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Quantum networks have capabilities that are impossible to achieve using only classical information. They
connect quantum capable nodes, with their fundamental unit of communication being the Bell pair, a pair
of entangled quantum bits. Due to the nature of quantum phenomena, Bell pairs are fragile and difficult
to transmit over long distances, thus requiring a network of repeaters along with dedicated hardware and
software to ensure the desired results. The intrinsic challenges associated with quantum networks, such as
competition over shared resources and high probabilities of failure, require quantitative reasoning about
quantum network protocols. This paper develops PBKAT, an expressive language for specification, verification
and optimization of quantum network protocols for Bell pair distribution. Our language is equipped with
primitives for expressing probabilistic and possibilistic behaviors, and with semantics modeling protocol
executions. We establish the properties of PBKAT’s semantics, which we use for quantitative analysis of
protocol behavior. We further implement a tool to automate PBKAT’s usage, which we evaluated on real-world
protocols drawn from the literature. Our results indicate that PBKAT is well suited for both expressing
real-world quantum network protocols and reasoning about their quantitative properties.
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1 Introduction

Quantum networks are distributed systems that provide communication services to distributed
quantum applications. They allow not only for the enhancement of existing applications’ capabilities,
but also the emergence of fundamentally new applications. Quantum networks bring many benefits
over their classical counterparts, most notably their ability to increase communication security,
e.g., by enabling unconditionally secure client-server communication, blind cloud computing, and
secure multi-party computation [Gyongyosi and Imre 2022; Pirandola et al. 2020; Wang et al. 2023].
Furthermore, distribution is essential to expand quantum computation beyond the capabilities of
individual quantum-enabled computers to quantum clusters [Kozlowski and Wehner 2019].
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Quantum networks exploit non-classical phenomena governed by the laws of quantum mechanics,
such as entanglement and superposition. The basic unit of quantum information is a quantum
bit (qubit), a system that can be in one of two basis states, denoted |0) and |1), as well as in their
linear combination, called superposition. The state of a composite (multipartite) quantum system
can be entangled. Entanglement means that qubits are so tightly correlated that the subsystems
cannot be described separately, and measuring (i.e., reading the state of) one effectively measures
all the qubits. A pair of maximally entangled qubits, called a Bell pair, is the basic communication
resource used by quantum network nodes (typically with each qubit of a Bell pair in a different
node). Entanglement brings many benefits for communication, e.g., it prevents eavesdropping
or man-in-the-middle attacks [Pirandola et al. 2020]. However, there are also major obstacles to
realizing long-distance quantum communication, including the no-cloning theorem [Nielsen and
Chuang 2011] and decoherence. The no-cloning theorem in quantum mechanics states that it is
impossible to create an identical copy of an unknown quantum state and decoherence means that the
quantum state degrades quickly over time. These, along with noise and qubit loss, represent major
obstacles to realizing long-distance quantum communication as done in classical store-and-forward
networks. Improvements in hardware and error detection and correction mechanisms [Kenemer
2024] can help in the production of higher-quality quantum states, but entanglement generation
and communication steps such as distillation — the creation of a single Bell state from two or more
imperfect ones — have (intrinsically) high failure probabilities.

We consider quantum network protocols as distributed programs that govern end-to-end Bell pair
distribution among remote nodes, in line with Illiano et al. [2022]; Kozlowski et al. [2023]; Pant
et al. [2019]. The necessity for protocols to handle distributed coordination and failure-prone
primitive operations, combined with scarcity of resources (e.g., memory and communication qubits)
in quantum networks, lead to highly complex protocol behavior. This makes formal reasoning
critical to enable protocol optimization, efficient compilation to hardware, and safe coexistence of
multiple protocols over the same network, in addition to the verification of correctness properties
and quantitative analysis of individual protocols. Importantly, any meaningful reasoning approach
needs to handle both probabilistic behaviors, inherent to quantum communication primitives, and
nondeterminism, arising from protocols running in parallel.

With quantum networks becoming a reality [Knaut et al. 2024; Liu et al. 2024; Stolk et al. 2024] and
entering practice, as illustrated by companies like Cisco and Aliro!, and by the recent development of
an operating system for network applications [Donne et al. 2025], the need for formal specification
and verification becomes more pressing. The ability to reason in possibilistic, i.e., (non)deterministic,
terms about protocols (e.g., can a given protocol create a Bell pair between two specified network
nodes?) is an important first step towards network verification, which was recently addressed by the
BellKAT language [Buckley et al. 2024]. However, BellKAT does not capture the probabilistic nature
of quantum mechanics, and thus can not provide quantitative accounts that are crucial in real-
world scenarios. Practical protocols have to deal with the inherently probabilistic nature of certain
network operations, where it becomes important to analyze quantitative properties (e.g., what is
the probability that a Bell pair between two end nodes is created?). The probability of entanglement
creation is the key metric relevant to practitioners, and simulators such as NetSquid [Coopmans
et al. 2021] and SeQUeNCe [Wu et al. 2021] give estimates for it. Rigorous analysis of protocols
thus requires a model that captures probabilistic behavior in real-world quantum networks.

We propose PBKAT, a language that enables quantitative analysis of real-world quantum network
protocols. As the name suggests, PBKAT (Probabilistic BellKAT) is inspired by BellKAT and the
extensive body of work applied to the practical verification of classical networks, particularly

1 See https://research.cisco.com and https://www.aliroquantum.com.
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McNetKAT [Smolka et al. 2019b] (based on ProbNetKAT [Foster et al. 2016] and GKAT [Smolka
et al. 2019a]), but it has distinct features that cater to the way quantum communication occurs in
practice. Our language is designed to tackle round-based behavior in realistic quantum network
protocols as currently envisioned by the cro:qirgQuantum Internet Research Group (QIRG)? of the
cro:irtfInternet Research Task Force (IRTF), allowing for the encoding of a wide range of practical
quantum network protocols. PBKAT addresses the combination of nondeterminism and probability,
as both are innate to quantum networks, by adapting the work of Bonchi et al. [2021; 2022] to
Bell pair distribution.

While PBKAT’s semantics is theoretically rigorous, it also faithfully models real-world quantum
network protocol executions. In particular, we designed the semantics to provide a formalism
capable of analyzing quantitative properties of quantum network protocols, catering to practical
applications. PBKAT’s semantics is based on the composition of two protocol semantics, the abstract
semantics representing a PBKAT expression (i.e., protocol specification) as a set of guarded strings
of (uninterpreted) quantum network actions, and the probabilistic interpretation modeling protocol
executions. The abstract semantics can be seen as a guarded variation of cro:skasynchronous
Kleene algebra (SKA) [Prisacariu 2010; Wagemaker et al. 2019], replacing the union and iteration
constructs with guarded versions e +4 f and eP), respectively, conditioned on Boolean predicates
B over network states (i.e., the Bell pairs present in the network). The probabilistic interpretation
uses guarded strings to generate probability distributions over protocol execution outcomes, which
are multisets of Bell pairs. We establish the properties of PBKAT semantics which we prove correct,
enabling us to perform quantitative analysis of real-world quantum network protocols.

We implemented a prototype tool capable of reasoning about quantum network protocols speci-
fied in PBKAT. With it, practitioners can specify and check quantitative properties of protocols, such
as resilience to failure, as well as optimize protocols and manage network resources by predicting
the occurrence and effects of race conditions. We evaluated our tool on 16 protocols inspired by the
literature; our results confirm that PBKAT can express different types of repeater swap protocols
and its semantics is powerful enough to efficiently reason about important properties.

In summary, our contributions are the following:

(1) We design PBKAT, a language with realistic semantics capable of expressing real-world
quantum network protocols for Bell pair distribution, reflecting hardware constraints.

(2) We provide a semantics for PBKAT that enables verification of protocols in quantitative terms.
Notably, our novel semantics allows for reasoning about the combination of probabilistic and
nondeterministic behaviors inherent to quantum networks.

(3) We show that PBKAT semantics is sound and well defined.

(4) We implement a prototype tool to showcase the expressiveness and utility of PBKAT for
modeling and quantitative analysis, which we evaluate on 16 repeater swap protocols.

The remainder of the paper is structured as follows. Section 2 introduces the necessary back-
ground and provides a literature review of quantum networks and approaches to network specifi-
cation and verification. Section 3 presents an overview of our formalization. Section 4 formally
describes all aspects of PBKAT and its properties. Section 5 demonstrates how PBKAT can be
exploited for quantitative analysis, and Section 6 describes our tool, its usage, and the experimental
results of our evaluation. Finally, Section 7 presents closing remarks and future work. For brevity,
we include complete experimental results, detailed analysis and validation of case studies, and
proofs in the long version of this paper.’

% See https://datatracker.ietf.org/rg/qirg/about/. * Available at https://swystems.usi.ch/files/PBKAT_long.pdf.
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2 Background and Related Work

We first introduce quantum networks and describe the concrete network model proposed by the
Quantum Internet Research Group (QIRG) of the Internet Research Task Force (IRTF). We then
motivate the need for quantitative reasoning about network properties in practice, and discuss
existing approaches for (probabilistic) network specification and verification.

Bell pairs. Bell pairs, named after Bell [1964], are the four entangled E——

. . .. pplication Layer
two-qubit quantum states: = [00) + -~ |11) and - [01) £ = [10), where |ij) QKD protocol E91
represents a pair of qubits in the states |i) and |j), and its coefficient squared Traneoort Laver
represents the probability of being read. They are entangled in the sense teleportaﬁion pro){ocol
that reading the value of the first qubit determines the value of the second Network Layer

e.g.,in X 101) + L |10) the state |01) denotes that if the first qubit is 0 then | end-to-end entanglement
V2 V2 distribution protocols

the second is 1; coefficients - represent a ; chance of reading either [01)

V2 Link Layer
or |10). Bell states are equivalent, as each can be transformed into another transmit, swap, distill
with single-qubit operations (e.g. a bit-flip) performed locally on only Physical Layer
one of the qubits. Since Bell pairs are maximally entangled (i.e., have the create Bell pair

strongest non-classical correlations of all possible two-qubit states), they
Fig. 1. Platform indepen-

dent quantum network
protocol stack [Abane

enable remote quantum operations (cf. Figure 1), making them particularly
useful as a generic building block for distributed quantum applications.

