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Abstract—While secure efficient operation of computer net-
works requires cost-effective line-rate packet classification, net-
work programmability strengthens this need. A promising ap-
proach is to transform a packet classifier to a semantically
equivalent representation that supports more effective classifica-
tion. This paper explores transformation of ternary classifiers to
equivalent prefix representations so that classification can benefit
from efficient Longest Prefix Match solutions. We propose the
property of prefix disjointness and design PREDICAT, a method
that leverages this new property in combination with a variety of
existing techniques to convert an arbitrary ternary classifier to
an equivalent prefix representation. The paper analyzes prefix
disjointness and evaluates PREDICAT against state-of-the-art
transformation alternatives on a packet classification benchmark
in regard to the number of lookups. The evaluation shows that
PREDICAT outperforms a ternary-to-binary method by an order
of magnitude, improves on another ternary-to-prefix solution by a
factor from 2 to 5, and preforms similarly to a ternary-to-ternary
approach that requires costly power-hungry Ternary Content-
Addressable Memories to efficiently handle the resulting ternary
representation.

Index Terms—packet classification, filter representation,
ternary classifier, prefix classifier, equivalent transformation,
prefix disjointness

I. INTRODUCTION

Packet classification determines which action the network
element takes upon receiving a packet [1,2]. A packet classifier
comprises a sequence of rules where each rule contains a filter
and corresponding action. A packet matches a rule if the packet
header conforms to the filter of the rule. When the packet
matches one or more rules, the element performs the action
of the matched rule that has the highest priority. When the
packet matches no rule, the element executes a default action.

Cost-effective packet classification at line rate is critical
for secure efficient operation of modern computer networks.
Network elements classify packets to support firewalling,
service differentiation, traffic accounting, etc. Pioneered by
OpenFlow [3], network programmability vastly expands usage
of packet classification. Domain-specific languages, such as
P4 [4], provide means for programming the network-element
operation as a series of packet classifiers.

The amount of storage and computation needed by packet
classification depends on the classifier size, memory archi-
tecture, and filter representation. While classification typically
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considers multiple fields in the packet header, it is possible to
represent each classifier so that the combined content of every
filter is a character string. The filters of a binary classifier
are bit strings. In a ternary classifier, every filter is a ternary
string of characters 0, 1, and ∗ where wildcard character ∗
stands for both 0 and 1. Each filter of a prefix classifier is a
prefix, a special kind of a ternary string where a substring of
bits precedes a substring of wildcards ∗. Filter representations
via prefixes and ternary strings require much less storage space
compared to representing each filter as a bit string.

Ternary Content-Addressable Memories (TCAMs) provide
effective hardware support for ternary classifiers [5]. Due to
the constant-space storage and constant-time lookup offered
for ternary-string filter representations, TCAMs align well
with the need to classify packets at line rate. On the negative
side, TCAMs are costly and consume a lot of power. Imple-
mentation of packet classification on conventional memories
necessitates more complicated data structures and algorithms,
resulting in slower operation [6,7].

One can visualize a packet classifier as a table where the
rules form rows, and each character position in the filters
constitutes a column. We refer to the number of these columns
as the filter width. In practice, both filter width and number
of rules keep growing, e.g., due to the increasing network
programmability and IPv4-to-IPv6 transition [8]. Hence, clas-
sification designs should be capable of scaling up to cope with
the growth in both dimensions.

Semantically equivalent transformation. Transformation
of a packet classifier to a semantically equivalent represen-
tation has a potential to substantially improve classification
efficiency. This general approach exploits structural properties
that classifiers have in practice. SAX-PAC deals with ternary
classifiers and introduces the property of order independence
as a basis for classifier transformation [9]. Given an order-
independent classifier, SAX-PAC reduces its filter width via
filter-column removal that preserves order independence. To
ensure that the transformation does not affect the outcome
of packet classification, SAX-PAC equips the transformed
classifier with a true-positive check of the packet against
the entire filter of the matched rule in the original classifier.
When the input classifier is not order-independent, SAX-PAC
partitions it into multiple order-independent groups of rules.
The trend towards wider filters in real classifiers makes order
independence more common.

Laying a different foundation for classifier transformation,
prefix reorderability refers to the ability to convert a ternary



classifier to a semantically equivalent prefix classifier via per-
mutation of the filter columns [10]. Prefix reorderability is an
appealing property because packet classification can leverage
efficient Longest Prefix Match (LPM) solutions developed for
packet forwarding on CPU, GPU, and FPGA platforms that do
not use TCAMs [11–17]. On the other hand, the trend towards
wider filters is detrimental for prefix reorderability.

In this paper, we propose prefix disjointness as a new basis
for transformation of ternary classifiers to semantically equiv-
alent prefix classifiers. The respective transformation relies on
a technique of wildcarding that replaces character 0 or 1 in a
ternary filter with wildcard ∗. When beneficial for clarity of
exposition, we alternatively use ~ to denote the ∗ characters
introduced by wildcarding, in order to distinguish them from
the wildcards in the original classifier. A ternary classifier is
prefix-disjoint if it is order-independent, and wildcarding can
transform it to a prefix-reorderable classifier without violation
of order independence. We design a test for prefix disjointness
and an efficient algorithm for converting a prefix-disjoint clas-
sifier to its prefix-reorderable equivalent. The paper analyzes
how the trend towards wider filters affects prefix disjointness.

We also develop PREDICAT, a novel method for trans-
forming an arbitrary ternary classifier to an equivalent prefix
representation. In addition to our novel procedure for trans-
formation of prefix-disjoint classifiers to prefix-reorderable
equivalents, PREDICAT utilizes various existing techniques
such as classifier partitioning, filter-width reduction, filter-
column permutation, and true-positive checking. Our evalu-
ation on a packet classification benchmark compares PRED-
ICAT with state-of-the-art ternary-to-prefix, ternary-to-binary,
and ternary-to-ternary transformation methods in regard to the
number of lookups.

