
New Alternatives to Optimize Policy Classifiers
Vitalii Demianiuk1,2, Sergey Nikolenko2, Pavel Chuprikov1,2 and Kirill Kogan1

1IMDEA Networks Institute, Madrid, Spain
2Steklov Institute of Mathematics at St. Petersburg, Russia

Email: {vitalii.demianiuk, pavel.chuprikov, kirill.kogan}@imdea.org, snikolenko@gmail.com

Abstract—Growing expressiveness of services increases the size
of a manageable state at the network data plane. A service policy
is an ordered set of classification patterns (classes) with actions;
the same class can appear in multiple policies. Previous studies
mostly concentrated on efficient representations of a single policy
instance. In this work, we study space efficiency of multiple
policies, cutting down a classifier size by sharing instances of
classes between policies that contain them. In this paper we
identify conditions for such sharing, propose efficient algorithms
and analyze them analytically. The proposed representations can
be deployed transparently on existing packet processing engines.
Our results are supported by extensive evaluations.

I. INTRODUCTION

Transport networks satisfy requests to forward data in a
given topology. To guarantee desired data properties during
forwarding, network operators impose economic models im-
plementing various policies such as security or quality-of-
service. As network infrastructure becomes more intelligent,
the complexity of these policies is constantly growing.

Unfortunately, increasing manageable state on the data
plane has its limitations. Traditionally, service policies are
represented by packet classifiers whose implementations are
usually expensive (e.g., ternary content-addressable memories,
or TCAMs). Most existing works optimize each policy instance
separately (see Section VIII). In this work, we exploit other
alternatives to achieve additional efficiency of policy state
represented on the data plane. Our ideas hinge on the fact
that similar “classification patterns” (classes) are reused in
different policies. Various vendors already support the notion
of classes in policy declarations [1], [2] allowing to abstract and
manage classification patterns more efficiently. For instance,
Cisco IOS supports up to 256 different QoS policies and up
to 4096 classes per box [3]. In real deployments, the number
of classes per policy ranges from tens to hundreds depending

The work of Vitalii Demianiuk, Pavel Chuprikov, and Kirill Kogan was
partially supported by a grant from the Cisco University Research Program
Fund, an advised fund of Silicon Valley Community Foundation. The work
of Sergey Nikolenko shown in Sections III, IV, and V (in particular,
Theorems 1, 4, 5, 6) has been supported by the Russian Science Foundation
grant no. 17-11-01276. The work of Kirill Kogan was also partially supported
by the Region al Government of Madrid on Cloud4BigData grant S2013/ICE-
2894.

© 2018 IEEE. Personal use of this material is permitted. Permission from
IEEE must be obtained for all other uses, in any current or future media,
including reprinting/republishing this material for advertising or promotional
purposes, creating new collective works, for resale or redistribution to servers
or lists, or reuse of any copyrighted component of this work in other works.
https://doi.org/10.1109/ICNP.2018.00022

A1,1c1

A1,2c2

A1,3c3

P1

A2,1c1

c4 A4,2

A2,2c2

P2A3,1c1

A3,3c3

A3,4c4

P3

Pcomb

A3,1

A2,1
A1,1

c1

A2,4c4
A1,2
A2,2

c2

A1,3A3,3
c3

A3,4c4

(a)

(b)

Fig. 1: (a) separate policies; (b) a representation Pcomb that
emulates the policies; class instances that have been cut in
Pcomb are shown in gray.

on the application model [3]. The size of a class depends on
the complexity of represented pattern.

Traditionally, a separate class instance is allocated for each
policy instance that contains it (see Fig. 1a). Since classes are
used in different policies, it allows us to look at combined
service policy representations, where ideally each class appears
only once, providing substantial savings in representations of
underlying classifiers in expensive memory such as TCAM.
Usually, the complexity of structural properties of classifiers
can be alleviated with additional classification lookups, but
this is a shareable resource for the overall processing. The
number of classification lookups per packet is one of the major
constraints limiting line-rate characteristics. For instance, Cisco
C12000 [4] supports at most six TCAM lookups per packet at
line-rate for all services. As a result, in this work we prefer to
consider combined policy representations that do not increase
the number of classification lookups. Informally, proposed
combined policy representations “emulate” the behaviours of
represented policies.

Figure 1 illustrates major differences between the traditional
attachment model, where a class instance is allocated per policy
containing it, and the proposed combined representation Pcomb.
Note that Pcomb stores a single instance of classes c1, c2, c3.
Class c4 is duplicated since c4 should be applied before c2 in
policy P2 and after c3 in policy P3.

In this work we propose semantically equivalent combined
representations for a given set of policies. We show a necessary
and sufficient condition for the existence of ideal representa-

https://doi.org/10.1109/ICNP.2018.00022

tions that contain only a single instance for every class of all
policies and methods for constructing these representations. For
the general case, we propose methods for minimizing the total
number of rules in duplicated class instances. All proposed
representations do not increase the number of classification
lookups, that is, we say that they satisfy the single lookup
constraint; in other words, they do not increase lookup time
complexity versus lookup time in a single policy.

The paper is organized as follows. In Section III we explore
necessary and sufficient conditions of ideal representations
containing a single instance of every class in combined policy
representations. Section IV proves that the proposed problem
is intractable in the general case and shows how to deal
with non-ideal representations. In Section V we propose two
approximation algorithms and study them analytically for
the offline case. Although the proposed algorithms can be
extended for dynamic updates, in Section VI we propose a
new algorithm that captures the right balance between time
complexity and optimization results with dynamic updates.
All proposed algorithms are evaluated in various settings in
Section VII.

II. MODEL DESCRIPTION

In this section we first define the entities involved in the
packet classification process and introduce our notation. A
packet header H = (h1, . . . ,hw) is a sequence of bits hi ∈ H ,
hi ∈ {0, 1}, 1 ≤ i ≤ w; e.g., (1 0 0 0) is a 4-bit header.
We denote by H the set of all possible headers. A filter F =

(f1, . . . , fw) is a sequence of w values corresponding to the
header bits, but with possible values 0, 1, or ∗ (“don’t care”).
A header H matches a filter F if for every bit of H the
corresponding bit of F has either the same value or ∗. Two
filters are disjoint if there is no header that matches both filters.

Classes represent an intermediate level of abstraction: a class
c is a set of filters. We denote by w(c) the number of filters
in c. A header H matches a class c if H matches at least one
filter in c. Two classes (sets of filters) c and c

′ are disjoint,
denoted by c ⊥ c

′, if there are no headers matching both c and
c
′ (all filters of c and c′ are pairwise disjoint).

To define a policy P , one needs to specify a sequence
S(P) over a set of classes CP (where each class appears only
once), a set of actions AP , and a function αP ∶ CP → AP

associating an action with every class. For an incoming packet,
the action of a first matched class in CP is returned. Since
classes can intersect (match the same headers), a policy is
defined by a sequence rather than a set. Originally, classes
were intoduced to define common classification patterns [1], [2]
that can significantly simplify policy management. In this way
a single classification pattern should not be redefined during
the declaration of another policy. Two policies P1 and P2 are
equivalent if for every given header both yield the same action.
Note that different sequences on the same set of classes CP
can lead to several equivalent policies due to possible pairwise
disjointness of classes in Cp. We denote by ≺P a partial order
of classes in CP corresponding to all semantically equivalent

(a) (b)

Class Filter #1 #2 #3 #4 Action
c3 F1 0 1 ∗ ∗ A1

F2 ∗ 1 ∗ 0 A1

c2 F3 ∗ ∗ 0 0 A2

c1 F4 1 0 ∗ ∗ A3

c4 F5 0 0 ∗ ∗ A4 c1

c2

c3

c4

Fig. 2: (a) definition of the policy S(P) = c3, c2, c1, c4; (b)
partial order ≺P : c3 ⊥ c1, c3 ⊥ c4, and c1 ⊥ c4.

policies on CP . For instance, Fig. 2a defines a policy P whose
corresponding partial order ≺P is illustrated on Fig. 2b.