Quantum network hardware and functionality. The laws of quantum me- et al. 2024; llliano et al.
2022; Li et al. 2024] with

chanics grant new capabilities to quantum networks beyond their classical
protocol examples.

counterparts, while imposing constraints on their design. In this paragraph,
we provide a high-level overview of quantum network architecture, which is illustrated in Figure 2.
The core component are quantum capable end nodes that can receive and process entangled
qubits and on which quantum applications are run. Each node uses a dedicated subset of qubits,
called communication qubits [Kozlowski and Wehner 2019], to generate distributed entanglement
(Bell pairs); and once a Bell pair is generated, the constituent qubits can be either immediately
processed or transferred into memory. At the start of the entanglement distribution process, a
quantum source creates Bell pairs locally. Once a Bell pair is created, one or both of its entangled
qubits are transmitted over the quantum channels. The quality of entanglement during direct
transmission decreases exponentially with the distance. Long distance transmission is so achieved
by using quantum repeaters, making them the key building .
blocks of quantum networks [Briegel et al. 1998; Towsley 2021].
A quantum repeater acts as an intermediary node between two
other nodes (as illustrated in the network in Figure 2) by perform-
ing entanglement swapping. In this process, the repeater consumes ——
the Bell pairs it shares with each of the other two nodes to create
a new Bell pair connecting the nodes (directly). Another impor-
tant physical process in quantum networks, called entanglement
distillation, addresses decoherence (quantum state degradation
over time), by generating a single Bell state from two or more
imperfect ones. Distillation is inherently probabilistic, however:
when it succeeds, the quality of the state is improved, and when
it fails all the Bell pairs are destroyed. This substantially increases %  Quantum source
resource demands [Pompili et al. 2021]. Current networks ben-
efit from heralded schemes [Wehner et al. 2018] to distinguish
between successful attempts and failures, meaning that classical

Quantum capable end node

s Repeater with classical
& @ and quantum capabilities

Quantum channel

m=m  Classical channel

Fig. 2. lllustration of a quantum
network for our running example.
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signal announces that a Bell pair is
successfully generated. Quantum net-
works also depend on classical chan-
nels providing tight synchronization
and timely signaling, as required by en-
tanglement distribution schemes.

Quantum network protocols. Quan-
tum networks, which enable distributed
applications, depend on quantum net-
work protocols to establish end-to-
end Bell pair distribution [Briegel et al.
1998; Kozlowski et al. 2023]. In this
work we focus on protocols in the net-
work layer of the quantum network pro-
tocol stack, which is illustrated in Fig-

357:5

O~~® BEABAD

@) (b)

— Physical path (O Node Bell pair

Fig. 3. Entanglement generating protocols (progressing top-
to-bottom) on the 3-node network from Figure 2, establishing
Bell pairs between nodes A and B. Protocol (a) specifies en-
tanglement swapping realized by Pompili et al. [2021] and (b)
describes distillation as simulated in [Coopmans et al. 2021].

ure 1. These protocols rely on quantum and classical networks working together, as outlined
in [Kozlowski and Wehner 2019; Li et al. 2023; Rabbie et al. 2022].

Quantum network protocols orchestrate end-to-end Bell pair distribution through four key basic
actions. Following the notation of BellKAT [Buckley et al. 2024], these basic actions can create a Bell
pair locally at a source, transmit qubits of a Bell pair over a physical quantum channel, swap Bell
pairs via repeaters, and distill Bell pairs to improve their quality. We give two running examples of
protocols for the network in Figure 2 that use these basic actions to establish Bell pairs between the
nodes A and B, which we denote as A~B. Both protocols in Figure 3 have three rounds. Each round
contains multiple actions executed concurrently and passes Bell pairs to the subsequent round. At
the start, both protocols act in the same manner, creating two Bell pairs at the source C. Different
transmission capabilities at the node C necessitate different actions in subsequent rounds. Protocol
(a) transmits half of each Bell pair created at C to the neighbors A and B and keeps the other halves
in C’s memory to obtain A~C and B~C respectively, then performs a swap at C, resulting in A~B.
The swap protocol consumes two Bell pairs with a common endpoint to produce a single Bell pair
with the opposite endpoints. Protocol (b) transmits both qubits of each Bell pair C~C to the opposite
neighbors, leading to two copies of A~B, and then distills them into a fresh A~B of a better quality.

Contention between (sub)protocols running in parallel can lead to nondeterministic behavior, for

instance due to resource underprovi-
sioning or failures, as illustrated with
the next example. Assume that, with

some probability, the first round of pro-
tocol (a) only succeeds in creating one
Fig. 4. Entanglement swap protocol (a) in Figure 3 when only

copy of C~C instead of two. The miss-
ing C~C copy will lead to resource con-
tention (race condition): when the sec-
ond round performs two transmits in
parallel (one that requires C~C to pro-

duce A~C and the other that requires
C~C to produce B~C), only one of the
two transmits will execute, i.e., either
A~C or B~C will be produced nonde-
terministically (as shown in Figure 4).

one local Bell pair C~C (instead of two) is successfully created in
the first round. In the second round C~C is nondeterministically
transmitted to either A~C (left) or B~C (right). In the third round
swap cannot execute as it lacks the required A~C and B~C, so
the Bell pair available after round two remains untouched.

Proc. ACM Program. Lang., Vol. 9, No. OOPSLAZ2, Article 357. Publication date: October 2025.
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Such competition for available Bell pairs within a round between protocols running in parallel is
the only source of nondeterminism in PBKAT. On the other hand, if the second round performs
the two transmits in a prioritized manner on the same single input Bell pair C~C, e.g., if the priority
is given to transmitting to node A (the transmit that aims to produce B~C is attempted after the
transmit to A~C), only the transmit to A~C is deterministically executed (shown on the left in
Figure 4). In Section 4.1, we capture these two ways of combining actions within a round, namely,
in parallel or in a prioritized manner, with PBKAT’s parallel and ordered composition.
Given the intricacies above, the following questions naturally arise:

e What is the probability that protocol (a) produces Bell pair A~B?

e What are minimum and maximum probabilities that protocol (b) produces Bell pair A~B?
e What is the expected number of iterations required for (b) to generate A~B?

e How can we improve the rate at which a protocol generates A~B?

e Is one protocol an optimized version of another protocol considering network constraints?

Related work on algebraic approaches. When designing language models, in order to benefit from
strong mathematical foundations, it is natural to opt for a (co)algebraic approach. As discussed in
the previous paragraph, reasoning about real-world quantum network protocols requires handling
the combination of probabilistic behaviors and nondeterminism. To verify even simple properties
in quantum networks, concurrency must be considered: to produce one end-to-end Bell pair, many
entangled pairs must be created and distributed over intermediate nodes, multiple nodes simultane-
ously compete for same pairs, and network actions take several pairs as inputs. Thus, a suitable
algebraic model must handle concurrent probabilistic and possibilistic behaviors synchronously.

In what follows, we overview the related lines of work that address some of these aspects (in
specific domains). Algebraic reasoning about the packet forwarding behavior in classical networks
originated with the seminal work on NetKAT [Anderson et al. 2014]. Probabilistic behavior in
classical networks was considered in ProbNetKAT [Foster et al. 2016], yielding a scalable tool
for verifying packet forwarding protocols with McNetKAT [Smolka et al. 2019b]. McNetKAT’s
scalability is attributable to its foundation in Guarded KAT (GKAT) [Smolka et al. 2019a], whose
equational theory is (almost) linear time and is particularly applicable since it allows for a proba-
bilistic interpretation. However, these works are not directly applicable to quantum networks, as
the distribution of Bell pairs (network resources) has no counterpart in classical networks, which
instead handle the forwarding of packets (information carriers). Furthermore, none of these works
address the combination of probabilistic and nondeterministic behaviors. To handle such systems,
Jacobs [2008] proposes the monad of nonempty convex sets of probability distributions, which com-
bines the powerset monad (that models nondeterministic choice) and the probability distribution
monad (that models probabilistic choice). Subsequently, Bonchi et al. [2021; 2022] and Mio et al.
[2021] present these monads via algebraic theories for nondeterminism and probability. To the best
of our knowledge, these theories have never been implemented. In the quantum context, Buckley
et al. [2024] propose the BellKAT language to model concurrent behavior in quantum networks,
inspired by synchronous Kleene algebra (SKA) [Prisacariu 2010], which allows for an alternative
way of handling concurrency by layering synchronous actions into rounds. Conveniently, SKA
was proven to have a sound and complete semantics for an analogue of Salomaa’s axiomatization
of Kleene algebra [Wagemaker et al. 2019]. However, BellKAT (like SKA) lacks probabilities and
is thus incapable of modeling the innate randomness and uncertainty in quantum systems, mak-
ing it unsuitable for quantitative analysis of protocols that arise in practice. And, due to known
fundamental limitations on combining standard Kleene algebra techniques with probabilities (see
related discussions in GKAT, ProbNetKAT and in the earlier work of Mislove [2006] and Varacca
and Winskel [2006]), BellKAT semantics cannot be easily extended to accommodate probabilities.
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Related work on reasoning about quantum systems. While quantum network testbeds are starting
to emerge and move from the lab [Pompili et al. 2021] to metropolitan scale [Knaut et al. 2024; Liu
et al. 2024; Stolk et al. 2024], supported by many publicly available quantum network simulators
(e.g., NetSquid [Coopmans et al. 2021], SeQUeNCe [Wu et al. 2021], QuNetSim [DiAdamo et al. 2021],
QuISP [Satoh et al. 2022], SimulaQron [Dahlberg and Wehner 2018]), and verification of classical
network protocols has been intensively investigated, BellKAT is the only prior work we know that
considers formal verification of quantum networks. It is worth noting that the properties of quantum
network protocols which we strive to verify in this work are different from the properties at the
application layer (cf. Figure 1), as considered in quantum program verification, where the actual
quantum states are of prime importance. Our focus on Bell pair distribution abstracts away the
details of quantum computation that would be necessary to verify quantum algorithms. Therefore,
our approach departs from the broader landscape of formal quantum program verification, which
features a variety of Hoare-style logics [Unruh 2019; Ying 2012; Zhou et al. 2019] and verification
tools [Chareton et al. 2021; Hietala et al. 2021; Zhou et al. 2023]. Lewis et al. [2023] and Chareton
et al. [2022] provide in-depth surveys of quantum program verification.

The next section introduces our network abstractions (based on the literature on quantum
networks [Kozlowski et al. 2023; Pant et al. 2019; Van Meter and Touch 2013] and their specifica-
tions [Buckley et al. 2024]), made to capture typical quantum network behaviors.

3 PBKAT Overview

We introduce the key features of our PBKAT language and the main challenges in designing its
probabilistic semantics for quantitative reasoning about real-world protocols. The main concepts
will be explained through protocols from our running examples in Figures 3 and 4. We first specify
the protocols in PBKAT and illustrate how specifications capture the possibility of actions failing.
Next, we rewrite the protocols, showcasing how to control nondeterminism to better handle failures.
Finally, we show how to analytically compute the expected outputs of protocols.