Example 1. PREDICAT transformation of prefix-disjoint
classifier K to prefix classifier K′′′:

K f1 f2 f3 f4 f5 Action
R1 1 1 1 1 1 A1

R2 1 1 1 1 0 A2

R3 0 ∗ 1 1 ∗ A3

R4 ∗ ∗ 0 1 0 A4

R5 1 ∗ ∗ 0 ∗ A5

⇒

K′′′ f4 f3 f1 f5 Action
R′′′

1 1 1 1 1 A1|C
R′′′

2 1 1 1 0 A2|C
R′′′

3 1 1 0 ∗ A3|C
R′′′

4 1 0 ∗ ~ A4|C
R′′′

5 0 ∗ ~ ∗ A5|C

Example 1 illustrates operation of PREDICAT on classi-
fier K. This classifier is not prefix-reorderable because there
exists no permutation of its filter columns that transforms it to
a prefix representation. Yet, K is prefix-disjoint. PREDICAT
transforms K to K′′′, a prefix classifier with narrower filters.
Specifically, PREDICAT transforms rules R4 and R5 to R′′′4
and R′′′5 respectively by wildcarding of their (R4, f5) and
(R5, f1) characters. Then, PREDICAT removes filter col-
umn f2 and permutes filter columns f1f3f4f5 to f4f3f1f5.
Each rule R′′′i matched in K′′′ makes its action Ai conditional
on true-positive check C that verifies whether the packet also
matches respective rule Ri in K. The classification of a packet
with header h1h2h3h4h5 = 10010 analogously converts the
header to h4h3h1h5 = 0110, employs the converted header to

identify R′′′4 as the matched rule in K′′′, passes check C by
using the original header to confirm R4 as the matched rule
in K, and returns action A4. The classification of a packet
with header 10011 similarly identifies R′′′4 as the matched rule
in K′′′ but fails the same C check and returns the default
action.

Our main contributions are as follows:
• We propose and analyze prefix disjointness as a novel

foundation for transforming a ternary classifier to a se-
mantically equivalent prefix classifier. The paper develops
an efficient test for prefix disjointness as well as algo-
rithm PDTRANSFORM that applies wildcarding and true-
positive checking to convert a prefix-disjoint classifier
to an order-independent prefix-reorderable equivalent in
time linear in the classifier size. We also prove that the
trend towards wider filters preserves prefix disjointness.

• The paper designs PREDICAT, a method that transforms
an arbitrary ternary classifier to an equivalent prefix
representation. PREDICAT combines PDTRANSFORM
with a variety of existing techniques such as classifier
partitioning into multiple groups of rules, filter-width
reduction based on order independence, and permutation
of filter columns.

• The evaluation on the ClassBench benchmark compares
the number of lookups for PREDICAT vs. state-of-the-
art transformation approaches: ternary-to-prefix LPM-PR,
ternary-to-binary EXACT, and ternary-to-ternary SAX-
PAC. The evaluation shows that PREDICAT outperforms
LPM-PR by a factor from 2 to 5, EXACT by an order
of magnitude, and preforms similarly to SAX-PAC that
relies on costly power-hungry TCAMs to efficiently clas-
sify packets on the resulting ternary representations.

The rest of the paper has the following structure. Section II
details relevant background in a consistent mathematical no-
tation. Section III proposes and analyzes prefix disjointness.
Section IV presents PREDICAT. Section V reports on the
evaluation. Section VI discusses related work. Section VII
concludes the paper with a summary of its results.

II. BACKGROUND

This section defines our formal model and uses it to consis-
tently present background on packet classification, including
order independence [9] and prefix reorderability [10].

A. Packet classification

To model packet headers, we consider only those header
bits that are relevant for packet classification. Header H of
a packet is a w-bit string, with each bit hj being either 0
or 1, e.g., 10110 is a 5-bit header. Classifier K refers to a
sequence of rules Ri = 〈Fi 7→ Ai〉 where each rule consists
of filter Fi and corresponding action Ai. Filter Fi contains
a w-character ternary string where each character is either 0,
1, or wildcard ∗. The wildcard character stands for both 0
and 1. For instance, ∗0∗1∗ is a 5-character filter. We represent
classifier K as a table where each rule Ri forms a separate
row, and the jth most significant characters of all the filters



compose filter column fj . Hence, cell (Ri, fj) of the table
stores filter character cij , which is the jth most significant
character of filter Fi. The classifier arranges the rules in the
order of their decreasing priority. Packet P with header H
matches rule Ri if cij = ∗ ∨ cij = hj for j = 1, . . . , w, i.e.,
every character of filter Fi is either ∗ or the same as respective
bit hj . For fluency of discourse about rule matching, we use
expressions ”P matches” and ”H matches” interchangeably.
The classifier returns action Ai of the first matched rule, i.e.,
the matched rule with the highest priority. When the packet
matches no rule, the classifier returns default action 7. Two
classifiers are semantically equivalent, or just equivalent for
short, if either classifier returns the same action whenever
presented with the same packet.

Example 2. Classifier K′ with 5 rules and 5-character filters:

K′ f1 f2 f3 f4 f5 Action
R′

1 1 1 1 1 1 A′
1

R′
2 1 1 1 1 0 A′

2

R′
3 0 ∗ 1 1 ∗ A′

3

R′
4 ∗ ∗ 0 1 ∗ A′

4

R′
5 ∗ ∗ ∗ 0 ∗ A′

5

H1 = 11111 ⇒ A′
1

H2 = 11010 ⇒ A′
4

H3 = 10110 ⇒ 7

Example 2 depicts classifier K′ with 5 rules R′1, R′2, R′3, R′4,
and R′5 and 5 filter columns f1, f2, f3, f4, and f5. For packets
with headers H1 = 11111, H2 = 11010, and H3 = 10110,
the classifier returns actions A′1, A′4, and 7 respectively.

B. Order independence and prefix reorderability

A classifier is order-independent if any packet matches
at most one of its rules [9]. The property name reflects
independence of the returned action from the order of the
rules in the classifier. SAX-PAC exploits order independence
to transform the classifier to an equivalent classifier with
narrower filters.

A ternary classifier is a prefix classifier if all its filters
are prefixes, e.g., classifier K′ in Example 2 is not a prefix
classifier. A prefix classifier is an LPM classifier if, whenever
a packet matches multiple rules, the filter of the first matched
rule has the longest binary substring, i.e., the shortest wildcard
substring. LPM classifiers are attractive because packet classi-
fication can readily utilize efficient LPM solutions developed
for packet forwarding. Because one can transform any prefix
classifier to an equivalent LPM classifier [10], the rest of this
paper interchangeably refers to an LPM classifier as a prefix
classifier.

Ternary classifier K′ is prefix-reorderable if there exists
a permutation of its filter columns that transforms K′ to an
equivalent prefix classifier [10]. We denote this prefix classifier
as K′′. When applied to the bits of header H ′, the same
permutation produces header H ′′. The classifications of H ′

on K′ and H ′′ on K′′ result in identical actions. The chain
criterion specifies conditions for prefix reorderability [10,18].
The criterion characterizes each rule Ri of the ternary classifier
with set exact(Ri) = {j : cij = 0 ∨ cij = 1} that records the
positions where the w-character filter of the rule contains 0

or 1. According to the chain criterion, classifier K′ is prefix-
reorderable iff the exact(Ri) sets of all rules Ri in K′ form
a chain of inclusion relations. This inclusion chain imposes a
partial order on the filter columns in the permuted classifier.
The partial order determines the permutations that transform
K′ to a prefix classifier.

