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Priority Queueing for Packets with Two
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Pavel Chuprikov, Sergey I. Nikolenko, Alex Davydow, Kirill Kogan

Abstract—Modern network elements are increasingly required
to deal with heterogeneous traffic. Recent works consider process-
ing policies for buffers that hold packets with different processing
requirement (number of processing cycles needed before a packet
can be transmitted out) but uniform value, aiming to maximize
the throughput, i.e., the number of transmitted packets. Other
developments deal with packets of varying value but uniform
processing requirement (each packet requires one processing
cycle); the objective here is to maximize the total transmitted
value. In this work, we consider a more general problem, com-
bining packets with both nonuniform processing and nonuniform
values in the same queue. We study the properties of various
processing orders in this setting. We show that in the general case
natural processing policies have poor performance guarantees,
with linear lower bounds on their competitive ratio. Moreover, we
show several adversarial lower bounds for every priority queue
and even for every online policy. On the positive side, in the
special case when only two different values are allowed, 1 and
V , we present a policy that achieves competitive ratio

(
1 + W+2

V

)
,

where W is the maximal number of required processing cycles.
We also consider copying costs during admission.

I. INTRODUCTION

Modern networks require implementation of advanced eco-
nomic models that can be represented by desired objectives,
network topology, buffering architecture, and its management
policy. The current Internet architecture is mostly built for
fairness, while consideration of other objectives such as net-
work utilization, throughput, profit and others is required [27],
[32]. For a given network topology and buffering architecture,
design of management policies that optimize a desired objec-
tive is extremely important; a management policy of a single
network element includes admission control and scheduling
policies. Admission control is one of the critical elements
of management policy. Most admission control policies are
based on a simple characteristic such as buffer occupancy,
whereas traffic has additional important characteristics such as
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processing requirements or value that are either not taken into
account at all or a separate queue is allocated per traffic type.
Incorporation of new characteristics (e.g., required processing
per packet) in admission decisions and implementation of
additional objectives beyond fairness lead to new challenges
in design and implementation of traditional network elements.

In this work, we consider a single-queue switch where a
buffer of size B is shared among all types of traffic. We do not
assume any specific traffic distribution but rather analyze our
switching policies against adversarial traffic using competitive
analysis [6], [35], which provides a uniform throughput guar-
antee for online algorithms under all possible traffic patterns.
An online algorithm ALG is α-competitive for some α ≥ 1
if for any arrival sequence σ the total value transmitted by
ALG is at least 1/α times the total value transmitted in an
optimal solution obtained by an offline clairvoyant algorithm
(denoted OPT). If an online algorithm is not α-competitive
for any constant α independent of the input, it is said to be
non-competitive. Note that a lower bound on the competitive
ratio can be proven with a specific hard example while an
upper bound represents a general statement that should hold
over all possible inputs. In practice, the choices of processing
order, implementation of push-out mechanisms etc. are likely
to be made at design time. From this point of view, our study
of worst-case behaviour aims to provide a robust estimate on
the settings that can handle all possible loads.

The purpose of this work is to study the impact of both
packet values and required processing on weighted throughput;
to the best of our knowledge, this is the first attempt to
study such impact. The paper is organized as follows. In
Section II, we formally introduce the model we will use in
this work, a model with both required processing and values.
In Section III, we survey previous work in related buffer
processing algorithms. In Section IV, we introduce several
algorithms based on priority queueing that appear promising
for this setting; these algorithms differ in the way how they
order packets: by required processing, by value, or by a ratio
of these numbers (i.e., by value per one processing cycle). In
Section IV we begin with a negative result: we show that all
of these algorithms have at least linear competitive ratio in
the general case. Moreover, in Section V we proceed to show
a general lower bound for any online algorithm proven in an
adversarial fashion; this is an important new result for this
model as previously considered special cases (uniform values
with heterogeneous processing and uniform processing with
variable values) allowed for optimal online policies. However,
in Section VI we introduce an important special case when
there are only two different possible values, i.e., packets may
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have different required processing but their value is limited
to 1 and V . The maximal number of required processing
cycles is W . In our main result, we present a policy based on
a priority queue that achieves competitive ratio

(
1 + W+2

V

)
.

Note that while it may appear suspicious to compare packet
values with required processing, in fact we are comparing
ratios of the most valuable (resp., heaviest) packet to the
least valuable (resp., lightest) packet because the minimal
required processing and minimal value are always set to 1.
In Section VII, we consider the β-push-out case, which takes
copying cost into account by introducing additional penalties
for push-out (a detailed explanation of β-push-out is given in
Section VII). Section VIII presents simulation results where
the proposed algorithms are evaluated with synthesized traces,
and Section IX concludes the paper.

II. MODEL DESCRIPTION

We use a model similar to the one introduced in [1], [20] and
subsequently used in [14]–[16], [23]–[25]. Consider a single
queue that is able to hold B unit-sized packets and that handles
the arrival of a sequence of packets, each of which is unit-
sized. A new part of the problem setting in this work is to
combine two different characteristics of a packet. Namely, we
assume that each arriving packet p is branded with:
(1) the number of required processing cycles (required work,

or weight) w(p) ∈ {1, . . . ,W};
(2) its processing value v(p) ∈ {1, . . . , V }.
These numbers are known for every arriving packet; for
a motivation of why required processing may be available
see [36], and values are usually defined externally. Although
the values of W and V will play a fundamental role in our
analysis, our algorithms will not need to know W or V in
advance. Note that for W = 1 the model degenerates into a
single queue of uniform packets with nonuinform value, as
considered in, e.g., [5], [37], while for V = 1 it becomes
a single queue of unit-valued packets with different required
processing, as considered, e.g., in [22]–[24]. We will denote
a packet with required processing w and value v by (w | v),
and a sequence of n packets with the same parameters w and
v by n× (w | v).

The queue performs three main tasks, namely:
(1) buffer management, i.e., admission control of newly ar-

rived packets;
(2) processing, i.e., deciding which of the currently stored

packets will be processed;
(3) transmission, i.e., deciding if already processed packets

should be transmitted and transmitting those that should.
A packet is fully processed if the processing unit has scheduled
the packet for processing for at least its required number of
cycles. Even though a fully processed packet is eligible for
transmission, in some settings it can be deliberately delayed,
e.g., if FIFO transmission order is required [24], [25]. We con-
sider transmission order constraints only once in Theorem 5
and assume that the packet is transmitted as soon as it is fully
processed.

We assume discrete slotted time, where each time slot
consists of three phases (see Fig. 1 for an illustration):

(i) arrival: new packets arrive, and admission control de-
cides if a packet should be dropped or, possibly, an
already admitted packet should be pushed out;

(ii) processing: one packet is selected for processing by the
scheduling unit;

(iii) transmission: at most one fully processed packet is
selected for transmission and leaves the queue.

If a packet is dropped prior to being transmitted (while it
still has a positive number of required processing cycles),
it is lost. A packet may be dropped either upon arrival or
due to a push-out decision while it is stored in the buffer.
A packet contributes its value to the objective function only
upon being successfully transmitted; note that only one packet
may be transmitted per time slot. The goal is to devise buffer
management algorithms that maximize the overall throughput,
i.e., the total value of all packets transmitted out of the queue.