We denote by P = {P1,P2, . . . P∣P∣} a set of policies over
the same set of classes C; by ∣C∣, the number of classes in C.
Also we denote by A a set of actions of all policies in P .

We say that Pcomb emulates P if for any header H and any
policy Pi ∈ P , the lookup of H in Pi and lookup of H in
Pcomb in the context of Pi yield the same action. Informally,
Pcomb mimics the behaviour of P . For simplicity in some
places we call Pcomb representation as a policy.

III. IDEAL REPRESENTATIONS

In traditional policy representations, if a single class (clas-
sification pattern) participates in multiple policies, per-policy
instances of the class are allocated for every policy. Intuitively,
structural properties of induced policy classifiers should have a
significant impact on memory requirements. We call a combined
representation of multiple policies P that contains only one
instance of every class from C an ideal representation. For a
given P , we identify necessary and sufficient conditions for the
existence of ideal representations (satisfying the single lookup
constraint) and explain how to construct them. At this point
we assume that policies initially given in P are represented
by a single combined policy Pcomb; we will reconsider this
assumption in Section III-D.

A. Disjoint classes

We begin with the simplest structural property, class dis-
jointness, where any two different classes in C (except the
default class with the catch-all filter that every policy in P is
appended with) do not match the same headers. In this case we
can construct an ideal policy Pcomb that contains all non-default
classes from C in any order appended with a single instance of
the default class. A header can be looked up in Pcomb instead
of a configured policy Pi, and if the matched class belongs to
Pi (this can be verified with any set membership data structure),
the corresponding actions are executed. Otherwise, actions of
the default-class in Pi are executed.

B. Price of generalization

We have seen that class disjointness guarantees the existence
of ideal representations. In Section III-C we will show that this
structural property is not a necessary condition for the existence
of ideal representations. To deal with more general structural

(a)

P1 = c3c1c2 P2 = c1c4c2

Pcomb = c1c4c3c2
pp

c1

c2

c3

∗ ∗ ∣c1

0 ∗ ∣c4

∗0 ∣c3

∗ ∗ ∣c2

c1

c2

c4

Lookup H in P1

1 0 H

1 0 H

1 0 H

(b)

c1

c2 c3

c4

Fig. 3: (a) P = {P1,P2} with C containing non-disjoint classes,
ideal Pcomb and policy prefixes; (b) Gjnt(P).

properties, where classes in C are not pairwise disjoint, we
must guarantee that the matched class c ∈ Pcomb belongs to
Pi and not to any other non-disjoint class with c in C.

To implement this requirement, we prepend in the con-
structed Pcomb each filter of a class c with the ternary policy
prefix pp(c) ∈ {0,∗}∣P∣, where ∣P∣ is the number of policies
in P and pp(c)i = ∗ if c ∈ Pi and pp(c)i = 0 otherwise. To
classify a given header H in Pi, H is also prepended with a
binary header prefix ppi corresponding to the policy Pi, where
ppi is a bit string 0 . . . 010 . . . 0 of length ∣P∣ that has a 1
only at position i. All prefixes have the same length. Note
that a prefix pp(c) matches ppi if and only if c ∈ Pi. Such
representations allow to match a header in Pcomb only against
the classes that belong to the original policy Pi.

Figure 3a shows a sample lookup of a header H to P1

in Pcomb representing P = {P1,P2}, where C contains non-
disjoint classes (e.g., c1 and c2 are not disjoint in P1). Observe
that Pcomb with policy prefixes emulates P and is ideal. The
values in policy prefixes guarantee that only classes from P1

participate in the lookup.
Theorem 1 shows that adding ∣P∣ extra bits per filter in

Pcomb is unavoidable.

Theorem 1. For any l > 2 there exists a set of policies P ,
∣P∣ = l, such that at least ∣P∣ extra bits must be prepended
to every filter of a class c ∈ C instance to satisfy the property
that pp(c) matches ppi if and only if c ∈ Pi.

Proof. Consider a set P consisting of l policies over a set C
of 2

l − 1 different classes. For any two different classes ci and
cj , the sets of policies containing ci and cj differ; we denote
them by Pci and Pcj respectively. Note that each non-empty
subset of P is a set of policies containing some class c.

Consider two classes ci and cj such that Pci ⊂ Pcj ; all
header prefixes ppk matching to pp(ci) should match to
pp(cj). It means that pp(ci) and pp(cj) have either equal
bits on corresponding positions or have one of them equal to
∗. Also there is no sense to set the bit pp(ci)k to ∗ and the
bit pp(cj)k to 0 or 1 for some position k since in this case in
all header prefixes matching pp(ci), the bit at position k must

equal pp(cj)k. Thus, the number of ∗ in pp(ci), which we
denote by ∣pp(ci)∣∗, is strictly less than in pp(cj).

Consider a sequence of classes c2, c3, . . . , cl such that
∣Pci∣ = i and Pci−1 ⊂ Pci . Such a sequence can be constructed
starting from any class appearing only in two policies. Then

∣pp(cl)∣∗ ≥ ∣pp(cl−1)∣∗ + 1 ≥ . . . ≥ (l − 2) + ∣pp(c2)∣∗
The length of prefixes is at least ∣pp(cl)∣∗ ≥ ∣pp(c2)∣∗+ l−2.
To finish the proof, it suffices to show that there exists a class
c2 such that ∣Pc2∣ = 2 and ∣pp(c2)∣∗ ≥ 2.

If there exists a class c̃ appearing in only one policy Pc̃, and
∣pp(c̃)∣∗ ≥ 1, then as c2 we can choose any class that belongs
to Pc̃ and some other policy. If such c̃ does not exist, consider
three classes c̃i, c̃j , c̃k such that ∣Pci∣ = ∣Pcj ∣ = ∣Pck∣ = 1.
Prefixes pp(c̃i), pp(c̃j), pp(c̃i) do not contain ∗; therefore, at
least two of these three prefixes differ in at least two positions.
Suppose that pp(c̃i) and pp(c̃j) differ in two positions, so for
the class c2 with Pc2 = Pc̃i ∪ Pc̃j the prefix pp(c2) has ∗ at
these two positions.

C. Necessary and sufficient conditions for ideal representations

In this part we formulate necessary and sufficient conditions
that still guarantee the existence of ideal representations and
show how to build them. For this purpose, we introduce the
notion of a joint graph Gjnt for a set of policies P over classes
C; this is a directed graph G

jnt(P) = (C,E
jnt), where Ejnt

contains an edge from ci to cj for ci, cj ∈ C if and only if
ci ≺ cj in at least one policy in P (see Fig. 4b for an example).

Theorem 2. For a given set of policies P , there exists an ideal
Pcomb if and only if the corresponding Gjnt is acyclic.

Proof. If G
jnt contains a cycle, then any possible linear

ordering of classes in Pcomb will contradict the order of classes
in some policy Pi, i.e., there will exist c, c′ ∈ Pi such that
c ≺Pi

c
′ but c′ appear before c in Pcomb. Therefore, an ideal

representation does not exist in this case.
If Gjnt is acyclic, we can construct an ideal representation

from any topological order of the vertices of Gjnt: we put
classes into Pcomb in this order and prepend them by class
prefixes. This representation is correct since for every Pi and
every c, c′ ∈ Pi such that c ≺Pi

c
′ the class c appears in Pcomb

before c′.