Example 3. Semantically equivalent transformation of
prefix-reorderable classifier K′ to prefix classifier K′′:

K′ f1 f2 f3 f4 f5 Action
R′

1 1 1 1 1 1 A′
1

R′
2 1 1 1 1 0 A′

2

R′
3 0 ∗ 1 1 ∗ A′

3

R′
4 ∗ ∗ 0 1 ∗ A′

4

R′
5 ∗ ∗ ∗ 0 ∗ A′

5

⇒

K′′ f4 f3 f1 f2 f5 Action
R′′

1 1 1 1 1 1 A′
1

R′′
2 1 1 1 1 0 A′

2

R′′
3 1 1 0 ∗ ∗ A′

3

R′′
4 1 0 ∗ ∗ ∗ A′

4

R′′
5 0 ∗ ∗ ∗ ∗ A′

5

Borrowing classifier K′ from Example 2, Example 3 il-
lustrates its prefix reorderability by transforming it to prefix
classifier K′′. K′ is prefix-reorderable because there exists
the following inclusion chain: exact(R′1) = {1, 2, 3, 4, 5} ⊇
exact(R′2) = {1, 2, 3, 4, 5} ⊃ exact(R′3) = {1, 3, 4} ⊃
exact(R′4) = {3, 4} ⊃ exact(R′5) = {4}. The chain imposes
the following partial order on the filter columns in the per-
muted classifier: filter columns f1, f3, and f4 precede filter
columns f2 and f5; filter columns f3 and f4 precede f1; filter
column f4 precedes f3. Filter-column permutation f4f3f1f2f5
transforms K′ to K′′.

III. PREFIX DISJOINTNESS

While prefix reorderability usefully enables efficient packet
classification on LPM solutions, this property frequently does
not hold, e.g., even when each filter consists of only two prefix
fields for matching the source and destination IP addresses
in the packet header. Besides, the trend towards wider filters
makes prefix reorderability less likely.

This section explores a different approach to equivalent
transformation of a ternary classifier to a prefix classifier. In
accordance with the chain criterion, a classifier is not prefix-
reorderable iff the exact(Ri) sets do not form an inclusion
chain. Hence, alteration of some rules Ri to create an inclusion
chain from the modified exact(Ri) sets constitutes a promising
direction for transformation of the classifier to a prefix-
reorderable representation and eventually a prefix classifier.
One option for pursuing this direction is rule duplication:
when a rule contains a wildcard that interferes with creating an
inclusion chain, duplicate the rule and change the problematic
∗ to 0 and 1 in the first and second copies of the rule
respectively. For instance, revisit Example 1 and duplicate
rule R3 into rules Ra

3 and Rb
3, change their (Ra

3 , f5) and
(Rb

3, f5) characters from ∗ to 0 and 1 respectively, duplicate
rule R4 into rules Ra

4 and Rb
4, and change their (Ra

4 , f1) and
(Rb

4, f1) characters from ∗ to 0 and 1 respectively. However,
the practical utility of rule duplication is doubtful due to the
exponential increase in storage space needed for the duplicated
rules.



Our approach proposes the property of prefix disjointness
and relies on the technique of wildcarding that replaces charac-
ter 0 or 1 in the filter of a rule with wildcard ∗. We alternatively
denote the ∗ character introduced by wildcarding as ~. Note
that wildcarding does not affect the number of rules. The main
challenge lies in assuring the semantic equivalence of original
classifier K and transformed classifier K′. We tackle this
challenge by imposing the constraint of order independence
on K, meaning that any packet matches at most one of the
rules in K. By also requiring that the transformation preserves
order independence, we guarantee that any packet matches at
most one of the rules in K′ as well. Due to wildcarding, the set
of packets that conform to the only matched rule is larger for
K′ compared to K. Thus, when the classification on K′ results
in a match, we apply a true-positive check to the respective
matched rule in K. If the true-positive check succeeds, the
classification returns the action of this rule. If the check fails,
or the packet does not match any rule in K′, the classification
returns the default action of K. Based on the above, we
define a ternary classifier to be prefix-disjoint if it is order-
independent, and wildcarding can transform it to a prefix-
reorderable classifier without violation of order independence.
We refer to the resulting prefix-reorderable classifier, when it is
equipped with the true-positive check, as a prefix-reorderable
equivalent of the prefix-disjoint classifier. Note that the prefix-
reorderable equivalent is both prefix-reorderable and order-
independent.

Theorem 1. A prefix-disjoint classifier and its prefix-
reorderable equivalent are semantically equivalent.

Proof. Let K′ be a prefix-reorderable equivalent of prefix-
disjoint classifier K. If packet P matches rule Ri in K, P also
matches respective rule R′i in K′. Because both K and K′ are
order-independent, P matches on either K or K′ only one rule
(Ri or R′i respectively). The true-positive check for P on rule
Ri in K succeeds, and the classification of P on either K or K′
returns the same action, the action of rule Ri.

If P does not match any rule in K, P either does not match
any rule in K′ or, due to order independence of K′, matches
only one rule R′i in K′. In the case of the match, the true-
positive check for P on respective rule Ri in K fails. In either
case, the classification of P on either K or K′ returns the same
default action. Thus, the classification of any packet returns the
same action on either K or K′.

Example 4. Semantically equivalent transformation of prefix-
disjoint classifier K to its prefix-reorderable equivalent K′:

K f1 f2 f3 f4 f5 Action
R1 1 1 1 1 1 A1

R2 1 1 1 1 0 A2

R3 0 ∗ 1 1 ∗ A3

R4 ∗ ∗ 0 1 0 A4

R5 1 ∗ ∗ 0 ∗ A5

⇒

K′ f1 f2 f3 f4 f5 Action
R′

1 1 1 1 1 1 A1|C
R′

2 1 1 1 1 0 A2|C
R′

3 0 ∗ 1 1 ∗ A3|C
R′

4 ∗ ∗ 0 1 ~ A4|C
R′

5 ~ ∗ ∗ 0 ∗ A5|C

Example 4 shows how wildcarding of the (R4, f5) and
(R5, f1) filter characters and addition of true-positive check C

transform prefix-disjoint classifier K to its prefix-reorderable
equivalent K′. The classification of a packet with header 10000
on K′ matches rule R′5, succeeds in check C on rule R5 in K,
and returns action A5. While a packet with header 00000 also
matches rule R′5 in K′, check C on rule R5 in K fails, and
the classification of this packet returns default action 7.

