

Fig. 8: The PSP instance with ∣P∣ = 4 policies showing the
lower bound of CS : (a) the input P = P1,P2,P3,P4; (b) the
graph Gpair; the dashed line encloses V wfvs.

of c in S can be merged into a bigger admissible subset, which
is not possible for partitions constructed by CS. Therefore,
W

+(S) ≤W (V wfvs).
By any solution S′ of the PSP problem we can construct

an FVS in G
pair in the following way: if Pi and Pj do not

share an instance of c in S′, c ∈ Pi,Pj , then c{Pi,Pj} is in FVS.
Hence, as in Theorem 10, W (V wfvs) ≤ α(Gpair)W (V wfvs

OPT) ≤
α(Gpair)W (VSOPT

), where V
wfvs
OPT is FVS in G

pair with the
minimal total weight and VSOPT

is FVS in Gpair by which CS
produces an optimal sequence Sopt.

To finish the proof, we need to show that W (VSOPT
) ≤

⌊ l
2

4
⌋W+(S). Consider a class c belonging to lc policies in P

and appearing in SOPT t times. Denote by sc,i (where 1 ≤ i ≤
t), a number of policies in an i-th admissible subset. A set
VSOPT

can contain only cA vertices such that Pi,Pj ∈ A belong
to different admissible subsets; the number of such vertices is
at most Nc =

1
2
(l2c −∑t

i=1 s
2
c,i). It can be shown that for any

partition on admissible subsets, Nc ≤ ⌊ ∣P∣2
4

⌋ ⋅ (t − 1) 1. Hence,
a class c increasing W

+(SOPT) by (t − 1) ⋅ w(c) can also
increase W (VSOPT

) by the value not exceeding ⌊ ∣P∣2
4

⌋ ⋅ (t −
1) ⋅ w(c); summing this over all classes c ∈ C, we find that
W (VSOPT

) ≤ ⌊ ∣P∣2
4

⌋W+(S).

Theorem 15. The approximation factor of CS is at least
⌊ ∣P∣2

4
⌋.

Proof. We provide an example with ∣P ∣ = l policies and
n = ⌊ l

2

4
⌋+1 different classes. We add a class cn to all policies.

Also we enumerate all pairs of policies (Pi,Pj) such that
i ≤ ⌊ l

2
⌋ and j > ⌊ l

2
⌋, there are n − 1 such pairs. For each

enumerated pair (Pi,Pj) we add a class ck to policies Pi and
Pj , where k is a number of this pair. The class ck ≺Pi

cn and
ck ≻Pj

cn. For instance, on Fig. 8a the class c3 corresponding
to the third pair of policies (P2,P3) precedes c5 in P2 and
succeeds c5 in P3. The number of filters in classes is as follows:
∣ci∣ = x, i = 1 . . . n − 1, ∣cn∣ = x + 1.

A graph Gpair consists of three categories of vertices (see
Fig. 8b): (1) the n − 1 vertices corresponding to a class cn in

1The proof of this inequality consists of only cumbersome calculations so
we omit it.

9

the enumerated pairs of policies (in Fig. 8b, these vertices are
shown in purple); (2) the n − 1 vertices for all other classes
ci, where i < n; (in Fig. 8b, these vertices are orange); (3) the
vertices corresponding to cn in non-enumerated pairs of policies
which do not affect acyclicity of Gpair. (in Fig. 8b, these vertices
are white). The Gpair graph contains n − 1 bidirectional edges
between vertices of the first two types, which form a maximal
matching.

An FVS of Gpair with the minimal total weight V wfvs consists
of all vertices of the second category. Therefore, CS produces
S containing one copy of cn and two copies for each other
class; the total overhead is equal W

+(S) = (n − 1) ⋅ x. The
optimal solution for this example is SOPT = cnc1c2 . . . cn with
W

+(S) = x + 1; taking x arbitrarily big, we show the stated
lower bound.

To obtain an example with an arbitrarily large number of
classes, we take multiple instances of the proposed example
and combine them into one joint input: we merge policies Pi

with the same index i, and classes from different instances of
the example are different.

The graph G
pair can be constructed in time TGjnt(P) +

O(∣P∣2 ⋅ ∑P∈P ∣P ∣2). Hence, the running time of CS is
TGjnt(P) + O(∣P∣2 ⋅ ∑P∈P ∣P ∣2) + TFV S(Gpair) + O(∣C∣ ⋅
Tpart(∣P∣)), where Tpart is the time complexity of the
algorithm finding partitions into admissible subsets. The
approximation factor of CS is quadratic on ∣P∣ and worse than
for AO for all ∣P∣ > 3. Nevertheless, we will see in Section VII
that CS performs better on average since it operates with a
better resolution.

Note that AO and CS find optimal solutions in ‘simplest’
PSP instances. For example, AO and CS always find optimal
solutions if there exists an ideal representation or if an optimal
solution for two policies contains at most one duplicated
class instance. Various heuristics that are not based on FVS
cannot guarantee solution optimality even in these simplest PSP
instances. Unfortunately, AO has its own constraints limiting
optimization capabilities. The proposed CS overcomes these
limitations preserving AO advantages.