Network behavior. To tame parallelism, we divide entanglement generating protocols into rounds
in the manner of Van Meter and Touch [2013]. Each round represents a time window containing
synchronously executed basic actions (see Figure 3 above). Basic actions within one round can
only act on the set of Bell pairs present in the network at the start of the said round, with race
conditions emerging if resources are insufficient, i.e., if less Bell pairs are available than required
by the actions (as exemplified in Figure 4). In order for a basic action to execute, it must thus first
acquire a specific set of Bell pairs from those available in the corresponding round, and then use
these Bell pairs to generate new entangled pairs. In realistic networks, it is likely that the action fails
to generate new pairs, in which case the acquired Bell pairs are destroyed and no new Bell pairs
are produced. If the required set cannot be acquired, the action is not executed and no Bell pairs are
consumed. After execution, a heralding signal acknowledges the success or failure of each action.
The next round then acts on the set of Bell pairs either produced or not consumed by the prior
round. We introduce the notion of a scheduler that has a full view of the Bell pairs in the network.
If at the start of a round there are not enough Bell pairs for all the actions, the scheduler chooses
nondeterministically which actions are executed. Leaving nondeterminism unresolved thus covers
all the choices (different strategies) of a scheduler.

Network constraints. A quantum network must keep track of the Bell pairs it contains. To that end,
we assume unique node identifiers that are tracked across the network, along with the Bell pairs, via
classical channels. Due to hardware constraints, a concrete quantum network is capable of handling
only a limited number of Bell pairs in each round. In a network with nodes Ay, ..., A; we denote
the maximal number of Bell pairs possible between A; and A; by m;;. For example, for protocol (b)

Proc. ACM Program. Lang., Vol. 9, No. OOPSLAZ2, Article 357. Publication date: October 2025.



357:8 Anita Buckley, Pavel Chuprikov, Rodrigo Otoni, Robert Soulé, Robert Rand, and Patrick Eugster

in Figure 3 the network must be capable of handling at least two copies of C~C locally at node C
and two copies of A~B between nodes A and B. Formally we define network state a € M(BP) to
be a multiset of Bell pairs present in the network; we represent it by {n;; x A;j~A;}1<;<j<i, where
0 < n;j < m;j is the number of Bell pairs of type A;~A;, called the multiplicity of Aj~A; in a. (Here
Bell pairs are labeled by the location of their qubits, so 2 X A;~A; are indistinguishable, but could
carry additional classical data like time stamp or memory location. This representation captures
Bell pairs at the appropriate level of abstraction for quantum network protocols in PBKAT.)

Actions. Basic actions are the primitives for manipulating Bell pairs. A basic action has the form
r> (2 p - o), whose effect entails consuming a multiset of required Bell pairs r and producing from
it a multiset of (output) Bell pairs o with probability p; the sum X ranges over possible outputs as
a probability distribution ¥ p - 0. The probabilistic nature of quantum actions manifests itself in
two ways, either operations are inherently probabilistic (e.g., distillation) or may fail with some
probability due to decoherence, qubit loss, or other hardware limitations. We model such failures
asr>(p-o+(1-p)-0),orre, o for short, where p is the probability that the action succeeds.
For example, a swap of A~C and B~C at node C in Figure 3(a), which consumes A~C and B~C to
output A~B with probability p (or outputs () with probability 1 — p), denoted sw(A~B @ C),, is
represented as {A~C, B~C} », {A~B}. A local creation at node C succeeding with probability p
is denoted cr(C),, and represented as 0 >, {C~C}. Similarly, tr(C — A~B), represents the action
that physically transmits one qubit of the Bell pair C~C to node A and the other qubit to node B,
but can drop all qubits with probability 1 — p. Distillation di{A~B), requires two copies of A~B to
output a fresh A~B and inherently fails with probability 1 — p at least  [Coopmans et al. 2021].
When it is clear from the context or not relevant, we omit writing the index p.

We provide shorthand notations for common actions, with deterministic (p = 1) wait and drop:

swap sw(A~B@ C), £ {A~C,B~C} >, {A~B} create cr(C)p = 0>, {C~C}
transmit tr(C— A~B), = {C~C} », {A~B} wait wait(r) £ rer
distill di(A~B), = {A~B,A~B} », {A~B} drop drop(r) £ r>0

With general basic actions users can specify other quantum operations, for instance, create a
Bell pair between neighboring nodes directly, produce multiple Bell pairs, or output different
Bell pairs with different probabilities. In practice, statistical probabilities for each quantum operation
can be estimated from experiments and simulations as will be done in Section 5.3.

Guarded protocols. To specify the control flow of PBKAT protocols, we introduce guards that act
as additional conditions at the start and end of each round, checking which Bell pairs are present in
the network. A guard « is a predicate over a multiset of Bell pairs M(BP), thus it can be represented
by the set of all multisets of Bell pairs for which the test succeeds. The primitives 1 (skip) and 0
(abort) behave like guards that always succeed and abort, respectively. We combine actions and
guards into expressions to build protocols. Protocols e and f can be composed in the following
ways: sequentially by combining subsequent rounds (e ; f), concurrently by combining actions
within each round in parallel (e || f) or in prioritized manner (e o f) (as in the motivating example
on page 6), conditionally by using branching statements (if « then e else f which we denote as
e +, f), and iteratively through while loops (while « do e which we denote as e(*)). Importantly,
single rounds have no iterative behavior, there is no interleaving between different rounds, and
multiround iteration is guarded (i.e., we have while loops but no Kleene star).

As a first attempt, protocols (a) and (b) in Figure 3 can be expressed without using guards:

Protocol (a) (cr{C)ocr{C)) ; (tr{C— A~C) || tr{C— B~C)) ; sw(A~B@ C)
Protocol (b) (cr{C)ocr{C)) ; (tr{C— A~B) o tr(C — A~B)) ; di{A~B)
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Protocol (a) creates two Bell pairs C~C locally at node C in round one, transmits one copy to A~C
and the other to B~C in round two, which are swapped at node C to generate Bell pair A~B in
round three. Protocol (b) has the same first round, then transmits both Bell pairs C~C to A~B in
round two, which are distilled in round three. We note that the swap action in protocol (a) attempts
execution regardless of whether the required Bell pairs A~C and B~C have been successfully
generated; if they are not available the protocol idly waits for one round (as illustrated for round
three in Figure 4). Thus, it is sensible to condition the swap action on guard «, which attempts its
execution only if there are both A~C and B~C available, otherwise the present Bell pair is dropped:

Protocol (a;) (cr{C) o cr{C)) ; (tr{(C — A~C) || tr{C — B~C));
(if a then sw(A~B @ C) else (drop(A~C) || drop{B~C)))

Similarly, the unguarded version of protocol (b) cannot distinguish between output A~B that is
produced by distillation in round three or by transmission in round two. So, we modify the protocol
to repeatedly transmit qubits to nodes A and B until two Bell pairs A~B are generated, as required
for distillation. The guard S below checks for the absence of two copies of A~B:

Protocol (b;) (while  do (cr(C) o cr(C)) ; (tr{(C— A~B) o tr(C— A~B))) ; di{(A~B)

For the inherently probabilistic distillation to succeed, multiple iterations of the entire protocol
(by) are likely to be needed, which can be expressed with another while loop: while y do protocol
(b1), where the guard y checks for the absence of the (one distilled) Bell pair A~B. Such strate-
gies of repeated attempts until success are universally employed in real-world quantum network
protocols [Pompili et al. 2021; Van Meter et al. 2011].

Probabilistic reasoning. The innately probabilistic nature of quantum operations and thus quan-
tum networks requires probabilistic reasoning. Moreover, the semantics have to be probabilistic
too, as the end result of protocol execution is a probability distribution over the possible network
states (resulting Bell pairs). Formally, the input to a given protocol is a multiset of Bell pairs, but
the output is in D(M(BP)) — the set of probability (sub)distributions over M(BP) representing
possible execution outcomes. (In the next paragraph we will show that this set is convex.) Thus, a
PBKAT protocol can be thought of as a function that takes a network state as input and returns,
with a range of probabilities, Bell pairs that represent the network state after protocol execution.

To enable quantitative reasoning about protocols specified in PBKAT, we assign concrete
probabilities of failures to basic actions. Consider our running example protocols (a;) and (b;):

Protocol (a;) (cr(C)o.90cr{C)o.9) ; (tr{(C—A~C)o 3 || tr(C— B~C)o.7);
(sWw{A~B @ C)¢.6 + (drop(A~C) || drop{B~C)))
Protocol (b;) ((cr{Co.9 0 cr(Co0) ; (tr(C— A~B)g 3 o tr(C— A~B)y3)) P ; di(A~B)o s

Now, we can verify that (when executed) protocols behave as expected. For protocol (a;) to success-
fully generate the Bell pair A~B, all basic actions must succeed, which happens with probability
0.9%0.9%0.8%x0.7%0.6 = 0.27216. On the other hand, if any basic action fails, the unused Bell pairs
are dropped (in round three). Thus, protocol (a;) outputs distribution 0.27216-{A~B} + 0.72784-0.
Similarly, protocol (b;) succeeds with probability 0.5, because the while loop iterates until both
Bell pairs A~B are available for distillation, with the expected number of iterations m x 14.

Nondeterminism. Nondeterminism in PBKAT models resource contention which is essential for
quantum network protocols. Nondeterminism arises exclusively from parallel composition, where
both parallel parts execute concurrently, and if there are not enough Bell pairs for both, there are
different nondeterministic choices in how Bell pairs are allocated to each part.
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Fig. 5. The executions of Protocols (a;) and (a), drawn in the top and bottom figures, showing all possible
executions of actions through three rounds (progressing left to right). Dashed branches denote probabilistic
choice, whereas full branches denote (non)deterministic choice. The nondeterministic choices of executing
either tr(C— B~C)g 7 or tr(C— A~C) 3 are shown as cyan or brown branches, respectively.

For example, assuming the same success probabilities of basic actions as above, consider again
possible execution outcomes of protocol (a): Figure 3 illustrates its execution when all basic actions
succeed, and Figure 4 shows the two nondeterministic transmissions in which either tr(C — B~C), 7
or tr(C — A~C) s succeeds (after only one Bell pair C~C is successfully created in the first round).
Protocol (a) thus yields two different output distributions, which we compute by tracing all possible
executions of basic actions and compounding their probabilities, as shown in Figure 5,

i = 0.27216-{A~B} + 0.1944- {A~C} + 0.2394- { B~C} + 0.29404-0
i = 0.27216- {A~B} + 0.3384- {A~C} + 0.1134- { B~C} + 0.27604-0

where p and i’ are obtained from cyan and brown branches, respectively. All possible output distri-
butions thus range between p and p’ and are captured in the following convex set of distributions:

{g-n+(1-9g) -y lqelo1]}
In comparison, any execution of the guarded protocol (a;), also shown in Figure 5, results in the
output distribution 0.27216-{A~B} + 0.72784-0, irrespective of the nondeterministic choice.

The above examples serve as the intuition to formally model nondeterminism in the following
way. We capture all possible execution outcomes of a given protocol in a (convex) set of probability
(sub)distributions over multisets of Bell pairs in M(BP), i.e., as an element in C(M (BP)) for the
monad C of convex sets of probability subdistributions over M(BP) (cf. definition in Section 4.2).