While the trend towards wider filters is detrimental for prefix
reorderability, the following theorem reveals that this trend
does not undermine prefix disjointness.

Theorem 2. Widening the filters of a prefix-disjoint classifier
preserves prefix disjointness.

Proof. Let K2 be a classifier obtained from prefix-disjoint
classifier K1 by widening its filters with some number of extra
columns. Since K1 is order-independent, any packet matches at
most one rule in K1. Because widening the filters maintains
the property of matching at most one rule for any packet,
K2 is also order-independent. Consider a transformation of K1

to its prefix-reorderable equivalent. Application of the same
transformation to K2 in combination with wildcarding of all
the characters in the newly added filter columns transforms
K2 to its prefix-reorderable equivalent. Hence, K2 is prefix-
disjoint.

Practical application of prefix disjointness requires an ef-
ficient test for the property and an efficient algorithm for
transforming a prefix-disjoint classifier to its prefix-reorderable
equivalent. Below, we formalize this need as problem PD-
CHECK and develop algorithm PDTRANSFORM for solving
the problem.

Problem 1 (PDCHECK). Given a ternary classifier, determine
whether it is prefix-disjoint. If it is, provide a prefix-reorderable
equivalent of the classifier.

We define all-exact set E(K) of classifier K as the set of
the filter positions where all rules Ri in K contain character
0 or 1, i.e., E(K) =

⋂
Ri∈K exact(Ri). For each rule Ri,

we construct counterpart rule REi by wildcarding of all its
filter characters at positions not present in E(K) and adding
true-positive check C. Then, we extract classifier KE from K
by removing each rule Ri such that a packet matches both
counterpart rule REi and another rule in K. In Example 4, all-
exact set E(K) is {4}, rule RE5 has filter ∗ ∗ ∗ 0 ∗, and KE
contains only rule R5.

Lemma 1. If classifier K is prefix-disjoint, there exists its
prefix-reorderable equivalent K′ where, for each rule Ri

in KE , counterpart rule REi serves as rule R′i.

Proof. Let K be a prefix-disjoint classifier. Because the filter
positions present in all-exact set E(K) pose no obstacles
for prefix reorderability, one can transform K to its prefix-
reorderable equivalent without wildcarding in the respective
columns. Thus, we consider prefix-reorderable equivalent K′
obtained through such transformation, meaning that all-exact
set E(K′) remains the same as E(K). We extract KE from K
and, for each rule Ri in KE , replace rule R′i in K′ with counter-



Algorithm 1 PDTRANSFORM(K)

1: K′ ← () � initialization of K′ with an empty classifier
2: h[1, . . . , N]← 0, . . . , 0 � character-tracking array
3: for j = 1, . . . , w do
4: e[j] ← |{Ri ∈ K : cij = 0 ∨ cij = 1}|

� e[j] tracks the total number of 0s and 1s in column fj

5: Eprev ← {} � initialization of the all-exact set
6: while K 6= () do
7: E(K)← {j : e[j] = |K|} � update of the all-exact set
8: if E(K) = Eprev
9: return not prefix-disjoint

10: d[0, . . . , N − 1]← 0, . . . , 0
11: for Ri ∈ K do
12: h[i]← g(h[i], (cij : j ∈ E(K) \ Eprev))
13: d[h[i]]← d[h[i]]+ 1

� counting the rules that have the same h[i] value

14: KE ← (Ri ∈ K : d[h[i]] = 1)
15: K′←K′ ∪ (REi : Ri ∈ KE )
16: for j = 1, . . . , w do
17: e[j]←e[j]−|{Ri ∈ KE : cij = 0 ∨ cij = 1}|
18: Eprev ← E(K)
19: K ← K \ KE

20: return prefix-disjoint, K′

part rule REi . Due to preserving both order independence and
prefix reorderability of K′, the replacement produces a prefix-
reorderable equivalent of K with the desired property.

Lemma 2. If K is a prefix-disjoint classifier such that KE
differs from K, set E(K) is a proper subset of E(K \ KE).

Proof. As in the proof of Lemma 1, we consider such prefix-
reorderable equivalent K′ of prefix-disjoint classifier K that
E(K′) = E(K). Because K′ is order-independent, KE includes
each such rule Ri that set exact(R′i) for respective rule R′i
in K′ is the same as E(K′). When rule Ri of K is not
in KE , set E(K′) is a proper subset of exact(R′i). Since
K′ is prefix-reorderable, and KE differs from K, classifier
K \ KE contains rule Rj such that exact(R′j) is a subset of
exact(R′i) for any Ri in K \ KE . Consequently, E(K′) is a
proper subset of exact(R′j) =

⋂
Ri ∈ K\KE exact(R′i) since

Rj /∈ KE . Because E(K) is the same as E(K′), which is a
proper subset of

⋂
Ri∈K\KE exact(R′i), which is a subset of⋂

Ri∈K\KE exact(Ri), and the latter is E(K\KE), we conclude
that set E(K) is a proper subset of E(K \ KE).

Lemmata 1 and 2 pave the way for solving the PDCHECK
problem. Given ternary classifier K, the solution initializes K′
with an empty classifier and starts iterating. Following the
insight of Lemma 1, each iteration: (a) extracts KE from K,
(b) inserts, for each rule Ri in KE , counterpart rule REi as
rule R′i into K′, and (c) removes the rules of KE from K.
In accordance with Lemma 2, if any iteration encounters
conditions where KE differs from K but all-exact sets E(K)

and E(K \ KE) are the same, the solution terminates by
concluding that the original classifier is not prefix-disjoint.
Otherwise, after iterating until K becomes empty, the solution
terminates by providing K′ as a prefix-reorderable equivalent
of the original classifier.

Algorithm 1 presents the pseudocode of our PDTRANS-
FORM solution. The input to the algorithm is K, a ternary clas-
sifier that has N rules Ri and w filter columns fj . Lines 1–5
perform initializations. In particular, Line 2 initializes array h
where element h[i] contains the integer between 0 and N − 1
that identifies the characters of rule Ri in the filter positions
present in all-exact set E(K). The algorithm starts iteratively
constructing K′ in Line 6. Line 7 updates the all-exact set
of K. Lines 8 and 9 check the prefix-disjointness conditions
and, if the conditions do not hold, terminate the algorithm
with proclaiming that the input classifier is not prefix-disjoint.
Lines 11–14 extract KE from K. Note that rule Ri belongs
to KE iff K does not contain another rule such that all
characters in the E(K) positions of its filter are the same as
the corresponding characters in Ri. Hence, Line 12 updates
h[i] by applying g, a perfect hash function [19], to the current
h[i] value and all characters cij in the filter positions present
in the set difference of the updated E(K) set and its previous
version. Line 14 inserts into KE each rule Ri such that its
corresponding element h[i] has a unique value in array h.
Line 15 inserts counterpart rule REi into K′. Line 19 removes
from K all the rules of KE .