The proof of Theorem 2 implies a straightforward algorithm
that allows to check if an ideal representation exists and
construct it in time O(∣C∣ + ∣Ejnt∣).

D. Multiple combined policies

So far we have assumed that a given set of policies P is
represented by a single Pcomb. Note that the single lookup
constraint requires that all classes of the same policy in P
are assigned into the same representing Pcomb. Note also that
multiple policies Pcomb in a final representation cannot make
an ideal representation possible relative to a single Pcomb since
all policies containing the same class should belong to the
same Pcomb in an ideal representation.

P1 = c2c1c3

P2 = c3c2c1c4

Pcomb = c3c2c3c4c1
pp

c1

c2

c3

∗ ∗ ∣c1

0 ∗ ∣c4

∗0 ∣c3

∗ ∗ ∣c2

0 ∗ ∣c3

c1

c2

c3

c4

(a)

(b)

c1

c2 c3

c4

Fig. 4: (a) P = {P1,P2} and Pcomb with duplicated c3; (b)
G

jnt(P).

IV. NON-IDEAL REPRESENTATIONS

In this section we discuss how to deal with a given set of
policies whose representations cannot be ideal.

A. Conflict resolution among partial orders

We begin with an example. Fig. 4a illustrates two policies
P1 and P2. Since c2 ≺P1

c3 and c3 ≺P2
c2, there is no ideal

Pcomb satisfying partial orders of classes in both P1 and P2.
Fig. 4b shows the corresponding joint graph, and it indeed
contains a cycle. To satisfy the partial orders of P1 and P2 at
the same time, we can add an additional instance of c3 to Pcomb

with the corresponding bits of the policy prefix. In particular,
the sequence of classes in Pcomb shown on Fig. 4a is S =

c3c2c3c4c1; its subsequence c2c3c1 is compatible with partial
order ≺P1

, and another subsequence c3c2c4c1 is compatible
with partial order ≺P2

. Now Pcomb contains two instances of
c3: the first is used during classification in P2, and its policy
prefix is 0∗; the second instance is used during classification in
P1, and its policy prefix is ∗0. In this case Pcomb is non-ideal
but still emulates P1 and P2.

In general, to deal with incompatible partial orders in policies
we duplicate some instances of classes. Formally, a sequence
of classes S is compatible with a policy Pi if there exists a
subsequence S′ of S that consists of a single instance of every
class in Pi and for any two classes in Pi, if ci ≺Pi

cj then ci
appears before cj in S′. Only instances of classes from this
subsequence participate in the classification by policy Pi, i.e.,
only for them the ith bit of the policy prefix is set to ∗, while
for all other instances the ith bit of the policy prefix is set to
zero. Header prefixes are exactly the same as in the case of
ideal policies. The following observation immediately follows.

Observation 3. There exists a Pcomb emulating a given P if
duplications of classes from C are allowed.

B. Problem statement

Clearly, the number of filters in classes should be taken into
account during class duplications. We denote by W

+(S) the

Algorithm 1 AO(P1 . . . ,Pl)

1: construct a graph Gjnt(P1, . . . ,Pl);
2: V

wfvs
=WFV S(Gjnt), with vertex weights w(c) = ∣c∣;

3: initialize G∗ as a subgraph of Gjnt induced by V \ V wfvs;
4: for each c ∈ V wfvs do
5: for each Pi containing c do
6: add to G∗ an instance c̃i of c;
7: for each Pi do
8: for each c ≺Pi

c
′ s.t. c or c′ are in V wfvs do

9: add edge (c̃i, c̃′i) to G∗; ▷ here c̃i = c if c ∉ V
wfvs

10: let S be a topological ordering of the vertices of G∗;
11: return S.

total overhead in filters from duplicated class instances in the
resulting sequence of classes S, i.e., the difference between
the total number of filters in all class instances from S and the
total number of filters in original classes without duplications.

Problem 1 (Policy Sequence Packing, PSP). Given a set of
policies P , find a sequence of classes S compatible with all
policies in P that minimizes W

+(S).

Theorem 4. PSP is NP-hard even for two policies, ∣P∣ = 2.

C. Multiple combined policies again

Similar to ideal representations, multiple combined policies
do not introduce additional savings compared to a single
Pcomb. On the other hand, two benefits can be achieved with
multiple combined policies: (1) if all classes of some Pcomb are
disjoint, prepending extra bits to all filters of this Pcomb is not
required; (2) each group of combined policies can be optimized
independently, which can allow to reduce the problem size.
However, results of solving reduced problems separately can be
combined back into a single unified Pcomb, so in the following
we assume a single Pcomb in considered representations.

V. APPROXIMATION ALGORITHMS

In this section, we introduce several approximation algo-
rithms for PSP and study them analytically.

A. Feedback Vertex Set as a tool

Our algorithms for PSP will use algorithms for the Weighted
Feedback Vertex Set (WFVS) problem [5], which is NP-
complete. The feedback vertex set is a set of vertices in
a directed graph G = (V ,E) with weighted vertices such
that removing them forms an acyclic graph, and the WFVS
problem is to find a feedback vertex set of minimal total weight.
For instance, the work [6] proposes an algorithm for WFVS
with approximation factor O(log ∣V ∣ log log ∣V ∣), but there are
other alternatives [7]. In what follows we denote by α(G) the
approximation factor of an algorithm for the WFV S problem
on a graph G.

B. Algorithm ALLORONE

By Theorem 2 the main reason for class duplications are
cycles in the joint graph. The algorithm ALLORONE (AO)
constructs Gjnt and transforms it into an acyclic graph G

∗

whose topological order produces a valid sequence of classes
S for Pcomb.

AO finds a feedback vertex set V wfvs in Gjnt with minimal
total weight, where vertex weight equals the number of filters
in the corresponding class. By W (V) we denote the total
weight of vertices in V . An induced subgraph on vertices that
are not in V wfvs is acyclic, therefore, the corresponding classes
appear only once in S. For a class c ∈ V wfvs, the sequence S
contains a separate c instance for each policy containing c.

To transform G
jnt into an acyclic graph G∗, the algorithm

AO first removes all classes that are in V
wfvs (line 3 in

Algorithm 1). Then for every class c ∈ V wfvs and every policy
Pi containing c, a vertex c̃i is added into G∗ (lines 4-6); other
vertices in G

∗ will be connected with c̃i by edges induced
by the partial order on ≺Pi

(lines 7-9). A topological order
of the vertices of G∗ (line 10) forms a correct solution for
the PSP problem (see Theorem 5). The running time of AO
is TFVS(Gjnt), where TFVS(G) is the running time of the
algorithm for the WFVS problem.

Theorem 5. AO correctly solves the PSP problem.

Proof. If a graph G∗ is acyclic, its topological order of vertices
forms a correct S since all constraints introduced by partial
orders of policies are represented by edges in G

∗. So it is
sufficient to show acyclicity of G∗. The first step of AO
removes V wfvs from V , making the graph G

∗ acyclic. Note
that after adding a single vertex c̃i corresponding to the instance
of c in Pi with incident edges, the graph G∗ remains acyclic.
This invariant holds since adding c̃i does not connect any new
pair of vertices due to transitivity of ≺Pi

. Therefore, after
adding c̃i a new cycle in G∗ cannot appear.

As we have already mentioned, a joint graph Gjnt contains
edges induced by partial orders of originally given policies. To
test whether Gjnt is acyclic, it suffices to maintain only edges
for non-disjoint pairs of classes since other edges result from a
transitive closure of policy partial orders and cannot introduce
a cycle to Gjnt. On the other hand, for the correctness of AO
it is necessary to consider all edges of Gjnt, otherwise the
resulting feedback vertex set can lead to incorrect solutions.