Combining probabilities with nondeterminism. To formally address the fundamental challenges of
combining probabilities with nondeterminism we constrain our language model in three ways: (i)
with conditionals and while loops we constrain nondeterminism to arise only from parallel compo-
sition, (ii) we confine this nondeterminism to single rounds by modeling synchronous concurrency
(similar to SKA [Prisacariu 2010]), and (iii) we exclude the probabilistic choice operator. Our lan-
guage design choices do not restrict quantum network protocol behavior: for (i), practical protocols
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Nodes N:= ABC,..
Bell pairs BP > bp := N~N
Multisets M(BP) 3 a,b,r,0 := {bpy,....bpr }
| awb multiset union
Guards and Expressions Expae fu= re(Zp-0) basicaction
BExp> a,fu= 0 false (abort) | «a guard
| 1 true (skip) | e f sequential composition
| a atomic guard | ellf parallel composition
| aAp aand B | eof ordered composition
| avp aorp | e+qf if a thene else
| @ not a | e@® while a do e

Fig. 6. PBKAT syntax. Basic action r > (2 p-0) has two parameters, r € M(BP) is a multiset containing the
required Bell pairs and X p-o € D(M(BP)) is a probability distribution over output multisets of Bell pairs.

are guarded and can thus be expressed with conditionals and while loops; for (ii), PBKAT rounds
correspond to time synchronization points, thus the only nondeterminism arises from interactions
within rounds; and for (iii), the control flow of practical protocols is not probabilistic. These design
choices offer two main benefits. First, the PBKAT language is simple and yet expressive enough
to faithfully model real-world protocols for end-to-end Bell pair distribution from literature (cf.
Section 5.3) including all protocols specifiable in BelIKAT. Second, PBKAT can handle probabilistic
protocols in the presence of such constrained nondeterminism.

4 PBKAT Language

This section presents syntax (Section 4.1), semantics (Section 4.2), and properties (Section 4.3).

4.1 Syntax

The complete PBKAT syntax is given in Figure 6. A Bell pair bp is represented by an unordered
pair of nodes. For multisets of Bell pairs a,a’ € M(BP) we write a & @’ for additive multiset
union and a\a’ for multiset difference. We assume a finite number of network nodes and limited
numbers of Bell pairs at each node, resulting in a finite number of network states. Therefore, all
probability (sub)distributions over the states are finitely supported. Guards are predicates over
multisets of Bell pairs. (We use “multiset of Bell pairs” and “network state” interchangeably.) Guard
0 acts as abort, and guard 1 represents the absence of guards (and actions), which we refer to
as skip. Language users specify protocols as expressions composed of basic actions and guards
that act as additional controls on which actions are executed, and are combined by operators for
sequential, parallel, and ordered composition, as well as conditionals and while loops. The sequential
composition (e ; f) models sequential transitioning through rounds by first applying e to the input
multiset and then applying f to each multiset produced by e. Parallel and ordered composition
govern the execution of actions that occur synchronously within a single round. Here, parallel
composition (e || f) allows running e and f in parallel, thus allowing for resource competition (in a
nondeterministic manner), while ordered composition (e - f) imposes that e has preference over f
in accessing the available Bell pairs in each round. When a guard fails, it aborts without further
progress, resulting in no output. Importantly, abort must be distinguished from a basic action
that consumes the required Bell pairs and fails and thus outputs no Bell pairs. The if-then-else and
while loops are guarded variants of nondeterministic choice and Kleene star (typically denoted
as + and * in Kleene algebras, which are notably not part of PBKAT’s syntax). By excluding +
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and * from PBKAT’s syntax we constrain nondeterminism to the one arising only from parallel
composition, making our language simpler. Yet, conditionals and while loops together with other
PBKAT constructs for sequential, parallel and ordered composition are expressive enough to encode
typical quantum network protocols (where the control flow is completely deterministic), including
all protocols considered in BellKAT. Importantly, all protocols for end-to-end Bell pair distribution
can be specified as PBKAT expressions.

4.2 Semantics

The diagram in Figure 7 overviews the key components in EXp I(=) = P(GSS)
PBKAT’s semantics. The semantics [—] takes a protocol ex- \ |

pression in Exp and returns a function from input a € M(BP) I-1 [=Jex

to probability subdistributions over network states. It is defined

in two steps. The motivation for the two-step construction of M(BP) — C(M(BP))
semantics is a way to have an abstract language model which
permits concrete interpretations, as commonly done in the lit-
erature (cf. [Smolka et al. 2019a] and [Buckley et al. 2024]). Our language model captures the control
flow (first step), and [[—]lex gives the execution semantics on concrete input network states (second
step). Concretely, the abstract semantics I(—) first transforms an expression into a set of guarded
strings in GSS = P(M(BP)) ; (P(II) ; P(M(BP)))*, which combine sets of network states and
(uninterpreted) actions. Then, [[—]lex converts each element in GSS to the sequential compositions
of guards and actions, and gives them probabilistic interpretation. A formal definition of the monad
C for combining probabilities with nondeterminism is given below.

Fig. 7. PBKAT’s semantics.

A primer on combining nondeterminism with probability. This paragraph introduces the back-
ground mathematics necessary to understand the semantics of PBKAT. The following definitions
are inspired by the monad C of convex sets of probability distributions [Jacobs 2008]. In particular,
the presentation of C by the equational theory of convex semilattices [Bonchi et al. 2021, 2022] is
well suited for modeling and reasoning about systems combining nondeterminism and probability,
as is the case of quantum networks.

A subdistribution over multiset of Bell pairs is a probability assignment p : M(BP) — [0, 1]
summing up to at most 1, i.e., 3, p(a) < 1, where p(a) # 0 for finitely many multisets a € M(BP).
In particular, the Dirac distribution (or point mass) on a € M(BP) is defined to be:

8q(b) = { 1 ifa=»b 0 otherwise

Following the standard identification, we write y as 3’ ,c p((gp) #(@)-a, by summing over nonzero
1(a) and identifying &, with a € M(BP). The set of all subdistributions is thus defined as:

D(M(BP)) ={Zp-alpel01],EZp<1,ae M(BP)}
For a set S C D(M(BP)), its convex closure conv(S) is the smallest convex set that contains S:
conv(S) ={Zq-u|lqe[0,1],2q=1,pueS}

We say that a convex set S is (finitely) generated by its (finite) subset T if S = conv(T). This leads
to the definition of the set of finitely generated convex sets of subdistributions over M(BP):

C(M(BP)) ={S € D(M(BP)) | S finitely generated and S = conv(S) }

From here on we use shorthand notation for monad compositions, e.g., the above sets are MBP,
DMBP and CMBP. Monad composition is done through flattening (or multiplication) m: CC = C
that can be expressed in concrete terms as follows. Let U = {®} € CCMBP be a finitely generated
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convex set of subdistributions over CMBP with generators ® € DCMBP. For &: CMBP — [0, 1]
represented as probability assignments with supp(®) = {C | ®(C) # 0}, m(U) € CMBP is defined:

mU) =t ), 2O -ulpec)

®eU Cesupp®

More concretely, m(U) = Upeyy WMS(®), where the weighted Minkowski sum of ® = Y7 p;-C; is:

n n
WMS( D pi-Ci) ={ > pipi | i€ Ciforall1<i<n}
i=1 i=1
The following example illustrates how convex sets of subdistributions are fitting for quantitative
reasoning about quantum network protocols, in particular to analyze protocol executions.

Example 4.1. We consider concrete distributions pg = &g, p11 = dga~y, pl2 = Sga~ca~cy and
subdistributions y’ = 0.5-p9 + 0.1-p1, "’ = 0.5-py + 0.2- g + 0.2+ o in DMBP to illustrate the
above definitions. Figure 8 represents the convex sets C; = conv({y, 1’ }), C2 = conv({ o, pi2, 1’ })
and their Minkowski sum WMS(0.7-C; + 0.3-C,) (in orange, blue and green, respectively). If
we interpret the subdistributions in the Minkowski sum as possible protocol outputs, then the
probability of outputting 0 is on the interval [0.35, 1], and similarly [0, 0.13] and [0, 0.3] for the
other two multisets of Bell pairs {A~B} and {A~C, B~C}.

Cl =
{aipo+ (=g -y’ |qr € [0.1]} =
{(0.5+0.51)-0 + (0.1-0.1q;)-{A~B} | q; € [0,1]}
Cy =
{g210 + @y + (1=q2=45) 1" | 42, 45, 1-q2—q; € [0, 1]} =
0.5(1-q2+q3)-0 +
0.2(1-g2—q5)-{A~B} +
(0.2-0.245+0.8¢,) - { A~C, B~C}
,1/. WMS(07C1 + 03C2) =
Fig. 8. Minkowski sum. { 0.7((]1'[1’0 +(1=q1)4) _,'- ’ ql’qz’qz,’ € [o, 1]}
0.3(qz-po + g3z + (1=G2—=q3) - 1") | 1=42=¢;
The convex set WMS(0.7-Cy + 0.3-C,) has six generators, from which we can now read the possible
output multisets and with what probabilities they occur:

Sa-cB~cy

*Sya-By

q92, qé» 1_q2_q; € [0’ 1]

conv ({1-pg, 0.7-p19 + 0.3z, 0.7-p19 + 0.3-p”", 0.7-p" +0.3- 19, 0.7-p +0.3-psp, 0.7-p/ +0.3-p”}) =
conv ({1-0, 0.7-0 + 0.3-{A~C, B~C}, 0.85-0 + 0.06- { A~B} + 0.06- { A~C, B~C},

0.65-0 + 0.07-{A~B}, 0.35-0 + 0.07- {A~B} + 0.3-{A~C, B~C},

0.5-0 + 0.13-{A~B} + 0.06-{A~C, B~C}})

Preliminaries. When executed, basic actions behave as functions MBP — D MBP that take
network states as inputs and return distributions:
re(Xp-o) : a»—){ Sp-(owalr) ifrCa a otherwise

Observe that action behavior is conditioned by the test 7 C a checking for the presence (or absence)
of Bell pairs required by the action. When r C a the action outputs o ¥ a\r with probability p, and
when r € a it passes on input a. Thus, we break basic actions into two mutually exclusive atomic
components which we write as [1]r » (2 p-0) and [r]0 » 0, where tests [1] and [r] are atomically
tied to actions, and respectively represent no test and the absence of Bell pairs (i.e., on input a check

Proc. ACM Program. Lang., Vol. 9, No. OOPSLAZ2, Article 357. Publication date: October 2025.