Example 5. Transformation of prefix-disjoint classifier K to
its prefix-reorderable equivalent K′ by PDTRANSFORM:
K f1 f2 f3 f4 f5 Action
R1 1 1 1 1 1 A1

R2 1 1 1 1 0 A2

R3 0 ∗ 1 1 ∗ A3

R4 ∗ ∗ 0 1 0 A4

R5 1 ∗ ∗ 0 ∗ A5

K′ f1 f2 f3 f4 f5 Action
R′

5 ~ ∗ ∗ 0 ∗ A5|C

K f1 f2 f3 f4 f5 Action
R1 1 1 1 1 1 A1

R2 1 1 1 1 0 A2

R3 0 ∗ 1 1 ∗ A3

R4 ∗ ∗ 0 1 0 A4

K′ f1 f2 f3 f4 f5 Action
R′

4 ∗ ∗ 0 1 ~ A4|C
R′

5 ~ ∗ ∗ 0 ∗ A5|C

K f1 f2 f3 f4 f5 Action
R1 1 1 1 1 1 A1

R2 1 1 1 1 0 A2

R3 0 ∗ 1 1 ∗ A3

K′ f1 f2 f3 f4 f5 Action
R′

3 0 ∗ 1 1 ∗ A3|C
R′

4 ∗ ∗ 0 1 ~ A4|C
R′

5 ~ ∗ ∗ 0 ∗ A5|C

K f1 f2 f3 f4 f5 Action
R1 1 1 1 1 1 A1

R2 1 1 1 1 0 A2

K′ f1 f2 f3 f4 f5 Action
R′

1 1 1 1 1 1 A1|C
R′

2 1 1 1 1 0 A2|C
R′

3 0 ∗ 1 1 ∗ A3|C
R′

4 ∗ ∗ 0 1 ~ A4|C
R′

5 ~ ∗ ∗ 0 ∗ A5|C

K′′ f4 f3 f1 f2 f5 Action
R′′

1 1 1 1 1 1 A1|C
R′′

2 1 1 1 1 0 A2|C
R′′

3 1 1 0 ∗ ∗ A3|C
R′′

4 1 0 ∗ ∗ ~ A4|C
R′′

5 0 ∗ ~ ∗ ∗ A5|C

(1)

(2)

(3)

(4)

(5)



Elaborating on Example 4, Example 5 demonstrates how
PDTRANSFORM transforms prefix-disjoint classifier K to its
prefix-reorderable equivalent K′. Each of Steps 1– 4 in Exam-
ple 5 illustrates one iteration where PDTRANSFORM extracts
rules Ri from K, applies wildcarding to the filter characters
in these rules, equips them with true-positive check C, and
inserts resulting rules R′i into K′. The step denotes extracted
rules Ri and inserted rules R′i in bold. After each of these
steps, K contains two sets of darker and lighter shaded filter
columns that represent new positions in all-exact set E(K) and
its previous version respectively. Step 5 in Example 5 shows
the semantically equivalent transformation of K′ to prefix
classifier K′′, the same as already depicted in Example 3.

Theorem 3. The PDTRANSFORM algorithm correctly solves
the PDCHECK problem for any ternary classifier.

Proof. The algorithm correctness follows from Lemmata 1
and 2. While Lemma 2 establishes conditions for prefix
disjointness, Lines 8 and 9 of PDTRANSFORM check these
conditions and correctly terminate the algorithm if the clas-
sifier violates the conditions. The fulfillment of the prefix-
disjointness conditions in Line 8 ensures that the algorithm
keeps iterating until K′ becomes an N -rule classifier. Each
iteration implements a transformation of K′ that preserves its
order independence and prefix reorderability in accordance
with Lemma 1. Hence, if the input classifier is prefix-disjoint,
PDTRANSFORM correctly proclaims its prefix disjointness and
returns K′ as a prefix-reorderable equivalent.

The computational complexity of the PDTRANSFORM algo-
rithm is O(w ·N), i.e., linear in the number of characters that
the input classifier has in its filters. This complexity arises in
Lines 11 and 12 that update array h and consume per-iteration
time O(| E(K) \ Eprev| ·N) as the algorithm iterates to cover
all w columns of the filters.

IV. PREDICAT

While the PDTRANSFORM algorithm that converts a prefix-
disjoint classifier to its prefix-reorderable equivalent consti-
tutes the most innovative contribution of our paper, this section
builds on PDTRANSFORM to design PREDICAT, a method
that transforms an arbitrary ternary classifier to an equivalent
prefix representation. PREDICAT combines PDTRANSFORM
with various existing techniques.

Given a ternary classifier that is not prefix-disjoint, PREDI-
CAT splits this classifier K into vector ~K of M prefix-disjoint
groups of rules, as Section IV-A discusses in more detail
later. For each group Kz in ~K, PREDICAT uses PDTRANS-
FORM to construct its prefix-reorderable equivalent K′z . Then,
PREDICAT explores and exploits the possibility that each K′z
contains more filter columns than necessary to preserve its
order independence and prefix reorderability. At this stage,
PREDICAT transforms every K′z to equivalent classifier K′′z
with narrower filters, as we discuss later in Section IV-B.
Finally, PREDICAT converts each K′′z to equivalent prefix
classifier K′′′z by permuting the filter columns in K′′z .