For an algorithm ALG and time slot t, we denote by
IBALG(t) the set of packets stored in ALG’s buffer at time
slot t after arrival but before processing (i.e., the buffer state
shown in the second row of Fig. 1); if the timeslot is clear
from the context we write simply IBALG. For every time
slot t and every packet p currently stored in the queue,
its number of residual processing cycles, denoted wt(p), is
defined to be the number of processing cycles it requires before
it can be successfully transmitted, and its value, denoted v(p),
is the number it contributes to the objective function upon
transmission.

Three fundamental properties are often used in online algo-
rithms. First, a policy is called greedy if it always accepts
packets in the queue whenever it has free space. Greedy
algorithms are usually amenable to efficient implementation
and transmit everything if there is no congestion. Second, a
policy is called work-conserving if it is always processing as
long as it has packets with nonzero required processing in the
buffer. Third, a policy is called push-out if it is allowed to
drop packets that already reside in its queue; note that it does
not make sense for a push-out policy to be non-greedy in the
basic setting, but in the setting of Section VII where admitted
packets incur nonzero copying cost this may not be the case.
In what follows, we will assume that all push-out policies are
greedy and all policies are work-conserving.

III. RELATED WORK

Rich literature has been devoted to special cases of our
model where one characteristic is assumed to be uniform. In
particular, admission control policies for the case of single-
queued buffers where packets with uniform processing and
varying intrinsic value arrive have been thoroughly studied. In
the case of two values (1 and V ) and First-In-First-Out (FIFO)
processing order, the works [5], [37] present a deterministic
non-push-out policy with competitive ratio (2 − 1

V ), i.e.,
bounded by a constant. For the more general case, when packet
values vary between 1 and V , the works [5], [37] prove that the
competitive ratio cannot be better than Θ(log V ). In [4], this
upper bound was improved to 2 + lnV +O(ln2 V/B). In the
push-out case with two packet values, the greedy policy was
shown in [17] to be at least 1.282 and at most 2-competitive.
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Fig. 1. A sample time slot of PQ−w,v , PQv,−w , and PQv/w .

Later, the upper bound on the greedy policy was improved to
1.894 [19]; this work also considers the β-push-out case and
proves that the greedy policy is at least 1.544-competitive.
Policies with memory have been considered in [3], [8], [26],
[28].

Recently, packets with required processing but with uniform
packet values in various settings have been considered in [9],
[14]–[16], [23]–[25]. These works also follow the paradigm of
competitive analysis, and their main results usually constitute
good processing policies that have constant or logarithmic
upper bounds on the competitive ratio. For a buffer with
one queue of packets with uniform value, priority queue
that orders packets according to their required processing is
known to be optimal [14]. Our current work can be viewed
as part of a larger research effort concentrated on studying
competitive algorithms for management of bounded buffers.
Initiated in [2], [17], [29], this line of research has received
tremendous attention over the past decade. A survey by
Goldwasser [11] provides an excellent overview of this field.
Pruhs [33] provides a comprehensive overview of a related
field of competitive online scheduling for server systems;
however, scheduling for server systems usually concentrates on
average response time and does not allow jobs to be dropped,
while we focus mostly on throughput and allow push-out.

To control increasing queueing delays introduced by packet
buffers, the bounded-delay model with varying intrinsic value
was introduced by Kesselman et al. [18]. In that model, each
packet is associated with a slack value s, which denotes a
hard deadline when a packet should be processed. The greedy
algorithm that always processes a packet with the earliest
deadline is known to be 2-competitive [13], [18], and the
best known competitive ratio is 2

√
(2) − 2 ≈ 1.828, as

shown by Englert and Westermann [7]. A recent experimental
study [34] evaluated the performance of different algorithms
under a compatible deadline model. Note that a maximal slack
value implicitly bounds a buffer size even if the buffer is
theoretically unlimited. For this reason, the bounded-delay
model appears to be more attractive for competitive analysis
than the model, where a buffer is bounded explicitly. In this
work, we not only consider an explicitly bounded buffer but
also take into account required processing, which has a huge
impact on the performance as both our theoretical results and
simulation study will show.

Another very interesting class of results in competitive
analysis are adversarial lower bounds that hold over all al-
gorithms. Such bounds, when they can be proven, indicate
that one cannot hope to get an optimal online algorithm, and a
clairvoyant offline algorithm will always be able to outperform
it. One well-known example of such a bound is the lower
bound of 4

3 on the competitive ratio of any algorithm in
the model with multiple queues in a shared memory buffer
and uniform packets (i.e., packets with identical value and
required processing) [1], [12]. For the case of a single queue,
previous works have considered two cases: variable value
with uniform processing and variable processing with uniform
values. In both cases, a single priority queue that orders
packets with respect to the variable characteristic (largest
value and smallest required processing first, respectively) is
optimal, so there can be no nontrivial general lower bound
regardless of transmission order. In the FIFO model, for the
case of variable values and uniform processing there has been
a line of adversarial lower bounds culminating in the lower
bound of 1.419 that applies to all algorithms [21], with a
stronger bound of 1.434 for the special case when B = 2
if all possible values are admissible [5], [37]. In the two-
valued case, tight bounds are known: an adversarial lower
bound of r = 1

2 (
√

13 − 1) ≈ 1.303 for any B ≥ 2 and
r∞ =

√
2 − 1

2 (
√

5 + 4
√

2 − 3) ≈ 1.282 for B → ∞ and an
online algorithm that achieves competitive ratio r for arbitrary
B and r∞ for B →∞ [8]. In the case of variable processing
with uniform values, no general lower bounds for FIFO order
are known apart from a simple lower bound of 1

2 (W + 1) for
greedy non-push-out policies [24].

IV. ALGORITHMS AND LOWER BOUNDS

The ultimate goal of this entire line of research is to
choose the right buffer management policy in every problem
setting, i.e., for each possible switch configuration and ev-
ery objective. For instance, previous works have studied in
detail the interrelations between policies with and without
push-out, the capability to drop previously accepted packets
from the buffer [11], [31]; while non-push-out policies are
simpler to implement in practice, they often turn out to be
non-competitive in terms of weighted throughput with lower
bounds on the competitive ratio linear in problem parameters
such as buffer size B, maximal possible value V , or maximal
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required processing W . Note that even this is not quite the
whole story: although non-push-out policies are usually clearly
inferior with respect to (weighted) throughput, they can still
come out ahead for other objectives, e.g., minimizing the total
power consumption (push-out might be a costly procedure).

Still, in this work we concentrate on the weighted through-
put objective, and consider a setting where worst-case lower
bounds, i.e., hard examples, are relatively easy to come by:
we have two characteristics to play with for every packet,
value and required processing, instead of just a single one as
in majority of previous works [11], [31]. For this reason, we
concentrate on studying the best class of natural algorithms
available for the single queue setting, and previous research
indicates that priority queues with push-out are the best
tools that often lead to good results. In particular, Keslassy
et al. showed that a single priority queue with push-out is
optimal for packets with varying required processing and unit
value [14].