357:14 Anita Buckley, Pavel Chuprikov, Rodrigo Otoni, Robert Soulé, Robert Rand, and Patrick Eugster

Atomic actions

Tests Tatt' == 1 no test
| b multiset absence
| tAY conjunction
| tvt disjunction
| twb multiset union

Atomic actions II>m::

[t]r» (Zp-0)
Test semantics
th € M(BP)—>{T,L}
T (twbhpa = ((tha\bADbCa)V (b)a
b a ({tat'ha (thar (t’')a, with O is either A or V

(1Da
(bba
Composition rules
Atomic actions 7 = [t]r » (X p-0) and ' = [t']r’ » (2 p’-0") are composed by the following rules:

A
A

11> 11

mor' = [t At Wr)]F e (Zpp’o) iff=rwr andd =o0Wo’ PNET-ORD
xllx" =[@Ewr)A @ wr)]f» (Zpp-6) iff=rwWr andé =oWo’ PNET-PRL

Fig. 9. Syntax and semantics of PBKAT tests used in the composition of atomic actions. Parallel and ordered
composition of z, 7’ € I yields new atomic actions || 7" and 7o x’.

for r ¢ a, the absence of Bell pairs r in a). In general, we define atomic action [¢]r » (Zp-0) as a
map that on input a outputs distribution ¥ p - (o W a\r) if both, » C a and test ¢ (checking absence of
Bell pairs in a) succeed, otherwise it aborts. Figure 9 shows the syntax and semantics of tests, and
the rules PNET-OrD and PNET-PRL for composing atomic actions. A simple calculation shows that
for z, 7" € II the outputs of parallel and ordered composition 7 || 7" and 7 o 7" are distributions,
thus they are indeed atomic actions. In the special case when p = 1 we obtain (deterministic) atomic
actions equivalent to those in BellKAT.

Abstract language model. A guarded string agmi a; - - - T,a, is an element of the regular set MBP ;
(IT; MBP)*. Intuitively, a non-empty string is a trace of a program, where a; € MBP describe the
network’s state at the end of round i, starting with the initial state ay, and ; € II represent the
transitions triggered between the states. Guarded strings compose via fusion product o defined as,

aymay ... mapmai ... m,a, ifa, =a;

’ ’ 7 ’ ’
A4y ... Tpan © Ay d, ... 7T a., = .
0711 i e n n { undefined otherwise

and layer-by-layer ordered composition and layer-by-layer parallel composition, defined respectively
by the rules (where we assume without loss of generality n < n’):

’ ’ ’ ’ ’ if a;=d’,
Ap\TT1o7T)A1 ... \TTpo T, )AnTT a .. a i
aoﬂla1.-.ﬂnanoaéﬂ{all...ﬂ;l,a;, = ( 1) (7n n) n7ln19%41 A vo<i<n
undefined otherwise
L i G | man e, S,
Ay . .. Tnay || agmyay ... a,, = n A <i<
undefined otherwise

where 7; o 7] and 7; || 7] are atomic actions obtained by the rules PNET-OrD and PNET-PRL above.
In order to account for nondeterminism that may arise from combining protocols in parallel, we
need to “enlarge” the strings to appropriately capture all nondeterministic choices; we achieve this
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by using the powerset monad P. The advantage of dividing PBKAT protocols into rounds is that
all nondeterminism is confined within single rounds.

A guarded string of sets is an element of the set PMBP ; (PII ; PMBP)*, denoted GSS. Elements
w=50Q18; - QpSy € GSS and w’ = S{Q1S] ... QS in GSS compose via fusion product,

o= | SouSi . Qu(SANSS] . S, I SuNS; £ 0
wew = undefined otherwise

and layer-by-layer ordered composition and layer-by-layer parallel composition (assuming n < n’),

’ ’ ’ ’ ’ ’ ’ Y 'fS,-ﬂSl’,;t(D
o ) (SN (@10 QD(SINS)) (Do Q) (SuNS)D1Shy - DSy Vol
undefined otherwise

/ ’ ’ if 5;NS!#0
= 1 SNSD@UQDSING) . (| Q) (a0 LS - LS Vot

undefined otherwise
where Q;0Q} = {7mon’ | 7€ Q, 7' €Q }and Q|| Q] = {7 || 7" | 7€ Q, 7’ € Q" } in which
atomic actions 7o 7" and 7 || 7’ are composed by the rules PNET-OrD and PNET-PRL.
We can lift the fusion product of guarded strings of sets to languages. For L, L" € GSS we set:

LoL' ={wow |weLw €L’}

We define the n-th power of L inductively, as L = MBP and L"*! = L" ¢ L. Moreover, for S C MBP
we introduce shorthand notation for S = M(BP)\Sand So L = {S} o L, and define:

L+sL =(SoL)U(SoL’) and L<5>=U(S<>L)"<>s'
n>0

Similarly, we lift layer-by-layer ordered and parallel composition to languages:
Lol’={wow' |weLw €L} and L|L ={w]|w |weLw €L’}

Using the notation introduced above, we next define how PBKAT expressions are interpreted as
languages of guarded strings of sets via the semantic map I(—=): Exp — 2PMBP(PILPMBP)" Recall
that every basic action r > (X p-0) is composed of two atomic actions [1]r » (2 p-0) and [r]0 » 0
conditioned on the presence and absence of required Bell pairs, respectively. A guard a € BExp is
by definition a predicate over MBP, which can be thought of as a set of multisets that satisfy the
expression. Formally, we define sat(«) € MBP and the semantic map I in the following way:

I(x) = { MBP {x } MBP }

sat(0) =0 I(a) = {sat(a) }
sat(1) = MBP I(r>(Xp-0) ={MBP{[1]r» (Zp-0), [r]0» 0} MBP}
sat(a) ={a} fora € MBP I(e; f) =1(e) o I(f)
sat(a v ) = sat(a) U sat(f) I(e +a f) = 1(€) +oaa) 1(f)
sat(a A f) = sat(a) N sat(pf) I(e'9) = I(e) 2t (®)
sat(a) = MBP \ sat(a) I(eo f) =1I(e)oI(f)

I(ell ) =1(e) [ I(f)

Remark 4.1. Despite having similar name, the abstract semantics I(—) of PBKAT is not closely
related to the abstract interpretation of probabilistic semantics by Monniaux [2000]. The key
difference with that line of work (where a state is a probability distribution) is that PBKAT’s
abstract semantics deals with uninterpreted (abstract) actions, which are not probabilistic.
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Probabilistic interpretation of executions. Parallel composition of expressions induces nondeter-
minism even for the guarded fragment of PBKAT. A realistic interpretation modeling protocol
execution thus needs to combine probabilistic and nondeterministic (or possibilistic) choice. Con-
sider the following scenario: Given an input network state, the scheduler nondeterministically
chooses which of the actions that require the same Bell pairs will execute. We wish to keep track
of all scheduler’s possibilities of how to map inputs to distributions over outputs.

To make definitions compatible with concrete network constraints, consider a network on nodes
Ay, ..., A; with the upper bound m;; on the number of Bell pairs A;~A ;. For an a € MBP containing
n;;j Bell pairs A;~A; we define, |a] = {min(n;;, m;;) X A;~A;}, that can be thought of as replacing
Bell pairs A;~A; with refreshed ones of the same kind once the storage capacity m;; is reached.

For an atomic action 7 = [t]r » (2 p-0) we define the execution map exe(r): MBP — DMBP:

Xp-lowa\r] ifrCaand (tha=T
0 else

exe(nm)(a) = {

The above definition formalizes the behavior of an atomic action that, given that its tests r C a and
t succeed on input a, it outputs multiset | 0 W a\r] with probability p, i.e., exe(r)(a)(Lo W a\r]) = p.
For a PBKAT expression e € Exp, the elements of its abstract semantics I(e) C GSS are enlarged
guarded strings, as defined in the previous paragraph.
The map [—]ex: GSS — MBP — CMBP is defined recursively for ay € MBP and w € GSS:

[STex(a) :{ {‘Z)a} ifae$

else

| Umea, WMS (2, cs, exe(m)(ao) (ar) - [$192S2 - - - QuSnllex(a1)) ifag € S
R s exelm)(aa)(en) 1505 ) i

where the weighted Minkowski sum of a sub-distribution Z{-‘zl pi-Ci € DCMBP is defined as:

k .
0 ifallC; =0
WMS(;pi'Ci)_{ (3K pipi | pieCi#0foralll1 <i<k} else

Remark 4.2. In the above definitions all sets are considered as convex closures of its generators.
These definitions prevent sets of sub-distributions that contain the zero sub-distribution, e.g.,
conv{0, &1, 8, }. Alternatively, we could define the convex closure of a set of subdistributions by
only taking into account subdistributions with nonzero support.

Next, we lift [ -] ex to languages via another Minkowski summation. For L C GSS we define:

[L]ex(@) = WMS ()" 1-[wlex(@) ={ D 6 | 6 € [wlex(@) # 0}
weL weL

Finally, we define [-]: Exp — (MBP — CMBP) as composition [[e]] = [I(e)]ex.

The next example shows how PBKAT semantics faithfully models end-to-end behaviors of
protocol executions while taking network constrains into consideration. We will compute the [—]]
semantics of a variant of protocol (a) by unfolding the above definitions to illustrate the inner
workings of our approach (whose implementation will be described in Section 6).

Example 4.2. Assume that the network in Figure 2 has the capacity of handling at most two
Bell pairs C~C and one of each A~C and B~C. Recall the first two rounds of protocol (a) from our
running example, which attempt to create two Bell pairs C~C and transmit them to A~C and B~C.
Since basic actions are likely to fail (and therefore output insufficiently Bell pairs required by the
the actions in subsequent rounds), it is sensible to introduce guards as additional checks ensuring
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that actions are not unnecessarily enabled unless the required Bell pairs are available. To this end
we consider protocol (az), specified with conditionals as (e || f) ; sw(A~B @ C)3/s for,

e = (cr{C)a/3 +¢ tr{C— A~C)ys5) ; tr(C— A~C)yys and f = cr{Ca/3 ; (cr{C)z/3 +¢ tr(C— B~C)1/2)

where guard a checks if there is no C~C in the network. We can think of e and f as being specified
by two practitioners who use slightly different strategies to create Bell pair C~C in order to transmit
it to A~C and B~C, respectively: e in the first round creates a Bell pair C~C if there is no C~C yet
available, otherwise it immediately transmits it to A~C, and in the second round e simply calls
tr(C— A~C). By contrast, f always creates a Bell pair C~C in the first round, and in the second
round f either creates C~C or transmits it to B~C, depending on the availability of C~C from the
first round. Equivalently, protocols e and f are specified as:

e = (03 {C~C} +4 {C~C} »yy5 {A~C}) ; {C~C} pyys {A-CY
f =005 {C~C}; (0>/5 {C~C} +4 {C~C} 12 {B~C})
We abbreviate multisets {i X C~C, j X A~C, k X B~C} by a;jx, and the atomic actions in e, f by,