Example 6. PREDICAT transformation of ternary classi-
fier K, which is not prefix-disjoint, to an equivalent set of
prefix classifiers:

K f1 f2 f3 f4 Action
R1 0 0 0 1 A1

R2 0 0 1 ∗ A2

R3 1 0 ∗ ∗ A3

R4 ∗ 1 1 0 A4

R5 ∗ ∗ 0 0 A5

R6 ∗ ∗ 1 0 A6

R7 ∗ 0 ∗ 1 A7

K1 f1 f2 f3 f4 Action
R1 0 0 0 1 A1

R2 0 0 1 ∗ A2

R3 1 0 ∗ ∗ A3

R4 ∗ 1 1 0 A4

K2 f1 f2 f3 f4 Action
R5 ∗ ∗ 0 0 A5

R6 ∗ ∗ 1 0 A6

R7 ∗ 0 ∗ 1 A7

(1) (1)

K′
1 f1 f2 f3 f4 Action

R′
1 0 0 0 1 A1|C

R′
2 0 0 1 ∗ A2|C

R′
3 1 0 ∗ ∗ A3|C

R′
4 ∗ 1 ~ ~ A4|C

K′
2 f1 f2 f3 f4 Action

R′
5 ∗ ∗ 0 0 A5|C

R′
6 ∗ ∗ 1 0 A6|C

R′
7 ∗ ~ ∗ 1 A7|C

(2)
(2)

K′′
1 f1 f2 f3 Action

R′′
1 0 0 0 A1|C

R′′
2 0 0 1 A2|C

R′′
3 1 0 ∗ A3|C

R′′
4 ∗ 1 ~ A4|C

K′′
2 f3 f4 Action

R′′
5 0 0 A5|C

R′′
6 1 0 A6|C

R′′
7 ∗ 1 A7|C

(3)
(3)

K′′′
1 f2 f1 f3 Action

R′′′
1 0 0 0 A1|C

R′′′
2 0 0 1 A2|C

R′′′
3 0 1 ∗ A3|C

R′′′
4 1 ∗ ~ A4|C

K′′′
2 f4 f3 Action

R′′′
5 0 0 A5|C

R′′′
6 0 1 A6|C

R′′′
7 1 ∗ A7|C

(4)
(4)

Example 6 illustrates how PREDICAT operates on ternary
classifier K that is not prefix-disjoint. In Step 1, PRED-
ICAT partitions K into prefix-disjoint groups K1 and K2.
The darker and lighter shaded areas highlight changes
related to K1 and K2 respectively. In Step 2, our method
converts K1 and K2 to prefix-reorderable equivalents K′1
and K′2 respectively. In Step 3, PREDICAT constructs prefix-
reorderable order-independent classifiers K′′1 and K′′2 via re-
spective removal of filter column f4 from K′1 and columns f1
and f2 from K′2. In Step 4, the method transforms K′′1 and
K′′2 to equivalent prefix classifiers K′′′1 and K′′′2 respectively
by permuting the filter columns.

With classifier K represented as M prefix classifiers K′′′z ,
the classification of a packet with header H on this multi-
group representation uses the following procedure: (i) for
each prefix classifier K′′′z , construct header Hz that contains
the bits of H corresponding to the filter columns in K′′′z ;
(ii) classify each Hz on K′′′z and, for any of up to M matched
rules overall, perform the true-positive check for H against
respective rule Ri in K; (iii) among all the rules that passed
the true-positive check, return the action of the highest priority
rule.



Example 7. Classification of a packet with header H on K′′′1
and K′′′2 , a multi-group representation of classifier K:

H = 0 1 1 0

H1 = 1 0 1 H2 = 0 1

h1h2h3h4

h2h1h3 h4h3

(1) (1)

K′′′
1 f2 f1 f3 Action

R′′′
1 0 0 0 A1|C

R′′′
2 0 0 1 A2|C

R′′′
3 0 1 ∗ A3|C

R′′′
4 1 ∗ ~ A4|C

K′′′
2 f4 f3 Action

R′′′
5 0 0 A5|C

R′′′
6 0 1 A6|C

R′′′
7 1 ∗ A7|C

(2a) (2b)

K f1 f2 f3 f4 Action
R4 ∗ 1 1 0 A4

R6 ∗ ∗ 1 0 A6

(3) (3)

(3)

A4classification result:

(4)

true-positive check:

Example 7 depicts how PREDICAT classifies a packet with
header H = h1h2h3h4 = 0110 on the multi-group prefix
representation constructed for classifier K in Example 6. In
Step 1, PREDICAT constructs headers H1 = h2h1h3 = 101
and H2 = h4h3 = 01. In Steps 2a and 2b, H1 and H2

match rules R′′′4 and R′′′6 in prefix classifiers K′′′1 and K′′′2
respectively. In Step 3, the true-positive checks for H against
both rules R4 and R6 in K succeed. In Step 4, PREDICAT
returns action A4 as the classification result because rule R4

has a higher priority than rule R6.

A. Partition into multiple prefix-disjoint classifiers

Because each prefix-disjoint group in the multi-group rep-
resentation of a classifier requires a separate lookup during
classification, it is desirable to minimize the number of prefix-
disjoint groups in the partition.

Problem 2 (PDSPLIT). Given a ternary classifier, partition it
into as few prefix-disjoint groups as possible.

The following theorem reveals that PDSPLIT is a computa-
tionally difficult problem.

Theorem 4. The PDSPLIT problem is NP-hard.

Proof. To prove the theorem, we reduce the set cover problem,
which is NP-hard [20], to PDSPLIT. Consider set U =
{1 . . . N} and collection S = {S1, . . . , SM} of sets that
contain only elements from U . The cover of U is collection
S ′ ⊆ S such that the union of all sets in S ′ equals U . The
objective in this problem is to find the cover of U with the
minimum number of sets. For a given instance of the set cover
problem, we construct classifier K with N rules where rule Ri

corresponds to i ∈ U . Filter Fi consists of M · l characters,
where l = dlog2(N)e. For each set Sj ∈ S that contains i, the
characters of Fi in positions (j − 1) · l+ 1, . . . , j · l form the
binary representation of i− 1, and the other characters of Fi

equal ∗, e.g., if N and M are equal to 4, and element 2 from

Algorithm 2 PDPARTITION(K)

1: ~K ← ()
2: while K 6= () do
3: Kprev ← K
4: Kz ← ()
5: while K 6= () do
6: R← argmaxR∈K | E(Kz) ∩ exact(R)|
7: if PDTRANSFORM(Kz ∪ {R}) = prefix-disjoint, K′z
8: Kz ← Kz ∪ {R}
9: K ← K \ {R}

10: ~K ← ~K ∪ {Kz}
11: K ← Kprev \ Kz

12: return ~K

U appears only in S1 and S3, filter F2 is 01**01**. Now,
consider partition ~K of K into prefix-disjoint groups. Since
each group Kz ∈ ~K is prefix-disjoint, E(Kz) 6= ∅. Position x in
E(Kz) corresponds to set Sd(x−1)/le. Ri can belong to Kz only
if i ∈ Sd(x−1)/le. Thus, Kz defines a subset of Sd(x−1)/le and,
since every rule belongs to exactly one group, ~K represents
a cover of U of the same size. Conversely, each set Sj ∈ S
defines prefix-disjoint group Kj that contains Ri iff i ∈ Sj ;
each such Kj is prefix-disjoint because the filter columns in
E(Kj) ensure order independence for all rules in Kj . Thus,
each cover of U defines a partition of K into prefix-disjoint
groups. Hence, a partition of K into the minimal number of
prefix-disjoint groups defines a minimal set cover of U .