Example 1. The following example illustrates AO running on
two policies from Fig. 4. The joint graph for these policies
has a cycle (see Fig. 5a); its FVS can be either V wfvs

= {c2}
or V wfvs

= {c3}. If w(c2) ≤ w(c3) then V
wfvs

= {c2} and
c2 is duplicated (Fig. 5b shows the corresponding G∗ and S).
Otherwise, AO duplicates c3 (see Fig. 5c).

Theorem 6. AO has an approximation factor at most (∣P∣ −
1) ⋅ α(Gjnt).

Proof. For any S produced by AO, the value of W
+(S) cannot

exceed (∣P∣ − 1) ⋅ W (VS), where VS is the set of classes

c1

c2 c3

c4

(a) (b) (c)

c1

c3

c4

c2c2

c1

c4

c2

c3

c2

c1

c2

c4

c3c3

c1

c4

c3

c2

c3

Fig. 5: (a) Gjnt; (b)-(c) two solutions depending on the values
of w(c3) and w(c2).

appearing in S at least twice. Since VS is an FVS of Gjnt, the
weight W (VS) ≤ α(Gjnt)V wfvs

OPT , where V wfvs
OPT is an FVS with

the minimal total weight. On the other hand, the overhead in
an optimal solution SOPT is W

+(SOPT) ≥W (VSOPT
) ≥ V wfvs

OPT .
The theorem follows from these inequalities.

Theorem 7. The approximation factor of the AO algorithm is
at least ∣P∣ − 1.

Proof. The proof is by showing a hard example, where ∣P ∣ = l
policies are constructed from n different classes; each class
contains exactly one filter. The partial order of the first l − 1
policies is linear c1c2 . . . cn; the partial order of the last policy
is also linear but contains the same classes in the reversed
order cncn−1 . . . c1. Any feedback vertex set of Gjnt consists of
(n− 1) vertices, therefore, the total overhead W

+(S) incurred
by AO is equal to (n−1)(l−1). For an optimal solution SOPT =

c1c2 . . . cn . . . c2c1, the overhead is equal to W
+(SOPT) =

n − 1.

Note that AO either creates a separate instance of a class
c in S for every policy or has a common instance of c in S
for all policies; this limits the optimization capabilities of the
algorithm. In the proof of Theorem 7, AO finds a suboptimal
S due to this limitation. One possible way to fix this is to
apply additional optimization described in Section V-E. For the
PSP instance in the proof of Theorem 7 these optimizations
allow to produce an optimal S, but in the general case they
do not provide guarantees on W

+(S). In Section V-D we will
introduce algorithms based on alternative principles that do
not require unnecessary constraints.

C. Can we do better in the worst case?

In this section we show the inapproximability of PSP by
reduction from the Shortest Common Supersequence (SCS)
problem [8]. For a set of strings, SCS finds a string with mini-
mal total length that contains all these strings as subsequences.

Theorem 8. Unless P = NP, there is no polynomial algorithm
for the PSP problem with a constant approximation factor on
W

+(S).

(a) P1 = c1c2c3c4, P2 = c4c1c2, P3 = c4c3c2

c1 c2

c3

c4

P1

c4

c1 c2

P2

c4

c3

c2

P3

(b) CS: Gpair

c1,2
2 c1,3

2 c2,3
2

c1,2
4 c1,3

4 c2,3
4

c1,2
1 c1,3

3

(c) CS: graph G∗

c2,3
4

c1,2
1

c1,2
2

c1,3
3

c1
4

c3
2

Fig. 6: (a) the input P = P1,P2,P3; (b) the graph Gpair; the dashed line encloses V wfvs; (c) the graph G∗.

Algorithm 2 CS(P1 . . . ,Pl)

1: construct the graph Gpair(P1, . . . ,Pl);
2: V

wfvs
=WFV S(Gpair), with vertex weights w(c) = ∣c∣;

3: for every c ∈ C do
4: Pc ∶= min. size partition of Pc into admissible subsets;
5: construct G∗ from ⋃c∈C Pc and P;
6: let S be a topological ordering of the vertices of G∗;
7: return S.

Proof. We reduce SCS on alphabet Σ to PSP of the same size
by setting C = Σ, and assigning a unit weight w(ci) = 1 to
every class ci ∈ C. Also, we interpret each string s ∈ Σ

∗ as a
separate policy in P whose partial order is linear and coincides
with s.

It is known that there is no algorithm for SCS with a constant
factor on the length of SCS unless P = NP [9]. The reduction
described above is correct only for SCS instances where all
letters in the same input string are different, which corresponds
to the natural constraint for classifiers that classes are not
repeated in the same input policy. However, the instance of
SCS used in [9] to show inapproximability of SCS never uses a
letter twice in the same input string. Thus, there is no algorithm
for the PSP problem with a constant approximation ratio on
the total weight W (S) of class instances in S and on W

+(S)
since W

+(S) ≤W (S) (unless P = NP).

Existence of sublinear approximation algorithms with respect
to ∣P∣ for the PSP problem is unclear; due to the reduction
in Theorem 8, such an algorithm would solve a special case
of the SCS problem with a sublinear approximation factor.
To the best of our knowledge, even for this special case the
existence of sublinear approximation algorithms for SCS is an
open problem.

D. Algorithm CLIQUESHARE

In AO, a vertex in G
jnt indicates that all instances of the

same class in different policies can share a common instance in
S. In the CLIQUESHARE (CS) algorithm we construct another
graph Gpair allowing to operate with a better resolution. Denote
by Pc a set of policies containing a class c. For each class c
and each subset A of two policies in Pc, Gpair contains a vertex
c
A. For each Pi and any two classes c1 ≺Pi

c2, Gpair has an

edge (cA1 , c
A
′

2) for all pairs of policies A,A
′
∈ P containing

Pi (e.g., Fig. 6b shows a Gpair graph for the input P shown
on Fig. 6a).

At the beginning, CS finds a feedback vertex set V wfvs in
G

pair with minimal total weight, where the weight of a vertex
is equal to the number of filters in the corresponding class
(line 2 in Algorithm 2). If cA is in V wfvs then the resulting S
contains different instances of c for the policies Pi,Pj ∈ A.
The set of policies can share the same instance of a class c if
for any two policies from this set, the corresponding vertex for
a class c in Gpair is not in V wfvs, we call such sets admissible
subsets of Pc.

For each class c, CS computes a partition Pc of Pc into
admissible subsets, minimizing the total number of sets in Pc

(line 4 in Algorithm 2). For a class appearing only in a single
policy in P , the partition consists of a single admissible subset
containing this policy. Each set in Pc corresponds to a separate
instance of c in S. After that CS constructs an acyclic G∗, for
which a topological order of vertices forms a valid S. For each
admissible subset B ∈ Pc, the graph G∗ has a vertex cB . The
edges of G∗ are defined similarly to G

pair: there is an edge
(cB1 , c

B
′

2) for all c1, c2 ∈ C, B ∈ Pc1 ,B
′
∈ Pc2 such that there

exists a policy P ∈ B ∩B′ for which c1 ≺P c2.
To find a partition into admissible subsets, CS can use

the algorithm that greedily constructs admissible subsets with
running time O(∣Pc∣2). Alternatively, it can use an algorithm
based on dynamic programming that finds a partition with
minimal number of subsets in time O(3∣Pc∣∣Pc∣2). For both
algorithms, CS has the same approximation factor but the first
one has better time complexity, while the second algorithm
finds an optimal partition into admissible subsets.