74 = [L{C~C} » (2-{A~C} +1-0) nc = [1]0» (2-fC~C} + 1-0)

mg = [1]{C~C} » (5-{B~C} +3-0) 75 =[C~C]O» 0
and use shorthand a, @, 1 forsat(a) = { agjk | j, k € {0,1} },sat(@) = {a;jc | i € {1,2}, j,k € {0,1} },
sat(1) = MBP = {a;jx | i € {0,1,2}, j, k € {0,1} }, respectively. Then, abstract semantics are:

af{mc}1{ma s}, {ncta{nc}i,
’(e):{ @{7ams ) 1{mams )1 } “f)z{ 1{ne}a{mms) 1 }
a{ncl|lncya{rall mc, 7s || mc } 1
Iell f) = Of{ﬂgﬂﬂc}ﬁf{ﬂAllﬂB, 7|l s, 7 || 7s, 7s || 75 } 1,
a{zall mc, s || mc Y a{mall mc, 7s || mc } 1,
a{nall nc,ms || me } @ { mall ng, mall 7s, 7 || 7s, s || 7rs } 1

where, by rule PNET-PRL, parallel composition of two atomic actions yields a new atomic action:
7all me = [ACC » (5 {A~C.C-Ch + 5 {A~Ch + £ {C-C) + 55-0)
7s || me = [C~C]0 » (2-{C~C} + 1-0)
a |l w5 = [1]1{C~C,C~C} » (5 -{A~C, B~C} + & -{A~C} + £ -{B~C} + +-0)
74 || ms = [C~C, C~C]{C~C} » (%-{{A~C}} + %q))
7 || s = [C~C,C~C]{C~C} » (3-{B~C} + 1-0)
7s || ms = [C~C]0 » O
7 || e = [1]0 » (%-{{C~C, C~C} + %~{{C~C}} + %@)

1
2

Below, we visualize the execution traces of e || f, given that at the start there are no Bell pairs in
the network, i.e., we take 0 = agop € MBP as the input. Note that two strings from I(e || ) execute,

7c || 7e 1 7s || mc 2
4000 5°G000 —> 1 3°@100 *+ 3000
7a |l 7B 4 4 1 1
5" 4200 { 10 "@o11 t 15 do10 + 75 Goo1 t+ 15 oo
e ” e A || 7s

4 1
{ 5 ao10 t ?dmm
—— { 5 °doo1 t 5°A000
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skip 10e = edl=e commut. ellf = flle
abort 0Oe = en0=0 synchrony (h;e) || (k;f) = (hllk);(ell f)
assoc. (eof)bog = en(foyg) (h;e)o(k;f) = (hok);(eof)
guards e+tpe = e right distrib. (e+pf)Og = (eOg) +5(fOg)
e+tpf = f+pe loops e = e;el +51
etpf = Pietsf (e+e )P = (a;0)
(e+a f)+pg = e+ang (f+59)

Fig. 10. PBKAT rules. Symbol O stands for any operator in { o, ||,;}, where h and k combine basic actions
without the ; operator. For ; only the right distributivity rule holds, whereas o and || are distributive from both
sides, since guards attach to the lowest round. We also include PNET-OrD and PNET-PRL rules for combining
atomic actions as part of PBKAT rules.

where different colors indicate the nondeterministic choice between 74 || s and g || 75 that require
the same Bell pairs. By definition of [ —]ex, we sum the subdistributions for each choice, yielding:

23 6 72 24 10
135 "@000 t T35 "doo1 + 135 *@o10 + 735 "don1 t ﬁ'alooa}

[[e Il f]] (@o00) = conv ({ 1;?

36 24 24 10
135 "@000 t 735 "doo1 + 135 "@o10 t 735 "do11 * 135 " @100

From this we can, for example, read that protocol e || f on input @ always outputs {A~C, B~C}
with probability %, and outputs () with probability between % and %. Thus, after the swapping

sw(A~B @ C)3/s, protocol (az) produces Bell pair A~B with probability %.

4.3 Properties

In this section we present properties and prove correctness of PBKAT semantics, which will be
useful for reasoning about and modifying protocols with the purpose of optimization in Section 5.

Concurrent execution of basic actions. We prove that the semantics of basic actions is correct
with respect to the outcome distributions that we obtain by explicit combinatorial reasoning. In
Section 4.2, we showed that the semantics of basic actions correctly describe their execution. Now
consider concurrent composition of basic actions f = r»> (X p-0) and f* =r' > (Zp’-0’). In the
ordered composition f o f’ the priority is given to the first action, which is captured in,

I(fof)={[1]lrwr » (Zpp-owo’), [rur]re (Zp-o), [rlr'» (Zp"-0), [rAr]0r» 0}

obtained by the rule PNET-ORD. Given an input a € MBP, exactly one of the following atomic
actions in I(f o f) is executed (and the others abort), depending on which test succeeds: rwr’ C a
when there are sufficient Bell pairs for both actions, (r Wr” ¢ a) A (r C a) if only f gets enough
Bell pairs, (r € a) A (r’ C a) when f” uses Bell pairs that f does not require, or (r € a) A (r' € a)
when neither action can be executed. On the other hand, parallel execution of basic actions yields:

IFN ) ={[1lrwr » (Zpp-owo’), [rurlr» (Zp-o), [ryr]r» (Zp-o’), [r Ar']0» 0}
evaluated by the rule PNET-PRL. For some inputs a € MBP, given that both actions require
same Bell pairs but there are only enough for one of them, both tests (r W r’" & a) A (r C a)

and (rwr’ ¢ a) A (r' C a) succeed. Then one of the two corresponding actions is chosen
nondeterministically — we can think of this as the scheduler nondetermistically choosing an action.

Algebraic properties. The rules in Figure 10 for combining PBKAT expressions can be thought of
as guarded variants of SKA axioms. The theorems below show that the PBKAT rules (including
the PNET-ORrD and PNET-PRL rules) are sound with respect to the PBKAT semantics and that the
semantics is well defined. A proof sketch of the theorems is in the long version of the paper.
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Formally, the next Theorem 4.1 states that every equivalence provable using the PBKAT rules
also holds in the denotational model, resulting in the same end-to-end behavior. Thisis, - e = f =
[e]l =[], where + denotes provability in PBKAT and [[ -] is defined in Section 4.2. The key step
isto prove + e = f = I(e) = I(f), i.e., the soundness of PBKAT rules with respect to the abstract
semantics (that builds a language model of guarded strings). Then, the theorem follows since [[—]
is defined by composing I with the execution semantics [ -] ex-

THEOREM 4.1. If protocol expressions e, f € Exp are equivalent under PBKAT rules, then their
denotational semantics coincide. Thisis,+ e = f = [[e] = [f]-

Furthermore, Theorem 4.2 shows that [[—] gives probabilistic interpretation to the expressions.

THEOREM 4.2. PBKAT semantics produces sets of well-defined subprobability kernels. This means
that ife € Exp and a € MBP, then [ e] (a) € CMBP, i.e., [ e] (a) is a set of subdistributions.

Theorem 4.2 is due to an important property of the abstract semantics, which we define in the
next lemma (cf. the set of guarded strings in Example 4.2):

LEMMA 4.1 (DETERMINACY PROPERTY). The language I(e) C GSS corresponding to the PBKAT
expression e satisfies the determinacy property, i.e., whenever strings w, w’ € I(e) agree on their first n
sets of states Sy, .. ., Sn—1, then they agree on their first n sets of actions Q4,...,Q, and S, NS, = 0.

For protocols with no (unbounded) while loops the set of subdistributions is finitely generated.
As a consequence, we obtain a tool to reason about the equality of protocols w.r.t. [ -] in Lemma 4.2.
For while-free protocols, the semantic equivalence of two protocols can always be decided by (i)
computing the (unique and finite) sets of extreme points (i.e., generators) for the respective convex
sets and (ii) checking that the computed sets of extreme points are equal.

LEMMA 4.2. If protocol expressions e and f contain no while loops, then [e] = [[f] is decidable.

Relation to BellKAT and (probabilistic) GKAT. Besides for allowing probabilistic actions, PBKAT’s
semantics differs in two crucial aspects from BellKAT, both aiming to address nondeterminism. The
first aspect is that PBKAT’s syntax has no operator for expressing nondeterministic choice. The
second aspect is that PBKAT’s strings of actions are guarded, where a guard filters the multisets of
Bell pairs and retains only those that satisfy the test. Conditionals and while loops in PBKAT use
guards to resolve the inherent nondeterminism in the union and iteration operators (denoted as +
and * in BellKAT). This way, the only nondeterminism in PBKAT arises from parallel composition
of actions within single rounds (see the discussion of nondeterminism in Section 3).

PBKAT rules in Figure 10 are closely related to the axiomatization of GKAT [Smolka et al. 2019al].
In addition to GKAT’s axioms, PBKAT has synchrony axioms describing the interaction between
the synchronous (parallel and ordered) compositions and the sequential composition, capturing the
intended lock-step behaviour. The only GKAT axiom not included in PBKAT is the fixpoint axiom.
(As we are not aiming for completeness, we decided to not include the fixpoint axiom, which would
require introducing the concept of the “empty word property”. This is in line with works BellKAT,
ProbNetKAT and McNetKAT, that all have sound but not complete axiomatization; cf. Section 2.)
Despite having similar name, there is a key difference with Probabilistic GKAT [R6zowski et al.
2023], namely PBKAT does not have probabilistic choice (for probabilistic branching) — in this
sense, PBKAT’s semantics is closer to a specific probabilistic interpretation of the original GKAT.

5 Quantitative Analysis

This section makes use of the properties of PBKAT semantics and its explicit representation. Besides
enabling practical verification by checking semantic equivalences of protocols, PBKAT properties
enable quantitative analysis of protocol executions and consequently their optimization.
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5.1 Protocol Optimization

Quantitative reasoning is particularly useful to analyze the effects of quantum network proto-
col executions through different branches of the execution traces, some of which may be quite
counterintuitive. Concretely, such analysis can be used for optimizing the scheduling of actions
within protocol rounds (e.g., as a way to control the power of an adversarial scheduler [Rand and
Zdancewic 2016]), or for resolving nondeterminism in the style of pGCL [Mclver and Morgan 2005,
Chapter 1.8] or demonic outcome logic [Zilberstein et al. 2024].

To showcase protocol optimization, we incrementally build optimized versions of the entangle-
ment swap protocol from our running example.

Example 5.1. Consider the repeater swap protocol (a), running on the three-node network in
Figure 2, with the goal to generate end-to-end Bell pair A~B. The protocol first creates two Bell pairs
C~C locally at node C (acting as a source), then transmits one copy to A~C and the other to B~C,
which are subsequently swapped at node C (now acting as a repeater) to generate Bell pair A~B.

For simplicity, this example focuses on the transmit subprotocol and assumes the network is
constrained to handle at most two Bell pairs C~C and one of each A~C and B~C. Below, we fix the
success probabilities of basic actions to cr(C)g.q, tr(C — A~C)y g and tr(C — B~C)y 5, and build and
compare different protocols, aiming to generate A~C and B~C with the highest probabilities.