Note, however, that though in previous work a single
priority queue was usually the best algorithm, sometimes
simply optimal, and the goal often was to try and achieve
comparable throughput under additional constraints such as
FIFO transmission order or multiple separate queues; in the
setting with two different characteristics it is not even clear
what a priority queue sorts its packets on: if one packet has
less value but also less required processing than another, which
one should we prefer? To capture different possible orderings
in a priority queue, we introduce the following definition.

Definition 4.1: Let f be a function of packets, f(w, v) ∈ R,
with the intuition that better packets have larger values of f .
Then the PQf processing policy is defined as follows:

• PQf is greedy, i.e., it accepts incoming packets as long
as there is space in its buffer;

• PQf is work-conserving, i.e., it processes a packet as
long as its buffer is not empty;

• PQf orders and processes packets in its queue in the
order of decreasing values of f ;

• PQf pushes out a packet p and adds a new packet p′

to the queue at time slot t if the buffer is full, p is
currently the worst packet in the buffer and p′ is better
than p: f(p) = minq∈IBPQf f(q), and f(p′) > f(p).
Here IBPQf is IBPQf (t) for the current time slot t.

In other words, PQf orders and processes packets according
to the function f . Note that this definition, again, restricts
the space of possible algorithms. In theory, we could separate
admission and processing order, accepting and pushing out
packets with respect to one ordering but processing and
transmitting them with respect to a different ordering. In [24],
in the setting with one characteristic and FIFO transmission
order constraint, a similar idea—decouple transmission order
from processing order—has led to significant improvements
in competitive ratios, including a constant upper bound on the
competitiveness of a policy which admitted and processed its
packets as a priority queue but transmitted them in FIFO order.
However, throughout this paper we simplify our considerations
and assume that admission and processing orders are the same.

In particular, we consider three specific priority queues (here
w denotes the current residual work and v denotes the packet’s
value):

(1) PQ−w,v = PQ−w+v/(V+1) orders packets in the increas-
ing order of their required processing, breaking ties by
value;

(2) PQv,−w = PQv−w/(W+1) orders packets in the de-
creasing order of their value, breaking ties by required
processing;

(3) PQv/w orders packets in the decreasing order of their
value-to-work ratio, i.e., it prioritizes packets that yield
the best value per one time slot of processing.1

Fig. 1 shows a sample time slot of these priority queues;
in this case B = 3, all policies start with (5 | 2), (4 | 3), and
(1 | 1) in their queues, and a (6 | 3) packet arrives. PQ−w,v re-
jects the (6 | 3) since it has the largest processing requirement,
PQ−v,w pushes out (1 | 1) since it has the smallest value, and
PQv/w pushes out (5 | 2) since it has the worst v/w ratio of
2/5 compared to 3/4, 1, and 3/6 of the other three packets.

One of the goals of this work is to explore which order
performs best. Our main result in this part is that, in general,
priority queues fail to provide constant or even logarithmic
competitiveness in the setting with two packet characteristics,
as they do in cases, where there is only a single characteristic.
For all three specific PQ policies shown above, we prove linear
(in V and/or W ) lower bounds on their competitive ratios
against an optimal algorithm. This is an interesting and some-
what discouraging result since priority queues have proven to
be efficient when each characteristic is considered separately,
often with constant upper bounds on the competitive ratio or
even shown to be optimal policies. Note that while it may seem
intuitive that PQv/w should be best at least among these three,
we will see lower bounds for all of them in this section, and
later an even more counterintuitive result in a special case with
two values.

For a lower bound, it suffices to present a hard sequence
of packets on which the optimal algorithm outperforms the
one in question; so in the theorems below we simply describe
this sequence. We also show matching upper bounds when
applicable.

Theorem 1: For a buffer of size B, maximal packet required
processing W , and maximal packet value V , PQ−w,v is at
least V -competitive and at most V -competitive.

Proof: First, there arrive B×(1 | 1) packets, i.e., B pack-
ets with required processing 1 and value 1; PQ−w,v accepts
them while OPT does not. Then there arrive B × (2 | V )
packets accepted by OPT; PQ−w,v skips them since they have
larger required processing than already admitted. No more
packets arrive, so in 2B steps PQ−w,v processes packets with
total value B; OPT, with total value V B. The same sequence
is repeated to get the asymptotic bound. The upper bound
follows since PQ is optimal for uniform values and variable
required processing; this means that PQ−w,v processes as

1Note that here we also have two possibilities for breaking ties,
PQv/w,−w = PQv/w−w/(W2+1) and PQv/w,v = PQv/w+v/(WV+1),
but in this case the tie-breakers will be irrelevant for all our statements, so
we unite them under the same notation.
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many packets as OPT, so it cannot lose by a factor of more
than V .

Theorem 2: For a buffer of size B, maximal packet required
processing W , and maximal packet value V , PQv,−w is at

least
(

(V−1)
V W − o(1)

)
-competitive.

Proof: In the first burst, there arrive B× (W | V ) which
PQv,−w accepts but OPT does not. Then, over the next
W time slots there arrives a (1 | V − 1) packet on every
time slot. OPT accepts, processes, and transmits this packet
immediately, while PQv,−w drops it since it has worse value
than the ones in its queue. On time slot W +1, when PQv,−w
has processed one (W | V ) packet, another (W | V ) arrives,
to be accepted by PQv,−w, and this brings us back to the same
state as on the first time slot. Thus, over this sequence PQv,−w
has processed packets with total value V , OPT has processed
packets with total value W (V − 1), and the sequence can be
repeated. After we repeat the sequence C times, we finish by
“flushing” both buffers with B×(1 | V ). Thus, both algorithms
will end with V B more processed value, and the competitive
ratio over this sequence is

(V − 1)WC + V B

V (B + C)
.

It remains to let C →∞.
So is PQv/w that combines characteristics and aims for

the best “value per timeslot” any better in the worst case?
Unfortunately, no.

Theorem 3: For a buffer of size B, maximal packet required
processing W , and maximal packet value V , PQv/w is at least
min{V,W}-competitive.

Proof: We denote m = min{V,W}. In the first burst,
there arrive B×(1 | 1) packets which PQv/w accepts but OPT
does not. Then on the same time slot there arrive B×(m | m)
packets which OPT accepts but PQv/w does not since they
have work-to-value ratio worse than 1. Thus, in Bm steps
OPT transmits total value mB, while PQv/w only transmits
total value B, and this sequence can be repeated.

V. GENERAL LOWER BOUNDS

Theorems 1–3 have established that PQ−w,v , PQv,−w, and
PQv/w are non-competitive. But perhaps we have just failed
to be inventive enough in designing these priority queues?
Maybe we can devise a better priority queue, or simply a better
online algorithm that will achieve constant competitiveness
or even be optimal? In this section, we dash these hopes by
proving general lower bounds on all online algorithms. They
are proven in an adversarial way: we construct a sequence of
inputs where further inputs depend on the choices an online
algorithm makes, so in the end we find a “bad” input for every
possible choice.

Note that some of the bounds below are nontrivial only in
the extreme cases of W,V > B and even W,V � B, but
it still shows that we cannot hope for constant upper bounds
unless we explicitly assume B > W,V and somehow use it in
the proof. On the positive side, note that most of these lower
bounds only need two kinds of packets, so they also work
in restricted settings where value and/or work can only take
some of the values in their respective intervals.