Example 2. The following example illustrates CS running
on three policies (see Fig. 6a). The weights of all classes are
the same. At first CS constructs Gpair (see Fig. 6b), which
has (3

2
) = 3 vertices for c2 and c4 and one vertex for c1

and c3. Gpair has many cycles; one of its feedback vertex
sets with minimal total weight is V wfvs

= {c1,32 , c
1,2
4 , c

1,3
4 }.

The partitions of Pc1 and Pc3 consist of a single set since
the vertices for c1 and c3 in G

pair do not appear in V
wfvs.

For c2 and c4 optimal partitions into admissible subsets can
be Pc2 = {{P1,P2}, {P3}} and Pc4 = {{P1}, {P2,P3}}. The

resulting G∗ is acyclic (see Fig. 6c). Every topological order
on G∗ yields a valid S, e.g., c2,34 c

1,2
1 c

1,2
2 c

1,3
3 c

1
4c

3
2.

Note that CS and AO coincide in the case of two policies.
Observe that CS finds an optimal S for the example in the
proof of Theorem 7. In the following we prove that CS works
correctly and estimate its approximation factor.

Theorem 9. CS correctly solves the PSP problem.

Proof. Similar to Theorem 5, we only need to show that G∗

is acyclic. The construction of G∗ from G
pair is equivalent

to the following three-step procedure: (1) initialize G
∗ as

a subgraph of G∗ induced by all vertices cA such that the
policies Pi,Pj ∈ A belong to the same admissible subset of
Pc; (2) for each c ∈ C add vertices into G∗ for all admissible
subsets of Pc consisting of a single policy; (3) for each c ∈ C,
“shrink” vertices corresponding to policies belonging to the
same admissible subset.

A graph G∗ is acyclic after the first step since at least all
vertices in found FVS of Gpair are not included in G∗. After
the second step G∗ remains acyclic due to transitivity of partial
orders, which is similar to the proof of Theorem 5. To prove
that G∗ will remain acyclic after the third step, it is sufficient
to show that G∗ remains acyclic after every shrink. A shrink
produces a cycle in G∗ if and only if before this shrink G∗

had a path between two vertices corresponding to class with
policies in the same admissible subset. Assume that there is
such path w for a class c. W.l.o.g. let P1 be a policy whose
partial order defines the first edge of w, and P2 be a policy
whose partial order defines the last edge of w. The vertex cA,
where P1,P2 ∈ A has an outgoing edge to the second vertex
of w and has an incoming edge from penultimate vertex of w.
Hence, there is a cycle in G∗ containing a vertex cA which is
a contradiction to the assumption that G∗ has no cycles before
the current shrink.

Theorem 10. CS has an approximation factor of at most
α(Gpair)⌊ ∣P∣2

4
⌋.

Proof. First, we are to show that for a produced sequence S by
CS, W+(S) does not exceed the weight of the corresponding
V

wfvs. Each class c appearing t times in S increases the value
of W

+(S) by (t − 1)w(c). On the other hand, the found
FVS in G

pair should contain at least t − 1 vertices for c.
Otherwise, at least two admissible subsets corresponding to
the instances of c in S can be merged into a bigger admissible
subset. Note that such partitions cannot be constructed by
CS. Therefore, W

+(S) ≤ W (V wfvs). As in Theorem 6,
W (V wfvs) ≤ α(Gpair)W (V wfvs

OPT) ≤ α(Gpair)W (VSOPT
),

where V wfvs
OPT is FVS in G

pair with the minimal total weight
and VSOPT

is FVS by which CS produces an optimal sequence
Sopt.

To finish the proof, we need to show that W (VSOPT
) ≤

⌊ l
2

4
⌋W+(S). Consider a class c belonging to lc policies in

P and appearing in SOPT, t times. Denote by sc,i (where
1 ≤ i ≤ t), a number of policies in an i-th admissible subset.
A set VSOPT

can contain only cA vertices such that Pi,Pj ∈ A

c1,3
5 c1,4

5 c2,3
5 c2,4

5

c1 c2 c3 c4

c1,2
5 c3,4

5

Fig. 7: Gpair for the lower bound of CS; vertices of different
types are in different colors

belong to different admissible subsets; the number of such
vertices is at most 1

2
(l2c −∑t

i=1 s
2
c,i). We can now see that for

each 1 ≤ t ≤ lc

max
sc,1+...+sc,t=lc

(l2c −
t

∑
i=1

s
2
c,i) ≤ ⌊ l

2
c

4
⌋ ⋅ (t − 1) ≤ ⌊ ∣P∣2

4
⌋ ⋅ (t − 1).

Hence, a class c increasing W+(SOPT) by (t−1) ⋅w(c) can
also increase W (VSOPT

) by the value not exceeding ⌊ ∣P∣2
4

⌋ ⋅
(t − 1) ⋅ w(c); summing this over all classes c ∈ C, we find
that W (VSOPT

) ≤ ⌊ ∣P∣2
4

⌋W+(S).

Theorem 11. The approximation factor of CS is at least
⌊ ∣P∣2

4
⌋.

Proof. We provide an example with ∣P ∣ = l policies and
n = ⌊ l

2

4
⌋+1 different classes. We add a class cn to all policies.

Also we enumerate all pairs of policies (Pi,Pj) such that
i ≤ ⌊ l

2
⌋ and j > ⌊ l

2
⌋, there are n − 1 such pairs. For each

enumerated pair (Pi,Pj) we add a class ck to policies Pi and
Pj , where k is a number of this pair. The class ck ≺Pi

cn and
ck ≻Pj

cn . The number of rules in classes is the following:
∣ci∣ = x, i = 1 . . . n − 1, ∣cn∣ = x + 1.

A graph Gpair consists of three categories of vertices (see
Figure 7 for l = 4 policies): (1) the n−1 vertices corresponding
to a class cn in the enumerated pairs of policies; (2) the n− 1
vertices for all other classes ci, where i < n; (3) the vertices
corresponding to cn in non-enumerated pairs of policies which
do not affect acyclicity of Gpair. The Gpair graph contains n−1
bidirectional edges between vertices of the first two types,
which form a maximal matching.

An FVS of Gpair with the minimal total weight V wfvs consists
of all vertices of the second category. Therefore, CS produces
S containing one copy of cn and two copies for each other
class; the total overhead is equal W

+(S) = (n − 1) ⋅ x. The
optimal solution for this example is SOPT = cnc1c2 . . . cn with
W

+(S) = x + 1; taking x arbitrarily big, we show the stated
lower bound.

To obtain an example with an arbitrarily large number of
classes, we take multiple instances of the proposed example
and combine them into one joint input: we merge policies Pi

with the same index i, and classes from different instances of
the example are different.

The running time of CS is TFV S(Gpair) + O(∣C∣ ⋅
Tpart(∣P∣)), where Tpart is the time complexity of the
algorithm finding partitions into admissible subsets. The
approximation factor of CS is quadratic on ∣P∣ and worse than
for AO for all ∣P∣ > 3. Nevertheless, we will see in Section VII
that CS performs better on average since it operates with a
better resolution.

E. Local descent

Both AO and CS algorithms can be further improved by
additional optimizations. One of optimization procedures comes
from the fact that proposed algorithms do not usually guarantee
that S will be a local minimum solution, i.e., it might happen
that one can remove some class instances from the resulting
S and still get a valid sequence for Pcomb. The local descent
(LD) procedure is defined in the following way: given S, try to
remove classes from S one by one, while S remains compatible
with all policies from P . LD can be implemented in time
O (∣S∣ +∑i (∣Pi∣ +D(Pi))), where D(Pi) is the number of
pairs of classes from Pi that are disjoint. We will see in
Section VII that LD does bring improvements in practice,
although it has no effect on the worst case bounds.