D. Additional optimizations

Both AO and CS algorithms can be further improved by ad-
ditional optimizations. First, we define GREEDYGLUING (GG)
optimization that greedily shrink pairs of vertices of an acyclic
graph G with the maximal possible sum of weights while G
remains acyclic. GG can be added to both AO and CS as the
penultimate step, to simplify G∗ before taking its topological
order. The time complexity of GG is O(n3), where n is the
number of vertices in the corresponding graph.

Another optimization procedure comes from the fact that
proposed algorithms do not usually guarantee that S will be
a local minimum solution, i.e., it might happen that one can
remove some class instances from the resulting S and still
get a valid sequence for Pcomb. The LOCALDESCENT (LD)
procedure is defined in the following way: given S, try to
remove classes from S one by one, while S remains compatible
with all policies from P . LD can be implemented in time
O(∣S∣ + ∑P∈P (∣P ∣ + D(P))). We will see in Section VII

S ∶

P ∶

. . . c1 . . . c2 . . . c3 c4 . . . c5

c1 c2 c3
c

c4 c5

j

Fig. 9: Insert of an instance for a new class c ∈ P into the
j-th position of S; the white instances are not in Lj or Rj

that LD does bring improvements in practice, although it has
no effect on the worst case bounds.

VI. DYNAMIC UPDATES

Although economic models rarely change, support of dy-
namic updates in represented policies can become important in
some deployment scenarios. We support two basic operations
on policies in P: (1) delete(P , c), remove a class c from a
policy P ; (2) insert(P , c, csucc), add a class c to a policy P
such that c appears in S(P) just before csucc. Each insert/delete
operation modifies a sequence of classes S that represents the
corresponding Pcomb. Note that after each operation policy
prefixes should be updated assuring that Pcomb emulates P .

Hypothetically, we can generalize the proposed algorithms
in Section V to support dynamic operations by maintaining
dynamically graphs Gjnt

,G
pair

,G
∗ and the sequence S. But

running dynamic versions of AO and CS may be very
time-consuming. They are better suited for environments
where updates happen in batches. In this section, we propose
another algorithm implementing the right balance between
time complexity and optimization efficiency in a dynamic
environment.

When we delete a class c from a policy P , we remove
an instance of c in S if this instance corresponds only to P .
After a delete operation S remains correct: if necessary, we can
further optimize S by LD optimization to remove redundant
class instances (DELETE() in Algorithm 3).

The case of an insert operation is more complicated. Let c
be the class that is inserted into policy P and let Cprec be the
set of classes preceding c in ≺P , and Csucc be the set of classes
succeeding c in ≺P . If S is already compatible with the new P
the insertion is done. Otherwise, to make S compatible with the
new P , we insert to the jth position inside S an instance of c
and instances of some classes in Cprec and Csucc (INSERT AT()
in Algorithm 3), where the jth position is selected to minimize
the total number of filters in inserted instances.

Let Lj be the longest subsequence of S[0 . . . j−1] satisfying
the following conditions:
(1) Lj contains at most one instance of every class from P ;
(2) an instance of c1 is in Lj only if for each c2 ≺P c1 the

instance of c2 appears in Lj before c1.
Similarly, we define a subsequence Rj in the suffix of S starting
from the j-th position. But in this case condition (2) is reversed:
an instance of c1 is in Rj only if for each c2, c1 ≺P c2, the
instance of c2 appears in Rj after c1. We insert into the jth
position an c instance, class instances in Cprec that are not
in Lj and class instances in Csucc that are not in Rj in order
satisfying ≺P . Figure 9 illustrates this insertion procedure for

10

a policy P : Lj = c1c3, Rj = c4, and class instances c2, c5 are
inserted together with the instance of c.

Theorem 16. All class instances inserted to the jth position
of S make S compatible with a new P .

Proof. Let Ij be an inserted sequence of class instances to
the j-th position in S (line 8 in Algorithm 3). Let R′j be a
subsequence of Rj that does not contain class instances from
Lj . Note that condition (2) from the definition of Rj is also
satisfied for R′j . Consider a subsequence of S constructed by
the concatenation of Lj , Ij ,R

′
j . This subsequence contains one

instance of each class from the new P and satisfies ≺P .

Corollary 1. An insert operation is correct.

When j > 0 and S[j − 1] is an instance of an inserted class
c, we can remove the (j − 1)th element of S since a new copy
of c is inserted (line 11 in Algorithm 3).