I. Consider protocols e and f that create C~C and transmit it to A~C and B~C, respectively:

e =cr(Cloy; tr(C—A~Clos = 099 {C~C}; {C~C} »o 5 {ACH
f=cr(Cloo;tr(C—B~C)os = Broo {C~C}; {C~C} »o5 {B~C}
We wish to compare the semantic of protocols e and f running concurrently, namely [[e || f] and
[e~ f] - the difference between them is that, when there is only one C~C available, in e || f there
are two possibilities where C~C can be transmitted, either to A~C or B~C, and in e o f protocol e
has priority over f, thus C~C is transmitted to A~C. Protocols e || f and e o f, given an empty input,
return distributions conv ({1, g2 }) and {p; } respectively, where p; and py correspond to whether
tr(C — A~C)p s or tr(C — B~C) 5 is selected. Note that the probability of outcome {A~C, B~C} is
independent of whether priority is given to e or f:
pi = 0.324 - {A~C, B~C} + 0.468 - {A~C} + 0.081 - {B~C} +0.127 - 0
piz = 0.324 - {A~C, B~C} +0.324 - {A~C} + 0.171 - {B~C} +0.181 - 0
II. Next we increase the probability of generating A~C and B~C by rerunning protocols e || f and
e o f. The evaluation of the semantics of (e|| f); (el f) and (e f) ; (e f) on the empty input is,

[Cell £): (el HI(@) =conv({vi,va,...via}) and  [[(eof):(ee H](0) ={v1}

where in the convex set with 14 generators, e.g., respective distributions v,, v3 have max, min
probabilities of generating both Bell pairs, and v4 corresponds to the semantics of (foe); (foe):

v1 = 0.618840 - {A~C, B~C} + 0.337896 - {A~C} + 0.027135 - {B~C} + 0.016129 - 0
vy = 0.678456 - {A~C, B~C} + 0.248328 - {A~C} + 0.050229 - {B~C} + 0.022987 - 0
v3 = 0.607176 - {A~C, B~C} + 0.319608 - {A~C} + 0.050229 - {B~C} + 0.022987 - 0
vs = 0.653832 - {A~C, B~C} + 0.222264 - {A~C} + 0.091143 - {B~C} + 0.032761 - 0

The first protocol with unresolved nondeterminism may succeed with higher probability than the
second deterministic one. Surprisingly, the probability of the outcome {A~C, B~C} is lower when
priority is given to e as opposed to f in both runs. This goes against the expectation that giving
priority to actions with the highest probability of success (e contains tr(C — A~C) s) should lead to
the most likely outcome. (Compare this with angelic choice as a way of resolving nondeterminism
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in [Morgan et al. 1996].) In our case, giving priority to actions with the lowest probability of success
(f with tr(C — B~C)y s5), proves to be more beneficial.

III. When protocols run in parallel, we use guards to control both protocols in a synchronized
manner. Protocol II can be improved by guarding the fourth round, so that priority is given to the
transmit that hasn’t yet succeeded. Let e’ and f’ concurrently create and transmit Bell pairs,

e'=cr(Co.o; (tr(C—A~C)og+a tr(C—B~C)5) f'=cr(Co.o;(tr(C—B~C)os5+p tr(C—A~Cys)

where « and f check for the absence of A~C and B~C, respectively. This prevents C~C from
being transmitted twice to the same neighbor. Figure 11 shows the execution semantics of e’ || f
for all the inputs that are relevant for iteration. By the same methods as before, we evaluate that
from input 0, protocol e’ || f” returns {A~C, B~C} with probabilities 0.324 after one iteration and
0.766228 after two; this outcome occurs regardless of which action is selected when only one C~C
is available and both transmits require it. Concretely, the output of two iterations is conv({v], v;}):

V] =0.766228 - {A~C, B~C} + 0.201006 - {A~C} + 0.0166374 - {B~C} +0.016129 - 0
v} = 0.766228 - {A~C, B~C} + 0.156654 - {A~C} + 0.0443574 - {B~C} +0.032761 - 0

IV. In practice, most protocols are expressed as guarded iterations of subprotocols until the
requested Bell pairs are successfully generated. In what follows, we first specify a protocol that
repeatedly creates fresh copies of C~C and transmits them to A~C and B~C until both transmits
succeed and then we evaluate its expected outputs. We define the protocol as while z do (¢’ || f') =
(e’ || )7, where ¢’ and f” are as in III, and the guard 7 = (0 X A~C) V (0 X B~C) checks for the
absence of either A~C or B~C. For quantitative analysis of this protocol, it is most convenient to
represent the semantics of e’ || f* with stochastic matrices (as will be elaborated on in the next
section). Each row in a stochastic matrix represents the output distribution that a protocol returns
from a given input. The semantics of e’ || f” is represented by two matrices,

181 171 324 324 127 .081 468 324

0 0.0784 0 9216 and 0 0.0784 0 .9216
0 0 3025 .6975 0 0 3025 6975
0 0 0 1 0 0 0 1
{A~C.B~C} _ _ _ fa~ch - __ {B~C} < _ _ 0
N T S e SN > U D I AR
SO TNl ) - sso PRl N Tem-— 2l 1
5 e 5 T~25 Tee T -2 | —_—"\\—\ -1 //"‘/‘-A ///
\/\/ N T~ ‘\\\\// // 1~ ~ 4 ST =4 | ///
1 PN l N G 04 8 L5 2 500 14,
e N S T~ = 9% | e 7~ / NIV
As AB A As T Aa T Aa As A

{AaCc}  {ACCCh {AC2C-Ch {B~CY {B~C.C~C} {B~C,2C~-C}

A A A A A A A A

I I I I I I I I

I I I I I I I I

0.01 0.18 0.81 0.01 0.18 0.81 0.01 0.18 0.81
\‘\\\ RN | Te L N | Te L RN |
RSN I S~al s I RSN I

NN RN RN

= Ac = Ae S Ac

{A~C, B~C} {Aa~Cl {B~C} 0

Fig. 11. Distributions in one iteration of protocol (¢’ || f)(*) in Example 5.1 (progressing bottom to top).

Proc. ACM Program. Lang., Vol. 9, No. OOPSLAZ2, Article 357. Publication date: October 2025.



357:22 Anita Buckley, Pavel Chuprikov, Rodrigo Otoni, Robert Soulé, Robert Rand, and Patrick Eugster

(capturing nondeterministic choice depicted in Figure 11), with the entries labeled top-down and
left-right by 0, {B~C}, {A~C}, {A~C, B~C}. Protocol iterations are then modeled with matrix
multiplications. Observe that to evaluate the probability of generating both A~C and B~C it is
irrelevant which of the two matrices is used. For example, the probability of producing {A~C, B~C}
from 0 after three iterations is 0.926988 and 0.999382 after seven. Furthermore, the expected number
of needed iterations is approximately 2.

5.2 Stochastic Matrices

In this section we give another representation of PBKAT semantics, with stochastic matrices.

For brevity, first assume a protocol expression e € Exp that contains conditionals together with
sequential and ordered composition, but no while loops and furthermore, has no parallel composition
that could lead to nondeterministic choice when executed. Then, since the set of network states is
finite and can thus be ordered, [[e]] maps an input a € MBP to a unique distribution over outputs,
therefore [[e]](a) can be represented by a stochastic vector. This is equivalent to characterizing the
semantics of e as a probability assignment [ e]| (a) : MBP — [0, 1], such that >, pmsp[le]l (@) (b) = 1.
Hence, [[¢] can be further represented by a square matrix B[ e] € [0, 1] MBP*MBP indexed by MBP,
in which the stochastic vector corresponding to input a appears as the a-th row. Concretely, the
matrix entry B[ e]q» = [e] (a) () gives the probability that the execution of protocol e produces
output b € MBP on input a € MBP. Representing PBKAT semantics with stochastic matrices
is useful for modeling the behaviors of protocol executions as Markov chains (i.e., probability
transition systems with state space MBP), ensuring that the sequential composition operator
behaves as expected. This makes them particularly suitable for the analysis of iterative behavior of
protocols, like the one analyzed in Example 5.1. The limiting behavior of finite state Markov chains
has been well studied in the literature (e.g., see [Privault 2018]), and for so-called absorbing Markov
chains the limit distribution can be computed exactly.

In what follows, we deduce the limiting behavior of the while loop [e'#)] from the matrix
representation of [[e]]. We say that a state a € MBP is absorbing if it transitions to itself with
probability 1. For example, for e +4 1 and input a that passes the guard f3 (i.e., a € sat(f)), a is an
absorbing state. It can be shown that, when all input states can reach an absorbing state, the limit
distribution of the while loop is computable and equal to B[[e/)] = lim,,_,. B[ (e +5 1)™].

We remark that, by the same methods, stochastic representation of a protocol containing nonde-
terministic choice must be represented by a set of stochastic matrices, as illustrated in Example 5.1.
The representation with sets of stochastic matrices contains equivalent information to the one
with convex sets, but it’s less precise as it contains much redundancy. For example, we need two
matrices even if only one input (matrix row) leads to nondeterminism. Thus, we lose information on
different inputs yielding different amounts of nondeterminism, while PBKAT’s semantics produces
a separate convex hull for each input. As multiplication of stochastic matrices represents sequential
composition, it is semantically equivalent to taking Minkowski sums and then a convex hull.

5.3 Case Studies

In this section we express in PBKAT language two quantum network protocols reported in the
literature: the repeater swap experiment realized by Pompili et al. [2021] and the simulation of a
repeater swap protocol with distillation in NetSquid [Coopmans et al. 2021].

Repeater swap protocol realized by Pompili et al. [2021]. The first demonstration of entanglement

swapping from Bell pairs stored on remote nodes was experimentally achieved by Pompili et al.
[2021]. The network consists of three nodes, A, B and C, connected as in our Figure 2. Each node
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has nitrogen vacancy center electronic spin as a communication qubit. In addition, the middle node
C employs a Carbon-13 nuclear spin as a memory qubit.

In what follows, we express their protocol in PBKAT language with real-life specifications. The
network can handle at most one each of the Bell pairs A~C, B~C and A~B. First, the protocol needs
to distribute entanglement between neighboring nodes, connected by physical quantum channels,
to generate A~C and B~C. To this end, we combine creation and transmission into single basic
actions, which we specify as 0 >, {A~C} and 0 >, {B~C}. Node C stores the qubit of whichever
link is generated first in the memory. Once entanglement is established on both links as described
above, the entanglement swapping is executed that consumes A~C and B~C to produce A~B.
In the reported experiment, Bell pairs A~C and B~C are established at the rates 9 Hz and 7 Hz,
and the average rate of the combined protocol is 1/(40 s). It uses a timeout of 450 attempts before
the sequence is restarted, as a balance between optimizing the entanglement generation rate and
quality of the stored state. We specify Pompili et al.’s repeater swap protocol as,

»
(@, £A~CH +a DIV [ @5, {B-Ch 45 1)) s sw(AB@Chy )

where (e +, 1) stands for the n-th unrolling of the while loop e, and guards a, 8 and y check for
the absence of A~C, B~C and A~B, respectively. We deduced the success probabilities of quantum
actions from the statistics reported on the physical experiments: pa = 0.0036, pg = 0.0028 and
pc =0.0071, assuming that a round corresponds to 0.4 ms time window.