VI. DYNAMIC UPDATES

Although economic models rarely change, support of dy-
namic updates in represented policies can become important in
some deployment scenarios. We support two basic operations
on policies in P: (1) delete(P , c), remove a class c from a
policy P ; (2) insert(P , c, csucc), add a class c into S(P) just
before the class csucc.

Hypothetically, we can generalize the proposed algorithms
in Section V to support dynamic operations by maintaining
dynamically graphs Gjnt

,G
pair

,G
∗ and the sequence S. But

running dynamic versions of AO and CS may be very
time-consuming. They are better suited for environments
where updates happen in batches. In this section we propose
another algorithm implementing the right balance between
time complexity and optimization efficiency in a dynamic
environment.

Each insert/delete operation modifies a sequence of classes
S which represents the corresponding Pcomb. Note that after
each operation policy prefixes should be updated assuring that
Pcomb emulates P .

When we delete a class c from a policy P , we remove
an instance of c in S if this instance corresponds only to P .
After a delete operation S remains correct: if necessary, we can
further optimize S by LD optimization to remove redundant
class instances.

The case of an insert operation is more complicated. Let
c be the class that is to be inserted, and let Cprec be the set
of classes in Pi preceding c in ≺Pi

, and similarly Csucc be
the set of classes in Pi succeeding c in ≺Pi

. If S is already
compatible with the new Pi the insertion is done. Otherwise,
to make S compatible with the new Pi, we insert to the jth
position inside S an instance of c and instances of some classes

S ∶

P ∶

. . . c1 . . . c2 . . . c3 c4 . . . c5

c1 c2 c3
c

c4 c5

j

Fig. 8: Insert of an instance for a new class c ∈ P into the
j-th position of S; the white instances are not in Lj or Rj

in Cprec and Csucc that minimize the total number of filters in
inserted instances.

Let Lj be the longest subsequence of S[0 . . . j] satisfying
the following conditions:
(1) Lj contains at most one instance of every class from Pi;
(2) an instance of c1 is in Lj only if for each c2 ≺Pi

c1 the
instance of c2 appears in Lj before c1.

We insert instances of classes from Cprec that are not in Lj

just before the added instance of c satisfying ≺Pi
. Similarly,

we define a subsequence Rj in the suffix of S starting from
the j + 1-th position. But in this case condition (2) is reversed:
an instance of c1 is in Rj only if for each c2, c1 ≺Pi

c2, the
instance of c2 appears in Rj after c1. We insert all instances
of classes from Csucc that are not in Rj just after the added
instance of c satisfying ≺Pi

. Figure 8 illustrates this insertion
procedure for a policy P1: Lj = c1c3, Rj = c4, and class
instances c2, c5 are inserted together with the instance of c.

Theorem 12. All class instances inserted to the jth position
of S make S compatible with a new Pi.

Proof. Let Ij be an inserted sequence of class instances to the
j-th position in S. Let R′j be a subsequence of Rj that does
not contain class instances from Lj . Note that condition (2)
from the definition of Rj is also satisfied for R′j . Consider a
subsequence of S constructed by the concatenation of Lj , Ij ,R

′
j .

This subsequence contains exactly one instance of each class
from the new Pi and satisfies the partial order of the new
Pi.

Correctness of the insert operation immediately follows by
Theorem 12. For a position j, the total number of rules in all
inserted class instances equals

Ij = ∣c∣ + ∑
c′∈Cprec\Lj

∣c′∣ + ∑
c′∈Csucc\Rj

∣c′∣

Among all potential positions for insertion, we choose the
one that minimizes Ij . We denote Lj = ∑c′∈Cprec∩Lj

∣c′∣ and
Rj = ∑c′∈Csucc∩Rj

∣c′∣; then the expression for Ij can be
rewritten as

Ij = ∣c∣ + ∑
c′∈Cprec

∣c′∣ + ∑
c′∈Csucc

∣c′∣ − Lj −Rj

To find an optimal insertion position, we compute Lj ,Rj for
all positions j.

We calculate Lj in the order of increasing j. During this
computation, we maintain the sets Lj and Lj∩Cprec. If S[j] ∉

Lj−1 and all classes preceding S[j] in Pi belong to Lj−1 then
Lj = Lj−1 ∪ {S[j]}, otherwise Lj = Lj−1. Therefore, we can
compute Lj (and Lj ∩ Cprec with Lj respectively) from Lj−1

in time proportional to the number of classes preceding S[j]
in Pi. To speed up this process, when adding S[j] to Lj we
look at all classes that succeed S[j] and mark those for which
all classes preceding them in Pi are in Lj . For a subsequent
position j ′, we update Lj ′ if and only if S[j ′] is not in Lj ′−1

and corresponds to a marked class. This implementation allows
to compute Lj for all positions in time O(∣S∣+ ∣Pi∣+D(Pi)).
The values of Rj can be computed in reverse order of j in a
similar way. Therefore, the total time complexity of the insert
operation equals O(∣S∣ + ∣Pi∣ +D(Pi)).

Actually, when S[j] is an instance of an inserted class c,
we can remove the jth element of S since a new copy of c
was inserted. For such positions we do not include ∣c∣ into the
value of Ij .

We can achieve additional memory savings by running
LD on the resulting S. Since the time complexity of LD is
O (∣S∣ +∑i (∣Pi∣ +D(Pi))), we can run it after each insert
or delete operation.

VII. EXPERIMENTAL EVALUATION

A. Combined representations

Algorithms. We compare the algorithms AO, CS, weighted
SCS, and UPPERBOUND (UB), where UB is a heuristic that
simply concatenates all S(Pi), Pi ∈ P into a single S. For each
considered algorithm we also evaluate its extended version,
where we apply LD to its result.

Methodology. Unfortunately, de-facto standard frameworks
to generate inputs such as ClassBench [10] do not allow for a
sufficiently refined control over the actions that implicitly define
classes. Hence, we experimented on synthetic data produced
in a way similar to intended usage:
(1) generate sizes of classes from C;
(2) pick which classes are non-disjoint;
(3) generate a set of policies P on classes from C, with each

policy consisting of the same number of classes.
For every setting, we performed 100 experiments with

random instances and different random seeds (virtually all
algorithms are randomized because the topological order on
G
∗ is not unique in most cases); we show averaged results.

Implementation of our experiments is available at [11], and
the results are summarized on Figure 9. The Y-axis in all plots
shows the relative overhead W

+(S)/W (C), where W (C) is
the total size of all classes from C; we show relative values
of the overhead because absolute values change a lot from
instance to instance.

The number of rules in a combined representation signifi-
cantly depends on the structure of given policies. There are
three main characteristics of the input structure: (1) number of
intersecting classes, (2) average number of policies that contain
a class, (3) total number of policies. We generate inputs with
different values of these characteristics. Fig 9a shows how the
relative overhead grows as the average number of classes k

intersecting with each c ∈ C increases. In Fig. 9b we vary the
number of classes in each policy ∣CP ∣. In these experiments
each class belongs to ∣CP ∣

∣C∣ ⋅ ∣P∣ policies on average. Fig. 9c
shows the relative overhead for inputs with different numbers
of policies.

Algorithm CS with LD postprocessing (the strongest com-
bination in our experiments) outperforms other algorithms
regardless of input characteristics; this confirms our hypothesis
that this algorithm is the best choice for a vast majority of
inputs with different policy structures. Evaluations also show
that CS with LD constructs a representation with only 20-50%
of the rules in duplicated instances of classes compared to
representations where policies are stored separately. In what
follows we describe our evaluation results for all algorithms
in detail.