Denote by I an array of ∣S∣ + 1 integeres where I[j] is a
total number of filters in all inserted class instances in case
when c is inserted into the jth position of S. Let δ(S, j, c) be
a function such that δ(S, j, c) = 1 if j > 0 and S[j − 1] = c,
otherwise, δ(S, j, c) = 0. Then:

Ij = (1 − δ(S, j, c)) ⋅ ∣c∣ +∑c′∈Cprec\Lj
∣c′∣ +∑c′∈Csucc\Rj

∣c′∣
Among all potential positions to insert a class c, we choose

one minimizing I[j]. Let L and R be arrays such that
L[j] = ∑c′∈Cprec∩Lj

∣c′∣ and R[j] = ∑c′∈Csucc∩Rj
∣c′∣; then

the expression for I[j] can be rewritten as

Ij = ∣c∣ +∑c′∈Cprec∪Csucc
∣c′∣ − (Lj +Rj + δ(S, j, c) ⋅ ∣c∣)

We compute elements of L,R and then select insertion position
j maximizing value of L[j]+R[j]+ δ(S, j, c) ⋅ ∣c∣ (INSERT()
in Algorithm 3).

We calculate elements of L in the order of increasing j
(CALCULATE L() in Algorithm 3). During this computation, we
maintain the sets Lj and Lj∩Cprec. If S[j] ∉ Lj and all classes
preceding S[j] in P belong to Lj then Lj+1 = Lj ∪ {S[j]},
otherwise Lj+1 = Lj . Therefore, we can compute Lj+1 (and
Lj+1 ∩ Cprec with L[j + 1] respectively) from Lj in time
proportional to the number of classes preceding S[j] in P . To
speed up this process, when adding S[j] to Lj+1 we look at all
classes that succeed S[j] and mark those for which all classes
preceding them in P are in Lj+1 (lines 22-23 in Algorithm 3,
class c1 becomes marked if d(c1) = 0). For a subsequent
position j

′, we add S[j ′] into Lj ′+1 if and only if S[j ′] is
not in Lj ′ and S[j ′] corresponds to a marked class (line 19
in Algorithm 3). This implementation allows to compute all
elements of L in time O(∣S∣ + ∣P ∣ +D(P)).

The values of R elements can be computed in the reverse
order of j in a similar way. Therefore, the total time complexity
of the insert operation equals O(∣S∣ + ∣P ∣ +D(P)).

We can achieve additional memory savings by running
LD on the resulting S. Since the time complexity of LD
is O(∣S∣ + ∑P∈P (∣P ∣ + D(P))), we can run it after each
insert or delete operation.

VII. EXPERIMENTAL EVALUATION

Algorithm 3 Dynamic Updates

1: procedure DELETE(S,P , c)
2: remove from S an instance of c corresponding only to P
3: remove c from P
4: S← LD(S)
5: end procedure

6: procedure INSERT AT(S,P , c, j)
7: insert set← (Cprec \ Lj) ∪ {c} ∪ (Csucc \ Rj)
8: I← sequence of classes from insert set ordered by ≺P

9: insert I into S at jth position
10: if j > 0 and S[j − 1] = c then
11: remove j − 1th element of S
12: end procedure

13: procedure CALCULATE L(P)
14: L[0] = tempL = 0
15: L = {}
16: for each c ∈ P do
17: d(c)← number of c1 such that c1 ≺P c

18: for j ∈ [0, ∣S∣ − 1] do
19: if d(S[j]) = 0 and S[j] ∉ P then
20: L = L ∪ {S[j]}
21: if c ∈ Cprec then tempL = tempL + ∣S[j]∣
22: for all c1 such that S[j] ≺P c1 do
23: d(c1) = d(c1) − 1

24: L[j + 1] = tempL
▷ After jth iteration L denotes Lj

25: return L
26: end procedure

27: procedure INSERT(P , c, csucc)
28: update S(P) by adding c immediately before csucc
29: if S is compatible to P then exit
30: L← CALCULATE L(P)
31: R← CALCULATE R(P)

▷ CALCULATE R is symmetric to CALCULATE L
32: j ← arg max0≤j≤n(L[j] +R[j] + δ(S, j, c) ⋅ ∣c∣)
33: INSERT AT(S,P , c, j)
34: S← LD(S)
35: end procedure

A. Combined representations

Algorithms. We compare the algorithms AO, CS, weighted
SCS, UPPERBOUND (UB) that simply concatenate all S(Pi),
Pi ∈ P , into a single S, and MAJORITYMERGE (MM)
proposed in [6] with (3, 1)-look-ahead extensions [11], [12]
(see Algorithm 4). We have also extended the algorithms with
the GG heuristic and LD. For each considered algorithm we
also evaluate its version extended by additional optimizations.
In particular, we extend all algorithms by LD, and additionally
extend graph-based algorithms AO and CS by GG.