Due to the NP-hardness result in Theorem 4, PREDICAT
uses heuristics to find group partitions. Algorithm 2 reports
its iterative greedy algorithm PDPARTITION that constructs
one prefix-disjoint group per iteration so that to maximize
the number of rules in this group. A straightforward way to
build a single prefix-disjoint Kz group with PDTRANSFORM
is by trying each rule in K one by one, checking each time
if the initially empty Kz group is still prefix-disjoint when
this rule is added, and, if it is, updating Kz . The choice of
the next tried rule is the main control knob in this general
method. Clearly, a right choice can even produce an optimal
solution for PDSPLIT. In algorithm PDPARTITION, we choose
rule Rj with the largest size of E(Kz∪{Rj}) to maximize the
number of the filter columns that PDTRANSFORM(Kz∪{Rj})
considers in its first iteration. The computational complexity
of PDPARTITION is O(w · N2) because the total number of
rules in all groups of the constructed ~K partition equals N ,
and Algorithm 2 checks for prefix disjointness in Line 7 for
each rule with every group at most once.

In some scenarios, the number of groups constructed by
PDPARTITION (or even by an optimal algorithm) can exceed
the number of prefix lookups that the underlying LPM infras-
tructure supports at line rate. In such cases, PREDICAT turns
to a mixed representation that uses TCAM or other non-LPM
infrastructures for a relatively small portion of the rules, e.g.,
at most 5% of them. TCAM capabilities are not strictly neces-



sarily, and a linear pass over the rules might be acceptable if
there are only few non-prefix rules. Regardless, it is desirable
to keep the non-prefix rule group as small as possible, which
brings us to the following problem formulation:

Problem 3 (PDMIX). Given ternary classifier K and β ∈ N,
find a partition of subset K′ in K into M groups Kz such that
M is at most β, each group Kz is prefix-disjoint, and K \K′
contains as few rules as possible.

Expectedly, the PDMIX problem is also NP-hard because we
can reduce PDSPLIT to it via a binary search over β. Given the
one-group-at-a-time nature of the PDPARTITION algorithm, it
is straightforward to apply the algorithm to PDMIX: simply
return the first β constructed groups as the result.

B. Reduction of the filter width

When packet classification relies on LPM infrastructures,
the latter constrain not only the filter representation but also the
filter width. Generally, narrower filters lead to smaller resource
footprints and/or faster lookups. In practice, there may exist
a hard constraint of either 32 characters (length of an IPv4
address) or 128 characters (length of an IPv6 address) on the
filter width in LPM classification infrastructures due to their
original designation for destination-based forwarding.

To reduce the filter width in prefix-reorderable equiva-
lent K′z of prefix-disjoint group Kz , PREDICAT removes
filter columns from K′z iteratively while preserving order
independence, with prefix reorderability preserved as a by-
product. During each iteration, if the filter width of K′z still
exceeds the filter width supported by the underlying LPM
infrastructure, and it is impossible to remove a filter column
from K′z without violation of order independence, PREDICAT
removes a filter column in such a way that maximizes the
size of the largest order-independent subset of K′z; in the
case of a tie, PREDICAT removes the filter column with the
largest number of wildcards. After removing a filter column,
PREDICAT removes from K′z each rule R′i that does not
belong to the largest order-independent subset of K′z and also
removes respective rule Ri from Kz . All rules removed from
Kz are assigned to subsequent groups. Note that the process
described above may lead to situations where some rule is
inserted to and removed from multiple groups. Thus, when
PREDICAT performs filter-width reduction, its computational
complexity becomes O(p ·w ·N2 +w2 ·N) where p refers to
the number of groups in the resulting representation.

V. EVALUATION

To compare the proposed method with related work, we
consider the following classifiers generated with realistic
parameter values from the ClassBench benchmark: firewall
classifiers fw1 through fw5, access-control-list classifiers acl1
through acl5, and IPchain classifiers ipc1 and ipc2 [21]. The
classifier filters include fields for the source and destination
ports represented as value ranges. We expand the ranges to
ternary strings via the SRGE encoding scheme based on Gray
coding [22]. Because the true-positive check can be performed

efficiently for any original rule, we always consider the ternary
rules from the same range expansion to be order-independent.
Each range-expanded classifier in the set has from 50,000 to
280,000 rules with the filter width of 104 characters. Our code
for the classifier transformation and evaluation is available at
GitLab [23].

We evaluate PREDICAT against the following three alter-
natives: 1) LPM-PR that leverages prefix reorderability [10];
2) EXACT that uses SAX-PAC restricted to binary repre-
sentations without wildcards [8]; 3) SAX-PAC that lever-
ages order independence and produces non-prefix ternary
representations [9]. We evaluate PREDICAT, LPM-PR and
SAX-PAC in two settings with: (a) filter width restricted to
32 characters in Figure 1 and (b) original filter width of
104 characters in Figure 2. For EXACT, we report only the
full-width representations in both Figures 1 and 2 because
exact binary classification is usually implemented with hash
tables. The metric of interest is the number of groups necessary
to represent the majority of rules in the classifier, namely 95%,
99%, and 100% of all rules. This metric ultimately reflects the
number of lookups in mixed representations, where 5%, 1%
and 0% of all rules are maintained by conventional methods
and do not participate in partitions into groups.

Prefix disjointness vs. prefix reorderability. We start by
evaluating the advantages of prefix disjointness over prefix
reorderability, as represented by PREDICAT and LPM-PR
respectively. For the filter width restricted to 32 characters,
which is a more favorable case for prefix reorderability,
Figure 1a shows that LPM-PR is hardly feasible already with
95% of the rules and requires more than 20 groups on average
and 80 groups for fw4. In contrast, to represent the same 95%,
PREDICAT never needs more than 11 groups in all cases, 3.5
groups on average (5× better than LPM-PR), and at most
2 groups for 7 of the 12 classifiers. Figure 1b demonstrates
that PREDICAT is able to represent 99% of the rules using
no more than 5 groups for 7 of the 12 classifiers and no
more than 16 groups overall. In the same setting, LPM-PR
requires more than 30 groups for a half of the classifiers and
178 groups in the worst case. Figure 1c reveals that while
the 100% representation of the rules is challenging for both
LPM-PR and PREDICAT, the results are again in favor of
prefix disjointness, as LPM-PR needs 4× more groups than
PREDICAT on average (140 groups vs. 29) and more than
100 groups for a majority of the classifiers.