Later we will see that an important special case is the two-
valued case, when required processing can be an arbitrary
integer 1 ≤ w ≤ W but there are only two possible values,
1 and V ; we will prove an upper bound for this case in
Section VI. Therefore, we note special cases of lower bounds
for this case as well. Note that all lower bounds trivially extend
from the two-valued case to the general case but not vice versa.

We begin with a very simple case to illustrate basic ideas.
It turns out that even reducing the buffer to a single slot does
not let us construct a competitive online algorithm.

The basic idea for the following and most other general
lower bounds is to have “light” and “heavy” packets such that
it is x times better to process “light” packets per time slot, but
a “heavy” packet is x times better than a single “light” packet,
so if the algorithm pushes out the “heavy” packet, we can stop
the arrivals and win x times the value again. This is where
the
√
W that appears here and in many further bounds comes

from: since a “heavy” packet is x times worse per time slot
but x times better overall, it must have x2 times the processing
of a “light” packet.

Theorem 4 (B = 1): For B = 1 and V >
√
W , any online

algorithm ALG is at least
√
W -competitive. Further, in the

two-valued case or if V ≤
√
W any online algorithm ALG is

at least min{V,W/V }-competitive for B = 1.
Proof: On the first step, two packets arrive, (W | V ) and(

1 | V√
W

)
. If ALG accepts

(
1 | V√

W

)
, no other packets arrive,

OPT accepts (W | V ) and wins by a factor of
√
W in value. If

ALG accepts (W | V ), the same pair of packets,
(

1 | V√
W

)
and (W | V ), continue to arrive every tick, OPT processes
light packets and earns value V

√
W while ALG earns V .

If ALG decides to switch to a lighter packet in the process,
arrivals stop immediately, OPT accepts the current (W | V ),
and the result is even worse for ALG. For the case when the
value of V/

√
W is either unavailable or is less than or equal

to one, replace
(

1 | V√
W

)
with (1 | 1) and observe that in the

first case we get a ratio of V and in the second, W/V .
In traditional networking, most buffers implement FIFO

processing order because of its simplicity and desired proper-
ties. The following theorem demonstrates that under the FIFO
constraint on processing and transmission order, lower bounds
may significantly deteriorate and become non-competitive.
Note that the admission order is not constrained in the the-
orem, ALG is free to push out any packet.

Theorem 5 (FIFO order): For arbitrary B and V >
√
W ,

any online algorithm ALG that preserves FIFO processing and
transmission order is at least

(√
W
B + 1− 1

B

)
-competitive. In

the two-valued case or if V ≤
√
W , any online algorithm

ALG with FIFO processing and transmission order is at least
V+B−1
W+B−1 -competitive.

Proof: The construction is very similar: (W | V ) and B×(
1 | V√

W

)
arrive on the first step. Then ALG either:

(a) drops (W | V ), in which case arrivals stop, and OPT earns
total value V + (B − 1) V√

W
while ALG earns B V√

W
, for

the total ratio of V+(B−1)V/
√
W

BV/
√
W

=
√
W
B + 1− 1

B ; or
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(b) keeps processing (W | V ) while we feed OPT with more(
1 | V√

W

)
s; then arrivals stop, ALG finishes the other B−

1 of his packets and earns total value V + (B − 1) V√
W

while OPT has earned (W +B−1) V√
W

in value; the ratio
in this case is worse,
(W +B − 1)V/

√
W

V + (B − 1)V/
√
W

=
W +B − 1√
W +B − 1

>

√
W

B
+ 1.

For the second part, replace
(

1 | V√
W

)
with (1 | 1) and

observe that in case (a) we get a competitive ratio of V+B−1
B ,

and in case (b) the competitive ratio is V+B−1
W+B−1 , which is

smaller.
Next, we turn to priority queues. We have already mentioned

that priority queues arise naturally as candidates for best
possible policies, but, again, by restricting our consideration
to the class of priority queues (i.e., algorithms that have
deterministic linear orderings on the packets) we get a larger
general lower bound, regardless of what this order specifically
is. We would like to emphasize that not all algorithms can
be represented as PQf . For example, some algorithms may
base their decisions on buffer occupancy or statistical data
collected over previous timeslots. In particular, Theorem 4 is
not a special case of the following theorem.

Theorem 6 (arbitrary PQ): For V >
√
W and any priority

function f such that f(w, v) ∈ R, the algorithm PQf is at
least

√
W -competitive. In the two-valued case or if V ≤

√
W ,

algorithm PQf is at least min{V,W/V }-competitive.
Proof: Again, we only need two kinds of packets,

(W | V ) and
(

1 | V/
√
W
)

. There are two cases:

(1) if PQf prefers (W | V ), i.e. f(W,V ) > f(1, V/
√
W ), we

keep feeding the algorithms with both kinds of packets;
PQf chooses and processes (W | V )s while OPT is

processing
(

1 | V/
√
W
)

s, getting
√
W times more value

per time slot;
(2) if, on the other hand, PQf prefers

(
1 | V/

√
W
)

to

(W | V ), then B×
(

1 | V/
√
W
)

and B× (W | V ) arrive
on the first burst and then arrivals stop; ALG fills its buffer
with light packets, OPT takes the heavy ones, and after
BW time slots OPT has again transmitted

√
W times

more value.
For the second part, again, replace

(
1 | V√

W

)
with (1 | 1).

Finally, we consider general lower bounds for all determin-
istic online algorithms. We begin with the two-valued case.
The idea of the following lower bound is to send in plenty of
both “light” packets (1 | 1) and “heavy” packets (W | V ). If
ALG accepts few “heavy” packets, OPT can accept all of them,
halt arrivals, and win a lot with the sequence. If ALG accepts a
lot of “heavy” packets, OPT fully processes all “light” packets,
winning over ALG that has to begin processing “heavy” ones,
and then the buffers are flushed out with the “best” possible
packets (1 | V ).

Theorem 7: For a buffer of size B, maximal packet re-
quired processing W , and available packet values 1 and
V > 1, every online deterministic algorithm ALG is at least(
1 + V−1

V 2 −O
(

1
W

))
-competitive.

Proof: On the first step there arrive B × (1 | 1) and
B × (W | V ). Suppose that ALG has accepted n of (W | V )
packets. Again, there are two cases.
• n < V2−1

V2+V−1B : in this case, OPT chooses to accept
B×(W | V ), and no new packets arrive. After BW time
slots, OPT has processed packets with total value V B,
and ALG has processed at most (B−n) + V n, yielding
competitive ratio

V B

B − n+ V n
=

V

1 + (V − 1) nB
,

which is at least V 2+V−1
V 2 for n

B < V 2−1
V 2+V−1 .

• n ≥ V2−1
V2+V−1B : in this case, OPT accepts B × (1 | 1).

After B time slots, OPT has transmitted total value B,
while ALG has processed at most (B − n)× (1 | 1) and
B/W × (W | V ). Now B × (1 | V ) arrive and then no
more packets; after all buffers have been emptied OPT
gets V B more value and ALG at most V B, which yields
the ratio

B + V B

(B − n) + V B/W + V B
=

V + 1

V + 1− n/B
−O

(
1

W

)
≥

≥ V 2 + V − 1

V 2
−O

(
1

W

)
for

n

B
≥ V 2 − 1

V 2 + V − 1
.