Methodology. Unfortunately, de-facto standard frameworks
to generate filter-based classifiers such as ClassBench [13] do
not have class-based level of abstraction and, hence, cannot

11

UB SCS MM AO CS
UB + LD SCS + LD MM + LD AO + GG+ LD CS + GG+ LD

5 10 15

1

2

3

k

(a) ∣P∣ = 5, ∣CP ∣ = 80, ∣C∣ = 100

W
+
/W

(C
)

60 80 100

1

2

3

∣CP ∣
(b) ∣P∣ = 5, k = 10, ∣C∣ = 100

2 4 6 8

1

2

3

∣P∣
(c) k = 10, ∣CP ∣ = 80, ∣C∣ = 100

Fig. 10: Relative overhead W
+/W (C) as a function of: (a) average degree of intersection k; (b) number of classes in each

policy P; (c) number of policies ∣P∣

Algorithm 4 MM(P)

• F(c,P) – set of policies containing every policy P s.t.
c ∈ P and there is no class c′ preceeding c in ≺P

• P/c – instance of the PSP problem with c removed from
policies in F(c,P)

1: find (c1, c2, c3) maximizing
(∣F(c1,P)∣ − 1) ⋅ w(P, c1)+

(∣F(c2,P \ c1)∣ − 1) ⋅ w(c2)+
(∣F(c3, (P \ c1) \ c2∣ − 1) ⋅ w(c3),

breaking ties by (∣F(c1,P)∣ − 1) ⋅ w(c1);
2: if P \ c1 = ∅ then return c1 ▷ return c1 if P/c1 empty
3: S = c1MM(P \ c1) ▷ concat c1 with the recursive result
4: return S

be used for the declaration of multiple policies based on the
same set of classes C. Hence, we experimented on synthetic
data produced in a way similar to intended usage:
(1) generate sizes of classes from C;
(2) pick which classes are non-disjoint;
(3) generate a set of policies P on classes from C, with each

policy consisting of the same number of classes
For simplicity, we assume that each class in every policy is
associated with a different action.

For every setting, we performed 100 experiments with
random instances and different random seeds (virtually all
algorithms are randomized because the topological order on
G
∗ is not unique in most cases); we show averaged results.

Implementation of our experiments is available at [14], and
the results are summarized on Fig. 10. The Y-axis in all plots
shows the relative overhead W

+(S)/W (C), where W (C) is
the total size of all classes from C; we show relative values
of the overhead because absolute values change a lot from
instance to instance.

The number of filters in a combined representation signif-
icantly depends on the structure of given policies. There are
three main characteristics of the input structure: (1) number of
intersecting classes, (2) average number of policies that contain

a class, (3) total number of policies. We generate inputs with
different values of these characteristics. Fig 10a shows how
the relative overhead grows as the average number of classes k
intersecting with each c ∈ C increases. In Fig. 10b we vary the
number of classes in each policy ∣CP ∣. In these experiments
each class belongs to ∣CP ∣

∣C∣ ⋅ ∣P∣ policies on average. The inputs
in Fig. 10c consist of various numbers of policies.

The algorithm CS with GG and LD postprocessing (the
strongest combination in our experiments) outperforms other
algorithms regardless of input characteristics; this confirms
our hypothesis that this algorithm is the best choice for a vast
majority of inputs with different policy structures. Evaluations
also show that CS with GG and LD constructs a representation
with only 20-50% of the filters in duplicated instances of
classes compared to representations where policies are stored
separately. In what follows we describe our evaluation results
for all algorithms in detail.

Additional optimizations: The evaluations show that class
sharing introduces substantial savings, and changes the linear
behavior to nearly logarithmic in Fig. 10.c; even UB with LD
reduces the overhead for additional instances of classes (e.g., by
23-63% in Fig. 10a); still it is worse than the other considered
algorithms. Additional optimizations are especially effective
for UB, SCS, and AO algorithms saving up to 52%, 38%,
and 47% respectively in the second set of experiments (see
Fig. 10b); CS can be also improved by additional optimizations,
but in this case its effect is not substantial (at most 17% in all
experiments) since produced results are close to local minimum.
Comparing SCS with and without LD in Fig. 10a where the
former remains constant, one can see how exploiting partial
orders can significantly affect optimization results, and how the
effect diminishes as classes start to intersect more (k increases
in Fig. 10a); this is due to optimality of SCS in the case of
linear orders.

AO: In the third set of experiments (see Fig. 10.c), AO
without optimizations outperforms UB without optimizations
by up to 45% (see Fig. 10.b) but performs up to 1.7 times
worse than CS without optimizations. In the first and second
set of experiments, AO without optimization always performs

12

DYN1 DYN2 DYN3 CS + GG + LD

0 20 40 60 80

1.2

1.3

1.4

1.5

∣CP ∣ for P ∈ Ps

(a) ∣CP ′∣ = 80 for P ′ ∈ Pf

W
+
/W

(C
)

60 70 80 90 100

0.7

0.8

0.9

1

∣CP ∣ for P ∈ Ps

(b) ∣CP ′∣ = 60 for P ′ ∈ Pf

0 10 20 30 40

0.7

0.8

0.9

1

of replaced classes

(c) ∣CP ′∣ = 60 for P ′ ∈ Pf

Fig. 11: Experiments with dynamic updates: (a) insertion scenario; (b) removal scenario; (c) replacement scenario.
worse than MM without optimizations (see Fig. 10.a-b). The
main reason for this is a low resolution of AO adding for
every class c either a single instance of c or a separate instance
for every policy containing c. CS is proposed specifically to
overcome this limitation.