In the full-width settings, Figure 2 shows that the per-
formance gap only increases. LPM-PR suffers a major per-
formance degradation compared to the 32-character case:
Figure 2a unveils a 2× increase in the number of groups from
20 to 40 on average for 95% of the rules. This is in line with
our earlier observation that prefix reorderability deteriorates as
the filter width increases. On the other hand, prefix disjointness
only strengthens, and PREDICAT requires 20% less groups on
average to represent both 95% and 99% of the rules, reducing
the number to 2.8 and 4.8 groups respectively. Overall, we
conclude that prefix disjointness is by far a more valuable
property than prefix reorderability, and its advantage only
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(c) Representing 100% of the rules in the classifier

Fig. 1: Number of groups needed by each of the approaches to represent a fixed fraction – 95%, 99%, or 100% – of the
classifier rules when the filter width is restricted to 32 characters for PREDICAT, LPM-PR and SAX-PAC.

increases as the filter width grows.

Prefix disjointness vs. exact representation. Next, we
compare the prefix representations constructed by PREDICAT
and binary representations provided by EXACT. The former
are the only feasible ones for many classifiers. While we
already showed that PREDICAT improves its performance as
the filters become wider, Figure 1 depicts the performance
of PREDICAT with 32-character filters vs. EXACT. Figure 1a
reveals that EXACT needs more than 10 groups for 7 of the 12
classifiers and 90 groups for acl2 in order to represent 95% of
the rules. In relative terms, EXACT uses an order of magnitude
more groups than PREDICAT for acl2, acl3, fw1, and fw4.
For 99% of the rules, Figure 1b shows a performance gap
of the same magnitude: on average, PREDICAT and EXACT
require 5.8 groups and 55 groups respectively. For 100% of the
rules, Figure 1c demonstrates that EXACT needs at least 100
groups for 7 of 12 the classifiers, which similar with LPM-
PR, and 4× more groups than with PREDICAT. To sum up,
although exact binary lookups might be easier to implement
than prefix lookups, the observed order-of-magnitude gap in
the number of groups gives PREDICAT a clear advantage over

the ternary-to-binary transformation method.
Prefix disjointness vs. order independence. Lastly, we

contrast prefix disjointness and order independence, as repre-
sented by PREDICAT with SAX-PAC respectively. Figures 1
and 2 show that, while the latter does not result in prefix-
disjoint groups and is not suitable for prefix representations,
the difference in the number of groups is marginal both with
and without filter-width reduction: no more than 2 additional
groups for PREDICAT on average. In several cases, e.g.,
fw1 and fw4 in Figure 2a, PREDICAT even needs slightly
fewer groups than SAX-PAC, which is ultimately due to both
approaches relying on greedy (suboptimal) heuristics.

Overall, the evaluation shows that PREDICAT is able to
produce prefix representations, while enjoying essentially the
same performance as ternary-to-ternary SAX-PAC, and sub-
stantially outperforming LPM-PR and EXACT.

VI. RELATED WORK

TCAM representations. To represent range-based fields
of packet classifiers on TCAMs, ranges must be encoded as
ternary strings. Several range-encoding methods have been
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Fig. 2: Number of groups needed by each of the approaches to represent a fixed fraction – 95%, 99%, or 100% – of the
classifier rules when the filter width is unrestricted, i.e., at the maximum of 104 characters.

proposed for that purpose: prefix expansion encodes ranges
as prefixes [24], SRGE enhances prefix expansion with Gray
coding [22], DIRPE combines prefix expansion with fence
encoding [25], RENE encodes a “short” range by a single
ternary string [26] , and [27] provides optimal prefix encoding
scheme for single-range classifiers. The number of rules in the
resulting ternary classifiers can be further reduced by a variety
of other methods: [28] removes redundant rules, [29] optimizes
ternary representations of hierarchical packet classifiers, [30]
applies block permutations to reduce TCAM consumptions,
TCAM Razor [31] reduces the number of ternary rules using
firewall decision diagrams, [9,32,33] exploit structural proper-
ties of packet classifiers to reduce the number of rules and
filter width, [34,35] reduce approximate packet classifiers,
[36] represents multiple classification policies by a single
ternary classifier, and [37] constructs distributed classifier rep-
resentations. All approaches for constructing and optimizing
ternary packet classifiers can be combined with PREDICAT
to represent their outputs on LPM infrastructure.

LPM classification. While PREDICAT transforms a
ternary classifier to one or more prefix classifiers, many

specialized methods deal with prefix classification: software
solutions that exploit trie-based algorithms [38–41], Bloom
filters [11,12], range representations [13,42], FPGA-based
schemes [17,43,44], and schemes that accelerate IP lookups
on GPUs [15,16]. In particular, SAIL [14] proposes fast
IP classification mechanisms that can be implemented on
different platforms including multicore CPU, FPGA, and GPU.

Structural properties of classifiers. The structural prop-
erty of order independence is proposed by SAX-PAC to
reduce the filter width [9]. [32] introduces the notions of
action order independence and non-conflicting rules for the
objective of reducing the number of filters and filter width
even in classifiers that are not order-independent. [8] focuses
on order-independent representations without wildcards, and
[33] proposes an approach preserving order independence with
the per-character resolution in range-based classifiers. [10,18]
examine the chain criterion for prefix reorderability.

VII. CONCLUSION

This paper studied transformation of ternary classifiers to
semantically equivalent prefix representations so that packet



classification can benefit from efficient LPM solutions. We
proposed the property of prefix disjointness and developed the
PDTRANSFORM algorithm that tests for it. When the input
classifier is prefix-disjoint, PDTRANSFORM uses wildcarding
and true-positive checking to convert the classifier to an order-
independent prefix-reorderable representation in time linear in
the classifier size. Then, we designed PREDICAT, a method
for transforming an arbitrary ternary classifier to an equivalent
prefix representation. To achieve its goal, PREDICAT com-
bines PDTRANSFORM with a variety of existing techniques
such as classifier partitioning into multiple groups, filter-
column permutation of prefix-reorderable classifiers, and filter-
width reduction based on order independence. The evaluation
on the ClassBench benchmark with respect to the number
of lookups showed that PREDICAT compared favorably to
existing transformation methods: PREDICAT outperformed a
state-of-the-art ternary-to-prefix method by a factor from 2
to 5, improved on a ternary-to-binary solution by an order
of magnitude, and preformed similarly to a ternary-to-ternary
approach that required costly power-hungry TCAMs to effi-
ciently handle the resulting ternary representation.
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