These same ideas can lead to a general lower bound on
all deterministic online algorithms. We first show the proof
for B = 1 here and then show the proofs for B = 2 as a
characteristic special case and then for the general case of
arbitrary B. These proofs essentially rely on the availability
of a packet whose value is a specific fraction of V , and thus
they are not applicable in the two-valued case. The proof for
the general case is technically quite involved so we consider
in detail the case of B = 2 and then show a proof sketch
for arbitrary B. The basic idea of “light” and “heavy” packets
remains the same, but for buffer size B we will need B + 1
“levels” of different packets to get a recursive construction
and an inductive proof of the bound. This leads to 4

√
W in the

case of B = 2 and 2B
√
W in the general case.

Theorem 8 (arbitrary online ALG, B = 1): For B = 1, the
competitive ratio of any deterministic online algorithm ALG
is at least min{

√
W,V }.

Proof: There are only two kinds of packets involved in
the lower bound: “heavy” packets (W | V ) and “medium”
packets

(
W
l2 |

V
l

)
, where l is a parameter to be defined later.

On the first burst, both packets arrive, 1 × (W | V ) and
1×
(
W
l2 |

V
l

)
, and then on every time slot 1×

(
W
l2 |

V
l

)
arrives

until ALG accepts it. Denote by t the time when ALG accepts
a “medium” packet instead of (W | V ). There are two cases.
1. t = W , i.e., ALG processes (W | V ) to completion. In this

case, we repeat the sequence by sending another (W | V )
after W time slots. OPT will process “medium” packets all
the time, getting total value of V l per W time slots while
ALG obtains value V per W time slots.

2. At some t < W , ALG accepts a “medium” packet, pushing
out the “heavy” one. In this case, “medium” packets
immediately stop, and OPT processes only the “heavy”
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packet with value V while ALG processes one “medium”
packet with total value V

l . Then both buffers become empty,
and the sequence can be repeated.

We now take l = min{
√
W,V } to get the bound.

Theorem 9 (arbitrary online ALG, B = 2): For B = 2, the
competitive ratio of any deterministic online algorithm ALG
is at least 1

2min{ 4
√
W,
√
V }.

Proof: The basic idea is to preserve the following invari-
ant: on every step except a small fraction OPT will obtain at
least l times more value than ALG. There are three kinds
of packets in the sequence: “heavy” (W | V ), “medium”(
W
l2 |

V
l

)
, and “light”

(
W
l4 |

V
l2

)
, where l is a parameter to

be defined later. On the first burst, there arrive a “heavy” and
a “medium” packet, 1× (W | V ) and 1×

(
W
l2 |

V
l

)
, followed

by two “light” packets, 2×
(
W
l4 |

V
l2

)
. Then, on every time step

two more “light” packets arrive, 2×
(
W
l4 |

V
l2

)
.

There are several cases. Note that in what follows, OPT
always keeps one “heavy” packet in its buffer, and “heavy”
packets never arrive during the period we are counting the
packets in. A new “heavy” packet only arrives when the
sequence is repeated from the start.
1. ALG does not push out either “heavy” or “medium” packet

in favor of “light” ones. Then OPT keeps one “heavy”
packet in the buffer while it processes “light” packets,
getting value V l2

W per processing cycle while ALG is getting
at most V l

W (from the “medium” packet). As soon as ALG
finishes the “medium” or “heavy” packet, another packet of
the same kind arrives, and the sequence is repeated. Note
that this ratio of l in favor of OPT occurs every time OPT
is able to process a “light” packet while ALG is processing
a different one.

2. At some timeslot t, ALG pushes out the “heavy” packet
for a “light” one. In this case, OPT accepts the last arriving
“medium” packet (note that there may have been several
“medium” packets arriving due to ALG processing them to
completion), and there are no more arrivals after timeslot t.
OPT finishes the “heavy” packet residing in its buffer and
the last arriving “medium” packet while ALG can process
at most a “medium” and a “light” one. As a result, before
time t OPT had l times more value per timeslot by case 1,
and after time t ALG has earned at most V ( 1

l + 1
l2 ) total

value while OPT has earned V (1 + 1
l ), for the total ratio

of l over the entire sequence.
3. At some timeslot t, ALG pushes out the “medium” packet

for a “light” one. This is a slightly more complicated case,
with two subcases depending on the time t′ when the
pushed out “medium” packet had arrived:

(i) if t−t′ < W
l2 (the pushed out “medium” packet arrived

less than W
l2 timeslots ago), OPT accepts it at time t′,

and all arrivals stop until time t′+ W
l2 , i.e., until OPT

finishes processing it; over these W
l2 timeslots:

• OPT is getting value V l
W per time slot every time,

for a total value V
l ;

• ALG can get total value V
l2 once by processing

this “light” packet, but on all other timeslots it
could not get more than V

W value per time slot
(assuming it was processing the “heavy” packet);

hence, over this period of time ALG gets no more
than V

l2 + V
l2 total value;

hence, the competitive ratio over these timeslots is at
least l

2 ;
(ii) if t−t′ ≥ W

l2 (the pushed out “medium” packet arrived
at least W

l2 timeslots ago), OPT is processing “light”
packets all this time, and as soon as ALG has finished
the “light” packet, another “medium” packet arrives,
reverting to the original situation; in this case:

• OPT has processed (t−t′)l4
W “light” packets plus

the one final “light” packet, obtaining total value
at least (t−t′)V l2

W + V
l2 ;

• ALG has obtained total value at most (t−t′)V
W over

the past t−t′ timeslots (if ALG was processing the
“medium” packet it is now worth nothing since it
has been pushed out, so value can only come from
the “heavy” packet) plus the final “light” packet,
for a total of at most (t−t′)V

W + V
l2 ;

since t− t′ ≥ W
l2 , the competitive ratio is at least

(t−t′)V l2
W + V

l2

(t−t′)V
W + V

l2

≥
V + V

l2

2Vl2
=
l2 + 1

2
.

As a result, during the entire sequence the competitive ratio
is never smaller than l

2 , and the constraint on l is that l ≤
min{ 4

√
W,
√
V }.

Theorem 10 (general case): For arbitrary B, the competitive
ratio of any deterministic online algorithm ALG is at least
1
2

(
min{ 2B

√
W, B
√
V } − 1

)
.

Proof of Theorem 10: We proceed by induction with a
construction similar to the proof of Theorem 9. The induction
base for B = 1 and B = 2 has already been considered in
Theorems 8 and 9.

For the induction step, consider k+ 1 types of packets that
differ by a factor of v from each other in value and by a
factor of v2 in required processing: the first packet has value
1 and work 1, the second value v and work v2, and so on
until value vk and work v2k; for this to work we have to
have v ≤ min{ 2B

√
W, B
√
V }. In the arrivals, we will preserve

the invariant that ALG’s buffer can only have two packets
of identical value if they are the cheapest; i.e., we will not
give “repeated” packets to the algorithm but send in a new
packet of a certain size only after the previous one has finished
processing or has been dropped; the cheapest and lightest
packets are coming in with a steady stream, and in most cases
OPT keeps processing them.