CS: This algorithm significantly outperforms other evaluated
algorithms. Moreover, CS without optimizations constructs
class sequences with almost the same total number of filters in
duplicated class instances as AO with GG and LD. For inputs
generated with parameters (k = 10, ∣CP ∣ = 80, ∣C∣ = 100,
∣P∣ = 5), CS with GG and LD requires only 40% of the
filters in the duplicated instances of classes versus UB on
average (see Fig. 10c).

B. Dynamic updates

Algorithms. In this part we evaluate insert/remove operations
introduced in Section VI and compare the following three
variations:
(1) DYN1 applies LD after each insert/remove operation;
(2) DYN2 applies LD only after all operations;
(3) DYN3 never apply LD.
Denote by Pf a set of policies after all applied dynamic
operations. We compare S obtained after all operations with
offline results of CS with GG and LD calculated on Pf .

Methodology. We denote by Ps a set of policies just before
dynamic operations. In all our experiments we first choose a
final set of policies Pf in the same way as for the algorithms
in the offline case. Then we generate an initial set of policies
Ps from Pf , and for Ps we construct S by CS with GG and
LD, then we apply insert/remove operations one by one in a
random order transforming Ps into Pf .

We evaluate three different scenarios, each scenario defined
by the method constructing Ps from Pf :
(1) insertion scenario (Fig. 11a): generate Ps by removing

classes from Pf , and then run dynamic updates to insert
back the removed classes until we get Pf .

(2) removal scenario (Fig. 11b): generate Ps by inserting new
classes to Pf , and then run dynamic updates to remove
classes until we get Pf ;

(3) replacement scenario (Fig. 11c): obtain Ps by replacing a
certain number of classes in each policy of Pf , and run

dynamic updates to remove classes that are in Ps and not
in Pf and insert classes that are in Pf and not in Ps.

All policies in Pf (or in Ps) have the same number of
classes. In all experiments ∣C∣ = 100, ∣P∣ = 5, ∣k∣ = 10.

As we can see in Fig. 11, the usage of LD is extremely
important after modification operations. In the case of class
removals (Fig. 11b), one can apply LD after all operations,
and the result will stay the same. In the insertion scenario
(Fig. 11a), if no more than 25% of new classes are added
(i.e. the ∣CP ∣ is at least 60), running LD after every operation
(DYN1) do not introduce additional gains versus running LD
after the whole batch (DYN2). Otherwise, the results become
worse if we apply LD after all inserts, e.g., the difference
goes up to 4% as we decrease ∣CP ∣ (see, again, Fig. 11a); the
algorithm that never uses LD (DYN3) looses in all scenarios,
e.g., by 17% in the removal scenario in Fig. 11b, ∣CP ∣ = 85,
and much more as we increase ∣CP ∣.

In the scenario with 8 replaced classes in each policy (see
Fig. 11c) the number of filters in duplicated class instances in
the output is at most 14% larger than in the case of CS with
GG and LD. Finally, the algorithm DS constructing Pf with
dynamic inserts from scratch (∣CP ∣ = 0 in Fig. 11a) builds a
combined representation that has 19% more filters in duplicated
class instances then CS with GG and LD. On the other hand,
the time complexity of DS is significantly smaller than the
time complexity of CS with GG and LD; hence, DS can be
used as the offline algorithm constructing S in cases when time
complexity of constructing the representation is a bottleneck.
Note that DS does not provide any guarantees on the resulting
S even for P that does have an ideal representation.

Our evaluation study confirms the usefulness of class-based
abstractions in optimization of policy classifiers both based
on sequences and partial orders of classes, but the former
perform much better. In the offline case, CS with GG and
LD significantly outperform all other evaluated algorithms.
The proposed algorithm for dynamic updates implements
the fundamental trade-off between the number of filters in
duplicated class instances and the time spent on the construction
of resulting representations.

VIII. PREVIOUS WORK

Finding efficient representations of a single instance of

13

v1 v2

v3v4

c3
1

c1,2 c1
2

c1
1 c3

4
c4,2

c3
2

c2,3 c3
3

c1
4

c3,4c1
3

c1
1 c2

1 c3
1

c1
2 c2

2 c3
2

c1
3 c2

3 c3
3

c1
4 c2

4 c3
4

c1
1 c2

1 c3
1

c1,2 c1
2 c2

2 c3
2

c2,3

c3
4 c2

4 c1
4

c3,4 c1
3 c2

3 c3
3

c4,2

(a) G (b) P1 (c) P2 (d) Gjnt

Fig. 12: Illustration for the proof of Theorem 8: (a) a graph G; (b) - (c) P1,P2 constructed from G; (d) Gjnt for P = {P1,P2}.