Repeater swap protocol with distillation of Coopmans et al. [2021]. To specify the repeater swap
protocol with distillation of Coopmans et al. [2021] on our network in Figure 2, we will combine
the running example protocols (a) and (b). We combine creation and transmission into single basic
actions, which we specify as 0 »,, {A~C} and 0 >, {B~C} with success probabilities as in the
previous example. The goal is to distribute entanglement between end nodes A and B, by swapping
Bell pairs A~C and B~C at node C, as in (a). In this scenario, however, before performing the swap,
we improve the quality (also called fidelity) of entangled states A~C and B~C with a round of
distillation. (A practitioner writing a protocol knows what is the appropriate number of distillation
rounds required to improve state’s quality above the required threshold.) To this end we require a
network that is capable of handling at least one end-to-end Bell pair A~B, and two of each A~C
and B~C. For distillation of A~C, we repeatedly attempt to create two copies of A~C, and then
distill them into a fresh A~C. To ensure that the subprotocol indeed returns an improved A~C, the
distill action is called only after two Bell pairs were successfully created, which we specify as,

el where eq = (05, {A~CY) o (05, {A~CH) ; di(A~C)o 5

where guard f; checks for the absence of two copies of A~C, and f checks for the absence of A~C.
Analogously, an improved Bell state B~C is generated by the protocol with two while loops,

e;(ﬁ') where € = ((0>p, {B~C})o (0>, {B~C}}))(ﬁé) ; di{B~C)g 5

where guards " and f; tests for the absences of B~C. Then, the repeater swap protocol with
distillation by Coopmans et al. [2021] is specified below as:

(e 12?7 s swiA~B @ Chye

6 Evaluation

In this section we evaluate the PBKAT reasoning capabilities using the examples presented earlier.
We also compare our tool with the state-of-the-art framework BellKAT. Our results are presented
in Table 1. We are primarily interested in success probabilities (probabilities of generating the

Proc. ACM Program. Lang., Vol. 9, No. OOPSLAZ2, Article 357. Publication date: October 2025.



357:24 Anita Buckley, Pavel Chuprikov, Rodrigo Otoni, Robert Soulé, Robert Rand, and Patrick Eugster

Table 1. Performance measurements for PBKAT and BellKAT tools using the examples from the earlier
sections. We report memory, execution time, and the size of the output O = [p](0) (note, O € C(M(BP))
for PBKAT and O € P (M (BP)) for BellKAT). For PBKAT we also report the probability (or probability range)
of successful generation of the desired Bell pair. As BellKAT does not support conditionals it cannot express
many PBKAT protocols, we mark those with “-”.

PBKAT BellKAT
Protocol Goal Memory Time |O] p(Goal) Memory Time |O| Goal?
§3(a) {A~B} 6MiB  <1s 2 27.2% 6 MiB  <1s 4 maybe
§3(a1) {A~B} 6MiB  <1s 1 27.2% - - -
Ex. 4.2 {A~B} 6MB <1s 2 10.7% - - -
Ex. 5.1(), o {A~C,B~C} 6MiB <1s 1 32.4% 6MiB  <ls 4 maybe
Ex. 5.1(D), || {A~C,B~C} 6MiB <ls 2 32.4% 6 MiB  <1s 4 maybe
Ex. 5.1(1), o, 2 iter. {A~C,B~C} 6MiB <15 1 61.9% 7MiB  <1s 9 maybe
Ex.5.1(10), ||, 2iter. {A~C,B~C} 6MiB <1s 14 60.7-67.8% 7MiB  <ls 9 maybe
Ex. 5.1(I), o, 3 iter. {A~C,B~C} 6 MiB <ls 1 78.2% 8MiB <1s 16 maybe
Ex.5.1(I0), ||, 3iter. {A~C,B~C} 24MiB  26s 22 77.4-852% 8MiB <1s 16 maybe
Ex.5.1(I0), 1iter. ~ {A~C,B~C} 6MiB <ls 2 32.4% - - -
Ex.5.1(I), 2 iter.  {A~C,B~C} 6MiB <1s 2 76.6% - - -
Ex.5.1(IV), 3iter. ~ {A~C,B~C} 6MiB <1s 2 92.7% - - -
§5.3(sw) {A~B} 736 MiB 6s 1 0.41% - - -
§5.3(di), outer {A~B} 2263 MiB 15s 1 <0.01% - - -
§5.3(di), inner {A~B} 1178 MiB 8s 1 0.11% - - -
§5.3(di), mixed {A~B} 8271 MiB 377s 1 0.02% - - -

“Goal” multiset of Bell pairs) and amount of nondeterminism (reflected in the number of generators
|O| in the convex set produced by PBKAT). Additionally, we show memory usage and runtime. All
our experiments were carried out on a laptop with an Intel® Core™ i7-10850H CPU 2.70 GHz and
16 GiB of RAM, and had as an initial state the empty multiset 0.

Basic examples and optimization. For the first three protocols of Table 1, we note that they require
negligible computational resources, and the conditional clean-up in protocol (a;) reduces the output
nondeterminism (|O|), keeping the success probability intact. Next, we showcase the use of the
PBKAT tool for protocol optimization in Example 5.1. Our tool does not perform optimizations
automatically, but supports an automated quantitative analysis of different protocol versions,
verifying that one has better entanglement generation rate than the others. In entries (I) and (II),
protocols differ in only two aspects: number of iterations and restrictions put on the scheduler by
using ordered (o) vs. parallel composition ( || ). Not surprisingly, additional iterations increase the
probability of success, while the use of || adds more nondeterminism. What is notable is the added
flexibility of nondeterminism improving probability of success; e.g., compare || vs o for 3 iterations:
while the minimum probability is 1% lower, the maximum probability is 7% higher. The above
finding highlights the necessity of combining probability and non-determinism. Protocols (III) and
(IV) add conditionals to (I) and (II), in order to ensure that only those Bell pairs get created that are
still missing. Results show that such a change both improves the probability of success and reduces
nondeterminism. These examples reflect the PBKAT’s trade-off between more nondeterminism
and increased resource requirements, a common phenomenon in verification space.
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Comparison with BellKAT. The last three columns of Table 1 show the results of running BellKAT
on PBKAT protocols that only use syntax supported by BellKAT; in particular, all the protocols that
use conditionals are not expressible in BellKAT. Let us consider first, the 3-iteration || protocol (II),
BellKAT is using much less computational resources compared to PBKAT, which is expected since
BellKAT does not have to track probabilities or compute convex hulls.

BellKAT’s limitation is the lack of probabilistic reasoning. All the actions that have non-trivial
success probability (neither 0 nor 1) are treated equally as nondeterministically failing ones. Thus,
when asked about successful generation of the “Goal” Bell paris, BellKAT can only say “maybe”.
Note that all the analysis that can be performed by BellKAT can also be performed by PBKAT by
simply assuming probability 0.5 for nondeterministically failing actions and collecting the multisets
of Bell pairs that have non-zero probability, albeit using more resources for tracking probabilities.

Case study and scalability. The final four rows of performance measurements in Table 1 deal with
the case study examples from Section 5.3. For the repeater swap protocol of Pompili et al. [2021],
PBKAT tool computes the probability of generating {A~B} equal to ~ 0.4%. The computation
requires memory in the order of hundreds of MiB and takes a few seconds to complete. In the long
version of the paper we manually validate the result using probability theory. For the repeater swap
protocol with distillation of Coopmans et al. [2021], we consider different variants based on the
number of loop iterations. In Section 5.3 we presented the protocol as having nested while loops: the
inner loop followed by distillation (exit conditions 8, and f3}) and the outer loop followed by a swap
(exit conditions f and f’). The variants that we evaluated use different values for the number n; of
inner and n, outer iterations, while keeping the total number of rounds before swap n, - (n; + 1)
equal to 450, which is consistent with the timeout in the repeater swap experiment. Specifically, for
the “inner” variant we choose n; = 449, n, = 1, for the “outer” variant we choose n; = 1, n, = 225,
and for the “mixed” variant we use a combination of the two n; = 49, n, = 9. As the last three
rows of Table 1 demonstrate, the inner variant results in higher probability of success (0.11%) than
outer and mixed (<0.01% and 0.02%, respectively). From the performance and scalability standpoint,
we see that PBKAT is able to compute the success probabilities within few minutes on a standard
laptop. We note that the current PBKAT implementation is a proof-of-concept, and no attempt has
been made in optimizing its performance.

7 Conclusion and Future Work

The realization of quantum networks will enable large-scale applications of quantum communi-
cation, but significant research and engineering efforts are still required for them to reach full
functionality. Our work provides a step in this direction, by enabling specification and reasoning
about quantum network protocols. The language we propose, PBKAT, can express entanglement
distribution protocols in a realistic way. We tackle the protocol complexity arising from the combina-
tion of probabilistic and nondeterministic behaviors, inherent to the way quantum networks operate,
with a rigorous semantics designed for quantitative analysis. PBKAT’s usefulness is showcased by
expressing and evaluating a number of real-world quantum network protocols.

Our work provides many new avenues for future work, including (i) the enhancement of PBKAT
to consider other features of quantum communication, and (ii) the generalization of PBKAT to
other domains. For (i), enhancements could be adding a notion of time-evolution to the semantics in
order to capture decoherence and extending PBKAT to handle quantum states other than Bell pairs,
such as single qubits or tripartite W and GHZ states [Diir et al. 2000]. For (ii), generalization can be
achieved by extracting a coequationally defined language model for PBKAT and applying them to
other systems exhibiting round behavior (e.g., bulk-synchronous parallel model [Valiant 1990] or
hardware design [Halbwachs et al. 1991]).
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Data-Availability Statement

The PBKAT artifact [Chuprikov 2025] consists of the source code of our tool together with the
instructions on how to reproduce and reuse the results presented in the paper. The tool enables
writing PBKAT expressions in an embedded DSL and comes with a reasoning engine capable of
automating all the computations in Section 4 and Section 5 and reproducing all experimental results
in the evaluation Section 6. Concretely, it can produce automata capturing guarded strings of sets,
the execution traces, and the convex sets of probability distributions over multisets of Bell pairs
produced by entanglement generation protocols. The latter set can be stored in a machine readable
form and later analyzed with our tool to infer probability ranges for different events of interest.

The tool represents a proof of concept with little performance optimizations, hence it may have
limited scalability. Also, the tool does not handle protocols with unbounded while loops, as these
may lead to convex sets that do not have a finite representation (number of generators).
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