If ALG at some point pushes out the heaviest packet, arrivals
stop immediately, and OPT finishes the heaviest packet; in
this case, ALG loses by a factor of at least 1+v+v2+···vk−1

vk
. If

ALG is working on the heaviest packet, OPT is working on
the lightest packet and has unit gain over ALG by a factor of
at least vk − 1.

If, otherwise, ALG keeps the heaviest packet in the buffer
and is working on some other packet, arrivals and OPT are
operating as in the induction hypothesis for B − 1, with one
slot in the buffer reserved for the heaviest packet. There is
only one exception to this operation: if ALG has pushed out
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the second heaviest packet (which is heaviest in the B − 1
case), arrivals do not stop completely but cease temporarily
for v2(k−1), i.e., for the time it takes to process the second
heaviest packet. Afterwards, we again send in one packet of
each type except the heaviest.

The technicality here is that by sending in these packets
to “reset” the buffer, we are violating the declared invariant.
To fix this, we count all packets except the heaviest one as
“processed” by the algorithm and assume that it has gotten
full value for them (afterwards, if ALG is working on one
of the “old” packets, we can simulate it as idle time). In
total, OPT has processed vk−1 total value, and ALG has not
processed more than 1 + v + v2 + · · · vk−2 which constitutes
at most vk/v2 = vk−2 of the “unit” cost of the heaviest packet.

Now the minimal competitive ratio for ALG out of the three
cases is the last one:

vk−1

vk−2 +
∑

0≤i≤k−2 v
i

=
vk−1

vk−2 + vk−1−1
v−1

≥ 1

2
(v − 1),

and we take v = min{ 2B
√
W, B
√
V } to obtain the lower bound.

Note that while this bound is not too large in practical
cases, it is still non-constant, that is, we now cannot hope
for an online algorithm with constant competitiveness unless
we impose and use some additional constraints on the problem
setting. One fruitful constraint turns out to be the constraint
that the only two allowed values are 1 and V .

VI. UPPER BOUND FOR THE TWO-VALUED CASE

Given the pessimistic results of previous two sections, it
remains only to impose additional constraints on at least one
of the characteristic and try to distinguish important special
cases under which a “good” upper bound may exist. In this
section, we consider an important special case when there are
only two possible packet values, 1 and V , so there are two
kinds of packets, (w | 1) and (w | V ); the required processing
can still vary from 1 to W . This case often occurs in practice;
for instance, (w | 1) may represent “commodity” packets while
(w | V ) corresponds to “golden” packets that have paid more
to be processed. Similar special cases have been considered,
e.g., in [23].

We will show in Theorem 12 that in this special case,
the PQv,−w policy has an attractive upper bound on the
competitive ratio, which implies a constant upper bound on the
competitive ratio of both PQv,−w and PQv/w in case when
W < V . This upper bound is fundamentally different from
the lower bounds presented earlier: instead of showing that
an algorithm (or a set of those) sometimes performs badly,
it shows that these particular algorithms always perform well.
However, we begin with negative results; Theorem 11 provides
matching tight lower bounds for the main result that follows.
A plot summarizing different lower bounds for the two-valued
case is shown on Figure 2.

Theorem 11: Consider a buffer of size B with maximal
required processing W and possible packet values 1 or V .
Then:
(1) PQ−w,v is at least V -competitive;
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Th 7, Online
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Th 11, PQv,−w

Fig. 2. Lower bounds on the competitive ratios for the two-valued case with
fixed W = 10. Higher value of a lower bound is better.

(2) if W ≥ V then PQv/w is at least V -competitive;
(3) PQv,−w is at least

(
W
V + o(1)

)
-competitive.

Proof:

(1) The construction from Theorem 1 uses only packets of
values 1 and V .

(2) Again, we present a hard sequence of arrivals. In the first
burst, there arrive B × (1 | 1) accepted by PQv/w but
not OPT. Then, on the same time slot there arrive B ×
(W | V ) which PQv/w has to miss since W

V ≥
V
V = 1

1 but
which OPT accepts. Then, in BW steps, PQv/w will have
processed total value B while OPT will have processed
total value BV , which implies the bound.

(3) In the first time slot, there arrive B × (W | V ), which
PQv,−w accepts, but OPT does not. Then, over the next
W time slots there arrives a (1 | 1) on every time slot.
OPT transmits it, and PQv,−w drops it. On time slot
W +1, when PQv,−w has processed one (W | V ) packet,
another (W | V ) packet arrives, which brings us back to
the same state as on the first time slot. Over this sequence
PQv,−w has processed packets with total value V , and
OPT with total value W . Repeating this sequence C
times, we get competitive ratio WC+O(1)

V C+O(1) and let C →∞.

In the next theorem, we show one of the main results of this
work, an upper bound on the competitive ratio of PQv,−w.
Note that the lower bounds from Theorem 11 and previous
sections, which were linear in V , do not work for PQv,−w
since in the two-valued case, it always processes packets
with value V first and with value 1 last, so intuitively we
cannot lose more than the worst possible packet with value
V , (W | V ), against the best possible packet with value 1,
(1 | 1) (Theorem 11 (3) shows that we cannot lose any less).
The following proof captures this intuition.

Theorem 12: Consider a buffer of size B with maximal
required processing W and possible packet values 1 or V .
Then PQv,−w is at most

(
1 + W+2

V

)
-competitive.
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Fig. 3. Illustration for the subcases of Lemma 13: subcase p ≤ q is shown
on (a), and subcase q < p is shown on (b). Arrows represent ≤ relation, and
shaded areas denote sets of elements that sum to either Al or Bl (note that
lemma’s premise contains a Al ≥ Bl inequality); dotted lines denote specific
position in a sequence.

Proof: By the definition of the PQv,−w queue, any packet
with value V pushes out any packet with value 1. This is the
crucial property that we need to prove this upper bound. For
brevity, throughout this proof we denote PQ = PQv,−w. We
define the following sets of packets:
(1) IBALG

v = {p ∈ IBALG : value(p) = v} contains packets
with value v in IBALG;

(2) TransALG
v = {p transmitted by ALG : value(p) = v}

is the set of packets with value v transmitted by ALG;
TransALG =

⋃
v TransALG

v ;
(3) IBTALG

v = IBALG
v ∪TransALG

v is the set of packets with
value v either already transmitted by ALG or currently
residing in its buffer; IBTALG =

⋃
v IBTALG

v .
We also define ΦALG

v (l) =
∑l
i=1 w(pi), where pi is the ith

packet from IBTALG
v in PQ order. Here w(p) is the residual

processing time of a packet at the current time moment; in
particular, we let w(p) = 0 for already transmitted packets.

In the proof, we will sometimes force OPT to transmit
certain packets immediately, “for free”, thus improving its
throughput. We denote the set of these packets at the current
timeslot as FreeOPT; they do not fall into TransOPT but rather
contribute to the objective separately. The only requirement is
that for any p ∈ FreeOPT we must have value(p) = 1, i.e.,
we only give out packets of value 1 for free. We begin with
a technical statement.