a packet classifier is a well-known problem. Approaches to
this problem fall into two major categories: software-based
and hardware-based solutions. These solutions mainly span
three techniques: decision trees, hashing, and coding-based
compression [15]–[20]. In decision trees, finding a matching
filter is based on tracing a path in a decision tree (e.g., [15]);
however, there is an inherent tradeoff between space and time
complexity in these approaches. Hash-based solutions that
match a packet to its possible matching filters have also been
considered [17]. Other works discuss efficient hardware imple-
mentations that have no native representation. E.g., TCAMs
have no native support for ranges, so one has to translate ranges
into TCAM-friendly prefix matching representations [18]–[22].
Unfortunately, in most cases these methods apply only to
filters with a limited number of fields or perform poorly as it
increases. The works [23]–[28] exploits structural properties of
classifiers, in particular order-independence, to create equivalent
classifiers with a fewer number of fields. Representations of
order-independent classifiers as Boolean expressions and the
relation to the MinDNF problemis studied in [29]. In [30], per-
flow per-policy class state is implemented when the same policy
can be attached to multiple flows. In general, the previous works
mostly concentrate on optimizing a single instance of policy
classifier, whereas we concentrate on combined optimizations
of multiple different policies. The problem of splitting a policy
into several lookup tables while minimizing the maximal local
table size has been broadly studied in [31], [32] and found to
be an intractable optimization problem. The main contribution
of [33] is an optimal algorithm with linear time complexity
that can handle dynamic fields at the price of a single bit of
metadata prepended to every packet. The work [34] introduces
the notion of classification with a controlled error allowing to
trade the classification accuracy for the additional efficiency
of classifier representations. Note that all these proposals are
orthogonal to our combined policy representations and can be
used alongside with it.

The FVS and especially the SCS problems are among
classical NP-complete problems, with plenty of research
devoted to them. In particular, the work [35] presents general
ideas of “splitting” vertices that we extend here, [36] proves
hardness results for SCS and similar problems, though [37]
studies parameterized complexity and shows that SCS problem
is already W [1]-hard. The work [38] presents approxima-
tion results for SCS(2, k) and SCS(2, 3) that also employ
a reduction to the FVS problem. The work [39] presents
Reduce-Expand techinuqe that is effective only for SCS

instances in which the same characters often appear in the
same strings. [12] surveys practical SCS heuristics.

IX. CONCLUSION

In this work, we exploit new alternatives to optimize policy
classifiers, introducing novel techniques that operate on the
inter-policy level. We show how to share classes among
policies and analyze the proposed algorithms analytically. Our
evaluation study has shown significant gains from sharing
classes and using partial policy orders on a single network
element, varying the structural properties of represented policies
on a single network element.

APPENDIX

Proof of Theorem 8. The proof is by reduction from the
WFVS problem [7]. For a directed weighted on vertices graph
G = (V ,E) we construct P = {P1,P2} such that S with a
minimal overhead corresponds to FVS in G with the minimal
total weight.

For each vertex vi ∈ V we create three classes: an input
class c1i , a middle class c2i , and an output class c3i . For each
edge (vi, vj) ∈ E we create a class ci,j . The size of input
classes is equal to the weights of the corresponding vertices
in G, the size of all other classes is equal to the total weight
of all vertices in V plus 1. For each vi ∈ V , the class c2i
intersects with both c

1
i and c

3
i . For each (vi, vj) ∈ E, the

class ci,j intersects with both c
3
i and c

1
j . All other classes

are pairwise disjoint. Each class in every policy is associated
with a different action. The policy P1 contains the classes
c
1
i , c

3
i for each vi ∈ V and classes cj,k for each (vj , vk) ∈ E.

The partial order of P1 is defined as follows: for each edge
(vi, vj) ∈ E ∶ c3i ≺P1

ci,j ≺P1
c
1
j . The policy P2 consists of

all classes c1i , c
2
i , c

3
i for each vi ∈ V . The partial order of P2

is defined as follows: for each vi ∈ V ∶ c1i ≺P2
c
2
i ≺P2

c
3
i .s

Figure 12 illustrates the reduction from FVS to PSP for a graph
G consisting of four vertices.

Each feedback vertex set VG in a graph G corresponds to
FVS VGjnt in a joint graph Gjnt for P1,P2: c1i ∈ VGjnt ≡ vi ∈
VG. Since the size of each non-input class is bigger than the
weight of all vertices in G, an optimal FVS in G corresponds
to the optimal FVS in Gjnt. Each valid S corresponds to FVS
in Gjnt consisting of the classes appearing twice in S . On the
other hand, each FVS in Gjnt produces a valid S by AO. In
the case of two policies W

+(S) is equal to the weight of the
corresponding FVS in G

jnt. Thus, the algorithm for PSP on
two policies finds an optimal FVS in Gjnt and G.

14

REFERENCES

[1] V. Demianiuk, S. Nikolenko, P. Chuprikov, and K. Kogan, “New
alternatives to optimize policy classifiers,” in ICNP, Sept 2018, pp.
121–131.

[2] “Qos: Modular qos command-line interface configuration guide, cisco
ios,” https://www.cisco.com/c/en/us/td/docs/ios-xml/ios/qos mqc/configuration/15-
mt/qos-mqc-15-mt-book/qos-mqc.html.