LD: The evaluations show that class sharing introduces
substantial savings, and changes the linear behavior to nearly
logarithmic in Fig. 9.c; even UB with LD reduces the overhead
for additional instances of classes (e.g., by 23-63% in Fig. 9a);
still it is worse than the other considered algorithms. LD
is especially effective for UB, SCS, and AO algorithms
saving 47%, 30%, and 37% on average in the second set
of experiments (see Fig. 9b); CS can be also improved by
LD, but in this case its effect is not substantial (at most 12%
in all experiments) since produced results are close to local
minimum. Comparing SCS with and without LD in Fig. 9a
where the former remains constant, one can see how exploiting
partial orders can significantly affect optimization results, and
how the effect diminishes as classes start to intersect more (k
increases in Fig. 9a); this is due to optimality of SCS in the
case of linear orders.

AO: In evaluations, AO outperforms UB by as much as
30% (see Fig. 9.b) but performs 37% worse than CS in the
same experiment; Compared to SCS, AO is better only when
the overhead is low (e.g., less than 150% in Fig. 9c). The main
reason for this is a low resolution of AO adding for every class
c either a single instance of c or a separate instance for every
policy containing c. CS is proposed specifically to overcome
this limitation.

CS: This algorithm significantly outperforms other evaluated
algorithms. Moreover, even CS without LD outperforms all
other algorithms with LD, except for the case of ∣P∣ = 8
policies (see Fig. 9b), where CS without LD works a bit worse
than SCS with LD since LD becomes more efficient in this
case. For inputs generated with parameters (k = 10, ∣CP ∣ = 80,
∣C∣ = 100, ∣P∣ = 5), CS with LD requires only 40% of the
rules of the duplicated instances of classes versus UB (see
Fig. 9c).

B. Dynamic updates

Algorithms. In this part we evaluate insert/remove operations
introduced in Section VI and compare the following three
variations:
(1) DYN1 applies LD after each insert/remove operation;
(2) DYN2 applies LD only after all operations;
(3) DYN3 never apply LD.

UB SCS AO CS UB + LD SCS + LD AO + LD CS + LD

5 10 15

1

2

3

(a) k, ∣P∣ = 5, ∣CP ∣ = 80, ∣C∣ = 100

W
+
/W

(C
)

60 80 100

1

2

3

(b) ∣CP ∣, ∣P∣ = 5, k = 10, ∣C∣ = 100

2 4 6 8

1

2

3

(c) ∣P∣, k = 10, ∣CP ∣ = 80, ∣C∣ = 100

Fig. 9: Relative overhead W
+/W (C) as a function of: (a) average degree of intersection k; (b) number of classes in each

policy P; (c) number of policies ∣P∣

DYN1 DYN2 DYN3 CS + LD

0 20 40 60 80

1.2

1.3

1.4

1.5

(a) ∣CP ∣ for P ∈ Ps, ∣CP ′ ∣ = 80 for P ′
∈ Pf

O
ve

rh
ea

d
W

+
/W

(C
)

60 70 80 90 100

0.7

0.8

0.9

1

(b) ∣CP ∣ for P ∈ Ps, ∣CP ′ ∣ = 60 for P ′
∈ Pf

0 10 20 30 40

0.7

0.8

0.9

1

(c) # of replaced classes, ∣CP ′ ∣ = 60 for P ′
∈ Pf

Fig. 10: Experiments with dynamic updates: (a) insertion scenario; (b) removal scenario; (c) replacement scenario.

Denote by Pf a set of policies after all applied dynamic
operations. We compare S obtained after all operations with
offline results of CS with LD calculated directly on Pf .

Methodology. We denote by Ps a set of policies just before
dynamic operations. In all our experiments we first choose a
final set of policies Pf in the same way as for the algorithms
in the offline case. Then we generate an initial set of policies
Ps from Pf , and for Ps we construct S by CS with LD and
then we apply insert/remove operations one by one in a random
order transforming Ps into Pf .

We evaluate three different scenarios, each scenario defined
by the method constructing Ps from Pf :
(1) insertion scenario (Fig. 10a): generate Ps by removing

classes from Pf , and then run dynamic updates to insert
back the removed classes until we get Pf .

(2) removal scenario (Fig. 10b): generate Ps by inserting new
classes to Pf , and then run dynamic updates to remove
classes until we get Pf ;

(3) replacement scenario (Fig. 10c): obtain Ps by replacing a
certain number of classes in each policy of Pf , and run
dynamic updates to remove classes that are in Ps and not
in Pf and insert classes that are in Pf and not in Ps.

All policies in Pf (or in Ps) have the same number of
classes. In all experiments ∣C∣ = 100, ∣P∣ = 5, ∣k∣ = 10.

As we can see in Figure 10, the usage of LD is extremely
important after modification operations. In the case of class

removals (Fig. 10b), one can apply LD after all operations,
and the result will stay the same. In the insertion scenario
(Fig. 10a), if no more than 25% of new classes are added
(i.e. the ∣CP ∣ is at least 60), running LD after every operation
(DYN1) do not introduce additional gains versus running LD
after the whole batch (DYN2). Otherwise, the results become
worse if we apply LD after all inserts, e.g., the difference
goes up to 4% as we decrease ∣CP ∣ (see, again, Fig. 10a); the
algorithm that never uses LD (DYN3) looses in all scenarios,
e.g., by 17% in the removal scenario in Fig. 10b, ∣CP ∣ = 85,
and much more as we increase ∣CP ∣. Finally, the algorithm
constructing Pf with dynamic inserts from scratch (∣CP ∣ = 0
in Fig. 10a) builds a combined representation that has 23%
more rules in duplicated class instances then CS with LD.

VIII. PREVIOUS WORK

Finding efficient representation of a single instance of a
packet classifier is a well-known problem. Approaches to this
problem fall into two major categories: software-based and
hardware-based solutions that mainly spans three techniques:
decision trees, hashing, and coding-based compression [12]–
[18]. In decision trees, finding a matching rule is based on
tracing a path in a decision tree (e.g., [12]; however, there is an
inherent tradeoff between space and time complexity in these
approaches. Hash-based solutions that match a packet to its
possible matching rules have also been considered [14]. Other

works discuss efficient hardware implementations that have no
native representation. E.g., TCAMs have no native support for
ranges, so one has to translate ranges into TCAM-friendly prefix
matching representations [15]–[18]. Unfortunately, in most
cases these methods apply only to rules with a limited number
of fields or perform poorly as it increases. The works [19]–
[21] exploits structural properties of classifiers, in particular
order-independence, to create equivalent classifiers with a
fewer number of fields. Representations of order-independent
classifiers as Boolean expressions and the relation to the
MinDNF problemis studied in [22]. In [23], per-flow per-
policy class state is implemented when the same policy can
be attached to multiple flows. In general, the previous works
mostly concentrate on optimizing a single instance of policy
classifier, whereas we concentrate on combined optimizations
of multiple different policies. The problem of splitting a policy
into several lookup tables while minimizing the maximal local
table size has been broadly studied in [24], [25] and found to
be an intractable optimization problem. The main contribution
of [26] is an optimal algorithm with linear time complexity that
can handle dynamic fields at the price of a single bit of metadata
prepended to every packet. Note that all these proposals are
orthogonal to our combined policy representations and can be
used alongside with it.

IX. CONCLUSION

In this work, we exploit new alternatives to optimize policy
classifiers, introducing novel techniques that operate on the
inter-policy level. We show how to share classes among
policies and analyze the proposed algorithms analytically. Our
evaluation study has shown significant gains from sharing
classes and using partial policy orders on a single network
element varying structural properties of represented policies on
a single network element. We hope to study efficiency of the
proposed algorithms on policies created from network-wide
economic models in the further study.