Lemma 13: Let a1, a2, . . . , am and b1, b2, . . . , bm be two
sequences of numbers in nondecreasing order, and, moreover,
suppose that ∀l ∈ {1, . . . ,m} the prefix sums of length l sat-
isfy the following inequality:

∑l
i=1 ai ≥

∑l
i=1 bi. Let also a∗

and b∗ be any two numbers, such that a∗ ≥ b∗. If a∗ is inserted
into a1, . . . , am, and b∗ is inserted into b1, . . . , bm then the
prefix sums of resulting sequences satisfy the same inequality.
Formally, if the result of a∗’s insertion is a′1, a

′
2, . . . , a

′
m+1 and

the result of b∗’s insertion is b′1, b
′
2, . . . , b

′
m+1, then we have,

that ∀l ∈ {1, . . . ,m+ 1}
∑l
i=1 a

′
i ≥

∑l
i=1 b

′
i.

Proof: Denote right and left hand sides of inequalities
before (after) insertion as Al and Bl (A′l and B′l) respectively.
Let p and q be positions of a∗ and b∗ in the new sequences.
Assume that l < min{p, q}, then inequalities hold since none
of the inserted values lie in the prefix of length l, consequently,

A′l = Al and B′l = Bl. If l ≥ max{p, q} then both inserted
values lie in the prefix of length l, thus we have A′l = Al−1 +
a∗ and B′l = Bl−1 + b∗, and it is easy to see that A′l ≥ B′l .
The remaining case splits into two subcases (see Figure 3).
p ≤ q. Denote X =

∑l
i=p+1 a

′
i. See next that A′l = Ap−1 +

a∗ +X , B′l = Bl−1 + b′l, and also Ap−1 +X = Al−1 ≥
Bl−1. Due to nondecreasing order: a∗ ≥ b∗ ≥ b′l, and we
easily get the required A′l ≥ B′l .

q < p. Denote Y =
∑l
i=p+1 b

′
i. This gives us: A′l = Al,

B′l = Bp−1 + b∗ + Y , and we have Al ≥ Bl = Bp−1 +
Y + b′l+1. Again, due to nondecreasing order: b′l+1 ≥ b∗,
and claimed inequality can be easily derived.

We now prove the crucial lemma for this upper bound.
Lemma 14: There exist an algorithm OPT that works no

worse than the optimal algorithm on any sequence of inputs
and such a choice of FreeOPT, that on every sequence of inputs
at every time moment it holds that:

(1) |IBTPQ
1 | ≥ |IBTOPT

1 |, and for all l, s.t. l ≤ |IBTOPT
1 | it

holds that ΦOPT
1 (l) ≥ ΦPQ

1 (l);
(2) |IBTPQ

V | ≥ |IBTOPT
V |, and for all l, s.t. l ≤ |IBTOPT

V | it
holds that ΦOPT

V (l) ≥ ΦPQ
V (l);

Proof: We prove these estimates by induction on the num-
ber of “events” such as receiving, processing, or transmitting a
packet. At the initial time moment all conditions hold trivially.
Note that whenever conditions (1) and (2) hold, it also neces-
sarily holds that |TransOPT

v | ≤ |TransPQ
v | since ΦOPT

v (l) =
0 for all l ≤ |TransOPT

v | and consequently ΦPQ
v (l) = 0. We

now remove from IBTPQ
v the (|IBTPQ

v |− |IBTOPT
v |) packets

with the lowest priority, denoting the resulting set by ĨBT
PQ

v

and the corresponding set of packets in the buffer by ĨB
PQ

v .
Then all of the above implies that |IBOPT

v | ≥ |ĨB
PQ

v |.
Upon acceptance we may mark a packet admitted to OPT

buffer as “causing overflow”. The set of such packets is de-
noted as OverOPT, and it does not contribute to IBTOPT. The
induction step will guarantee that every packet in OverOPT

is moved eventually to FreeOPT and the following invariant
holds: |OverOPT| ≤ |IBPQ

V | − |ĨB
PQ

V |.
Let us now consider all possible events one by one and show

that none of them violates the conditions of the theorem.
Arrival of a new packet p. There are two subcases.

value(p) = V. If PQ has accepted the packet and has
pushed out a packet from IBPQ

1 , we move the heaviest
packet from IBOPT

1 (if it is nonempty) to FreeOPT.
Thus, inequalities for Φ1 are not violated since we
have removed largest elements from both IBOPT

1 and
IBPQ

1 . Further, if OPT accepts p, then B > |IBOPT
V | ≥

|ĨB
PQ

V |, so the sequence IBTPQ
V will receive the light-

est of packets (IBPQ
V \ ĨB

PQ

V ) ∪ {p} (according to the
push-out rules). Therefore, by Lemma 13 inequalities
for ΦV still hold. The only time |IBPQ

V | − |ĨB
PQ

V |
increases is when |IBPQ

V | = B and OPT accepts, but

|IBOPT
V | ≥ |ĨB

PQ

V | and |OverOPT| + |IBOPT
V | < B

together give |OverOPT| < |IBPQ
V | − |ĨB

PQ

V |.
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value(p) = 1. We consider two subcases separately.
(i) |IBPQ

V |+ |ĨB
PQ

1 | < B. In this case, we add to ĨB
PQ

1

the lightest packet from (IBPQ
1 \ĨB

PQ

1 )∪{p} (according
to push-out rules), and by Lemma 13 the inequalities
are preserved. (ii) |IBPQ

V |+ |ĨB
PQ

1 | = B. Then, since

|IBOPT| ≥ |ĨB
PQ
| and |IBOPT|+ |OverOPT| < B, we

get that |IBPQ
V | − |ĨB

PQ

V | > |OverOPT|. Now, if OPT
accepts p then p is added to the OverOPT.

OPT processes a packet p. There are three subcases.
value(p) = V. This is a simple case. If IBPQ

V 6= ∅ then
each nonzero term in ΦPQ

V (l) reduces exactly by one,
while each nonzero term in ΦOPT

V (l) reduces by at
most one, so the inequalities are obviously preserved.
If otherwise IBPQ

V = ∅ then all ΦPQ
V = 0.

value(p) = 1 and IBPQ
V = ∅. Similar to the previous.

value(p) = 1 and IBPQ
V 6= ∅. In this case, p is sent

to FreeOPT. It remains to note that ΦOPT
1 (l) do not

decrease since we have merely removed an element
from an ordered sequence.

Transmitting a packet. Inequalities on Φ obviously remain
unchanged upon transmission; however, the value of
(|IBPQ

V | − |ĨB
PQ

V |) can decrease by one. If OverOPT’s
invariant is violated, we move an arbitrary packet from
OverOPT to FreeOPT.

Lemma 15: The set FreeOPT constructed in Lemma 14
satisfies the inequality |FreeOPT| ≤ (W + 2)|TransPQ

V | after
algorithms finish processing the input sequence.

Proof: It suffices to note that in the proof of Lemma 14
a packet may fall into FreeOPT only when PQ receives,
processes, or transmits a packet with value V .