[3] “Class of service configuration guide,”
https://www.juniper.net/documentation/en US/junos11.1/information-
products/topic-collections/security/software-all/class-of-service/index.html.

[4] “Configuring modular QoS packet classification,”
http://www.cisco.com/c/en/us/td/docs/routers/
xr12000/software/xr12k r4-2/qos/configuration/guide/qc42clas.html.

[5] “Cisco xr 12000 series gigabit ethernet line cards,”
https://www.cisco.com/c/en/us/products/collateral/routers/xr-12000-
series-router/product data sheet0900aecd803f856f.html.

[6] D. E. Foulser, M. Li, and Q. Yang, “Theory and algorithms for plan
merging,” Artif. Intell., vol. 57, no. 2-3, pp. 143–181, 1992.

[7] M. R. Garey and D. S. Johnson, Computers and Intractability: A Guide
to the Theory of NP-Completeness. NY: W. H. Freeman & Co., 1979.

[8] G. Even, J. (Seffi) Naor, B. Schieber, and M. Sudan, “Approximating
minimum feedback sets and multicuts in directed graphs,” Algorithmica,
vol. 20, no. 2, pp. 151–174, Feb 1998.

[9] C. Demetrescu and I. Finocchi, “Combinatorial algorithms for feedback
problems in directed graphs,” Inf. Process. Lett., vol. 86, no. 3, pp.
129–136, 2003.

[10] T. Jiang and M. Li, On the approximation of shortest common superse-
quences and longest common subsequences. Berlin, Heidelberg: Springer
Berlin Heidelberg, 1994, pp. 191–202.

[11] S. Kasif, Z. Weng, A. Derti, R. Beigel, and C. DeLisi1, “A computational
framework for optimal masking in the synthesis of oligonucleotide
microarrays,” Nucleic Acids Research, vol. 30, no. 20, p. e106, 2002.

[12] K. Ning and H. Leong, “Towards a better solution to the shortest common
supersequence problem: the deposition and reduction algorithm,” BMC
Bioinformatics, vol. 7, no. Suppl 4, p. S12, 2006.

[13] D. E. Taylor and J. S. Turner, “Classbench: a packet classification
benchmark,” IEEE/ACM Trans. Netw., vol. 15, no. 3, pp. 499–511, 2007.

[14] “New alternatives to optimize policy classifiers,”
https://github.com/PolicyCompressor/PolicyCompr.

[15] B. Vamanan, G. Voskuilen, and T. N. Vijaykumar, “EffiCuts: optimizing
packet classification for memory and throughput,” in SIGCOMM, 2010,
pp. 207–218.

[16] H. Song and J. S. Turner, “ABC: Adaptive binary cuttings for multidi-
mensional packet classification,” IEEE/ACM Trans. Netw., vol. 21, no. 1,
pp. 98–109, 2013.

[17] S. Dharmapurikar, H. Song, J. S. Turner, and J. W. Lockwood, “Fast
packet classification using bloom filters,” in ANCS, 2006.

[18] V. Srinivasan, G. Varghese, S. Suri, and M. Waldvogel, “Fast and scalable
layer four switching,” in SIGCOMM, 1998.

[19] A. Bremler-Barr and D. Hendler, “Space-efficient tcam-based classifi-
cation using gray coding,” IEEE Trans. Computers, vol. 61, no. 1, pp.
18–30, 2012.

[20] O. Rottenstreich and I. Keslassy, “Worst-case TCAM rule expansion,”
in INFOCOM, 2010.

[21] O. Rottenstreich, I. Keslassy, A. Hassidim, H. Kaplan, and E. Porat, “On
finding an optimal TCAM encoding scheme for packet classification,” in
INFOCOM, 2013.

[22] V. Demianiuk and K. Kogan, “How to deal with range-based packet
classifiers,” in SOSR, 2019, pp. 29–35.

[23] K. Kogan, S. Nikolenko, W. Culhane, P. Eugster, and E. Ruan, “Towards
Efficient Implementation of Packet Classifiers in SDN/OpenFlow,” in
HotSDN, 2013.

[24] K. Kogan, S. Nikolenko, O. Rottenstreich, W. Culhane, and P. Eug-
ster, “SAX-PAC (Scalable And eXpressive PAcket Classification),” in
SIGCOMM, 2014.

[25] K. Kogan, S. I. Nikolenko, P. Eugster, A. Shalimov, and O. Rottenstreich,
“FIB efficiency in distributed platforms,” in ICNP, 2016, pp. 1–10.

[26] S. I. Nikolenko, K. Kogan, G. Rétvári, E. R. Bérczi-Kovács, and
A. Shalimov, “How to represent ipv6 forwarding tables on ipv4 or
MPLS dataplanes,” in INFOCOM Workshops, 2016, pp. 521–526.

[27] P. Chuprikov, K. Kogan, and S. I. Nikolenko, “General ternary bit strings
on commodity longest-prefix-match infrastructures,” in ICNP. IEEE
Computer Society, 2017, pp. 1–10.