APPENDIX

Proof of Theorem 4. The proof is by reduction from the
WFVS problem [5]. For a directed weighted on vertices graph
G = (V ,E) we construct P = {P1,P2} such that S with a
minimal overhead corresponds to FVS in G with the minimal
total weight.

For each vertex v ∈ V we create three classes: an input class
c
1
v, a middle class c2v, and an output class c3v. For each edge
e ∈ E we create a class ce. The size of input classes is equal
to the weights of the corresponding vertices in G, the size of
all other classes is equal to the total weight of all vertices in V
plus 1. For each v ∈ V , the class c2v is non-disjoint with both
c
1
v and c3v . For each e = (u, v) ∈ E, the class ce is non-disjoint

with both c3u and c1v . The all other classes are pairwise disjoint.
The policy P1 consists of the classes c1v, c

3
v, ce for each v ∈ V

and e ∈ E. The partial order of P1 is defined as follows: for
each edge e = (u, v) ∈ E ∶ c3u ≺P1

ce ≺P1
c
1
v. The policy P2

consists of all classes c1v, c
2
v, c

3
v for each v ∈ V . The partial

order of P2 is defined as follows: for each v ∈ V ∶ c1v ≺P2

c
2
v ≺P2

c
3
v .

Each feedback vertex set VG in a graph G corresponds to
FVS VGjnt in a joint graph Gjnt for P1,P2: c1v ∈ VGjnt ≡ v ∈ VG.
Since the size of each non-input class is bigger than the weight
of all vertices in G, an optimal FVS in G corresponds to
the optimal FVS in G

jnt. Each valid S corresponds to FVS
in G

jnt consisting of the classes appearing twice in S . On
the other hand, each FVS in Gjnt produces a valid S by AO.
In the case of two policies W

+(S) is equal to the weight of
the corresponding FVS in Gjnt. Thus, the algorithm for PSP
on two policies finds an optimal FVS in the graphs Gjnt and
G.

REFERENCES

[1] “Qos: Modular qos command-line interface configuration guide, cisco
ios,” https://www.cisco.com/c/en/us/td/docs/ios-xml/ios/qos mqc/configuration/15-
mt/qos-mqc-15-mt-book/qos-mqc.html.

[2] “Class of service configuration guide,”
https://www.juniper.net/documentation/en US/junos11.1/information-
products/topic-collections/security/software-all/class-of-service/index.html.

[3] “Configuring modular QoS packet classification,”
http://www.cisco.com/c/en/us/td/docs/routers/
xr12000/software/xr12k r4-2/qos/configuration/guide/qc42clas.html.

[4] “Cisco xr 12000 series gigabit ethernet line cards,”
https://www.cisco.com/c/en/us/products/collateral/routers/xr-12000-
series-router/product data sheet0900aecd803f856f.html.

[5] M. R. Garey and D. S. Johnson, Computers and Intractability: A Guide
to the Theory of NP-Completeness. NY: W. H. Freeman & Co., 1979.

[6] G. Even, J. (Seffi) Naor, B. Schieber, and M. Sudan, “Approximating
minimum feedback sets and multicuts in directed graphs,” Algorithmica,
vol. 20, no. 2, pp. 151–174, Feb 1998.

[7] C. Demetrescu and I. Finocchi, “Combinatorial algorithms for feedback
problems in directed graphs,” Inf. Process. Lett., vol. 86, no. 3, pp.
129–136, 2003.

[8] D. E. Foulser, M. Li, and Q. Yang, “Theory and algorithms for plan
merging,” Artif. Intell., vol. 57, no. 2-3, pp. 143–181, 1992.

[9] T. Jiang and M. Li, On the approximation of shortest common superse-
quences and longest common subsequences. Berlin, Heidelberg: Springer
Berlin Heidelberg, 1994, pp. 191–202.

[10] D. E. Taylor and J. S. Turner, “Classbench: a packet classification
benchmark,” IEEE/ACM Trans. Netw., vol. 15, no. 3, pp. 499–511, 2007.

[11] “New alternatives to optimize policy classifiers,”
https://github.com/PolicyCompressor/PolicyCompr.

[12] B. Vamanan, G. Voskuilen, and T. N. Vijaykumar, “EffiCuts: optimizing
packet classification for memory and throughput,” in SIGCOMM, 2010,
pp. 207–218.

[13] H. Song and J. S. Turner, “ABC: Adaptive binary cuttings for multidi-
mensional packet classification,” IEEE/ACM Trans. Netw., vol. 21, no. 1,
pp. 98–109, 2013.

[14] S. Dharmapurikar, H. Song, J. S. Turner, and J. W. Lockwood, “Fast
packet classification using bloom filters,” in ANCS, 2006.

[15] V. Srinivasan, G. Varghese, S. Suri, and M. Waldvogel, “Fast and scalable
layer four switching,” in SIGCOMM, 1998.

[16] A. Bremler-Barr and D. Hendler, “Space-efficient tcam-based classifi-
cation using gray coding,” IEEE Trans. Computers, vol. 61, no. 1, pp.
18–30, 2012.

[17] O. Rottenstreich and I. Keslassy, “Worst-case TCAM rule expansion,”
in INFOCOM, 2010.

[18] O. Rottenstreich, I. Keslassy, A. Hassidim, H. Kaplan, and E. Porat, “On
finding an optimal TCAM encoding scheme for packet classification,” in
INFOCOM, 2013.

[19] K. Kogan, S. Nikolenko, O. Rottenstreich, W. Culhane, and P. Eug-
ster, “SAX-PAC (Scalable And eXpressive PAcket Classification),” in
SIGCOMM, 2014.

[20] K. Kogan, S. I. Nikolenko, P. Eugster, A. Shalimov, and O. Rottenstreich,
“FIB efficiency in distributed platforms,” in ICNP, 2016, pp. 1–10.

[21] P. Chuprikov, K. Kogan, and S. I. Nikolenko, “General ternary bit strings
on commodity longest-prefix-match infrastructures,” in ICNP, 2017, pp.
1–10.

[22] C. Umans, “The minimum equivalent DNF problem and shortest
implicants,” J. Comput. Syst. Sci., vol. 63, no. 4, pp. 597–611, 2001.

[23] K. Kogan, S. Nikolenko, P. Eugster, and E. Ruan, “Strategies for
Mitigating TCAM Space Bottlenecks,” in HOTI, 2014.

[24] Y. Kanizo, D. Hay, and I. Keslassy, “Palette: Distributing tables in
software-defined networks,” in INFOCOM, 2013, pp. 545–549.

[25] N. Kang, Z. Liu, J. Rexford, and D. Walker, “Optimizing the ”one big
switch” abstraction in software-defined networks,” in CoNEXT, 2013, pp.
13–24.

[26] P. Chuprikov, K. Kogan, and S. I. Nikolenko, “How to implement complex
policies on existing network infrastructure,” in SOSR, 2018, pp. 9:1–9:7.

	Introduction
	Model Description
	Ideal Representations
	Disjoint classes
	Price of generalization
	Necessary and sufficient conditions for ideal representations
	Multiple combined policies

	Non-Ideal Representations
	Conflict resolution among partial orders
	Problem statement
	Multiple combined policies again

	Approximation algorithms
	Feedback Vertex Set as a tool
	Algorithm AllOrOne
	Can we do better in the worst case?
	Algorithm CliqueShare
	Local descent

	Dynamic updates
	Experimental evaluation
	Combined representations
	Dynamic updates

	Previous Work
	Conclusion
	References