[28] A. Kesselman, K. Kogan, S. Nemzer, and M. Segal, “Space and speed
tradeoffs in TCAM hierarchical packet classification,” J. Comput. Syst.
Sci., vol. 79, no. 1, pp. 111–121, 2013.

[29] C. Umans, “The minimum equivalent DNF problem and shortest
implicants,” J. Comput. Syst. Sci., vol. 63, no. 4, pp. 597–611, 2001.

[30] K. Kogan, S. Nikolenko, P. Eugster, and E. Ruan, “Strategies for
Mitigating TCAM Space Bottlenecks,” in HOTI, 2014.

[31] Y. Kanizo, D. Hay, and I. Keslassy, “Palette: Distributing tables in
software-defined networks,” in INFOCOM, 2013, pp. 545–549.

[32] N. Kang, Z. Liu, J. Rexford, and D. Walker, “Optimizing the ”one big
switch” abstraction in software-defined networks,” in CoNEXT, 2013, pp.
13–24.

[33] P. Chuprikov, K. Kogan, and S. I. Nikolenko, “How to implement complex
policies on existing network infrastructure,” in SOSR, 2018, pp. 9:1–9:7.

[34] V. Demianiuk, K. Kogan, and S. I. Nikolenko, “Approximate classifiers
with controlled accuracy,” in INFOCOM, April 2019, pp. 2044–2052.

[35] V. G. Timkovsky, “Ten etudes on shortest common nonsubsequence and
supersequence approximations,” Unpublished manuscript, 1993.

[36] V. G. Timkovskii, “Complexity of common subsequence and superse-
quence problems and related problems,” Cybernetics, vol. 25, no. 5, pp.
565–580, Sep 1989.

[37] M. Fellows, M. Hallett, and U. Stege, “Analogs & duals of the mast
problem for sequences & trees,” Journal of Algorithms, vol. 49, no. 1,
pp. 192 – 216, 2003.

[38] Z. Gotthilf and M. Lewenstein, “Improved approximation results on the
shortest common supersequence problem,” in SPIRE, 2009, pp. 277–284.

[39] P. Barone, P. Bonizzoni, G. Della Vedova, and G. Mauri, “An approxi-
mation algorithm for the shortest common supersequence problem: An
experimental analysis,” in SAC1 2001, 01 2001, pp. 56–60.

Vitalii Demianiuk Vitalii Demianiuk is a postdoc-
toral fellow at the Ariel University. He completed his
Ph.D. studies at the Steklov Institute of Mathematics
at St.Petersburg in 2019. While pursuing his PhD he
worked as a Research Assistant at IMDEA Networks
Institute, Madrid. He obtained his M.Sc. from the
ITMO University, St. Petersburg in 2016. His re-
search interests include packet classification, software
defined networks, network function virtualization,
and combinatorial optimization.

Sergey Nikolenko Sergey Nikolenko is an Associate
Professor at the Higher School of Economics at St.
Petersburg, Russia, and a Laboratory Head at the
Steklov Institute of Mathematics at St. Petersburg,
Russia. He is doing research in machine learning
(deep learning, Bayesian methods, natural language
processing, and more), analysis of algorithms (al-
gorithms for networking, competitive analysis, the-
oretical computer science), and mathematics. He
obtained his Ph.D. degree from the Steklov Institute
of Mathematics in 2009 and his M.Sc. from the St.

Petersburg State University in 2005.

Pavel Chuprikov Pavel Chuprikov received his
Ph.D. degree from the Higher School of Economics,
Moscow after completing Ph.D. studies at the Steklov
Institute of Mathematics at St.Petersburg. While
pursuing his PhD he worked as a Research Assistant
at IMDEA Networks Institute, Madrid. Currently,
Pavel is a Postdoctoral researcher at the Università
della Svizzera Italiana. His research interests include
software defined networking, online algorithm design,
and dependent types.

Kirill Kogan Kirill Kogan is a Senior Lecturer at
Ariel University. He received his PhD from Ben-
Gurion University (Israel) at 2012. He is a former
Technical Leader at Cisco Systems, where he worked
during 2000-2012. He was a Postdoctoral Fellow
at University of Waterloo and Purdue University
during 2012-2014. His current research interests are
in design, analysis, and implementation of networked
systems, broadly defined.

	Introduction
	Model Description
	Ideal Representations
	Disjoint classes
	Price of generalization
	When are representations ideal?
	Multiple combined policies

	Non-Ideal Representations
	Conflict resolution among partial orders
	Problem statement
	Optimal solution for PSP problem
	Multiple combined policies again

	Approximation algorithms
	Feedback Vertex Set as a tool
	Algorithm AllOrOne
	Algorithm CliqueShare
	Additional optimizations

	Dynamic updates
	Experimental evaluation
	Combined representations
	Dynamic updates

	Previous Work
	Conclusion
	References
	Biographies
	Vitalii Demianiuk
	Sergey Nikolenko
	Pavel Chuprikov
	Kirill Kogan