Now, after both OPT and PQ have processed the entire
sequence of packets, the total value of packets transmitted by
PQ equals |IBTPQ

1 |+ V |IBTPQ
V |. The total value of packets

transmitted by OPT is |IBTOPT
1 |+V |IBTOPT

V |+ |FreeOPT|.
Thus, using the lemma’s inequalities, the competitive ratio α
can be bounded as follows:

α ≤ |IBTOPT
1 |+ V |IBTOPT

V |+ |FreeOPT|
|IBTPQ

1 |+ V |IBTPQ
V |

≤ 1 +
|FreeOPT |

|IBTPQ
1 |+ V |IBTPQ

V |
≤ 1 +

|FreeOPT |
V |IBTPQ

V |

≤ 1 +
(W + 2)|IBTPQ

V |
V |IBTPQ

V |
≤ 1 +

W + 2

V
.

Corollary 16: If W < V , PQv,−w and PQv/w are at most(
2 + 2

V

)
-competitive.

Proof: Since (W | V ) pushes out (1 | 1) in the PQv/w

queue, any packet with value V pushes out any packet with
value 1, so for W < V PQv/w is equivalent to PQv,−w.

Figure 4 shows a contour plot of the PQv,−w competitive
ratio upper bound 1+ W+2

V for the two-valued case; naturally,
for large V the bound is very good.
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Fig. 4. Contour plot of the PQv,−w competitive ratio 1+W+2
V

as a function
of W and V .

VII. THE β-PUSH-OUT CASE

In many networking systems, there arises an additional
motivation to avoid pushouts and prioritize packets that are al-
ready in the buffer. For instance, newly admitted packets incur
higher costs than packets that have already resided in the buffer
since they require more access bandwidth to packet memories:
a new packet incurs computational costs for constructing and
updating the corresponding data structures in the network
processor, and immediate push-out of a less-preferable packet
can lead to increased computational overhead [14].

To represent these effects in the formal model, Keslassy
et al. [14] introduced the notion of copying cost in the
performance of transmission algorithms for packets with het-
erogeneous processing requirements but uniform values: if
an algorithm accepts A packets and transmits packets with
total value T , its transmitted value is max{0, T − αA}, i.e.,
each admitted packet incurs a cost α subtracted from the
throughput in the objective function. Thus, in extreme cases
the transmitted value of a push-out policy may even go down
to zero; copying cost provides an additional control on the
number of pushed out packets to avoid pathological cases.
To implement such a control mechanism, Keslassy et al. [14]
introduced the greedy push-out work-conserving policy PQβ
that processes a packet with minimal required work first and
in the case of congestion such a policy pushes out only if a
new arrival has at least β times less work then the maximal
residual work in PQβ .

However, the work [14] only dealt with a single packet
characteristic, namely processing requirements. To generalize
their ideas to our problem settings with two characteristics,
we extend PQf to PQβ

f and then show several lower bounds
for β-push-out counterparts of our policies. Unfortunately,
the proof of Theorem 12 cannot be directly applied to β-
push-out policies; it remains an interesting open problem to
show nontrivial (less than linear) upper bounds for β-push-out
policies even in the two-valued case.

Definition 7.1: Let f be a function of packets, f(w, v) ∈ R,
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with better packets corresponding to larger values of f . The
PQβ

f processing policy for β > 1 is defined as PQf with the
following difference: PQβ

f can push out a packet p and add a
new packet p′ to the queue at time slot t if p is currently the
worst packet in the buffer and p′ is better than p at least by a
factor of β: f(p) = minq∈IBPQf f(q), and f(p′) > βf(p).

Theorem 17: Consider a buffer of size B with maximal
required processing W and maximal packet value V . Then:

(1) PQβ
−w,v is at least V -competitive both in the case of

arbitrary packet values and in the two-valued case;
(2) PQβ

v/w is at least min{V,W}-competitive in the case of
arbitrary packet values;

(3) in the two-valued case, if βW ≥ V then PQβ
v/w is at least

V -competitive;
(4) PQβ

v,−w is at least
(

(V−1)
V W − o(1)

)
-competitive in the

case of arbitrary packet values and at least
(
W
V + o(1)

)
-

competitive in the two-valued case.

Proof: (1) In the construction from Theorem 1, packets
are never pushed out from PQ−w,v buffer, so the result still
holds for PQβ

−w,v . (2) Construction from Theorem 3 also
works because packets are never pushed out from PQv/w

buffer in tnis construction. (3) This result can be seen as a
relaxation of the second part of Theorem 11 since β > 1.
The same construction works: PQv/w fills its buffer with
B×(1 | 1) and then drops incoming B×(W | V ). PQβ

v/w also
drops them since V

W ≤
βV
V = β. (4) Again, the constructions

from Theorem 2 and Theorem 11 work since they do not force
packets to be pushed out from PQ−v,w buffer.

VIII. SIMULATIONS

In this section, we present the results of a comprehensive
simulation study intended to validate our theoretical results.
Naturally, it would be desirable to compare the proposed
algorithms on real life network traces. Unfortunately, available
datasets such as CAIDA [10] are of little use for packet
characteristics in our model since they do not provide data
on required processing and intrinsic values of the packets.
Nevertheless, we have used CAIDA traces [10] to model the
incoming stream of packets, breaking down the timestamps
into equal timeslots and counting the packets in each timeslot;
hence, the intensity of the incoming stream below is measured
in milliseconds, the size of a single timeslot.

We have conducted six series of experiments, studying
how performance depends on maximal required processing
W , buffer size B, maximal value V , size of a CAIDA
trace timeslot t, and β (in the model with copying cost).
The actual optimal online algorithm in our model would be
computationally prohibitive, so to estimate and compare the
competitive ratios of our algorithms we have used an algorithm
which is actually better than optimal: a single priority queue
with size BW that breaks each packet (v | w) into “fractional”
packets that each have required work 1 and value v

w and then
orders and processes them by this value. Since the priority
queue has been proven optimal in the model with values and
no required processing, it performs even better than optimal.

In our experiments, the values and processing ratios of pack-
ets were chosen uniformly from {1, . . . ,W} and {1, . . . , V }
respectively. We ran all experiments for 5 · 105 time slots
with periodic “flushouts” (wait for all queues to finish their
packets and then continue from an empty state), which in
our experiments has proven to be sufficient for stable results.
We have also performed simulations without flushouts; since
the results are very close to the ones with flushouts in all
settings, we do not show them separately. Note that all of our
experiments venture into the values of parameters that yield
high system load with large dropout rates for all algorithms;
these are precisely the situations where we would like to
compare performance since without heavy load and frequent
congestion all reasonable algorithms perform identically. We
have made the code for our experimental evaluation publicly
available at GitHub [30].

Figure 5 shows simulation results presented in terms of
the fraction of successfully transmitted packets: each graph
shows the “better than optimal” reference algorithm in black
alongside with the ratio of transmitted packets for other
policies. There are five sets of experiments corresponding
to the rows of Fig. 5 that will be described in subsections
below; we have tested the four algorithms used in this work:
PQv/w,−w, PQv/w,v , PQ−w,v , and PQv,−w. Note that in all
cases, PQv/w,−w and PQv/w,v are virtually indistiguishable

across all settings. Thus, below we will sometimes refer to
them collectively as PQv/w.

A. Maximal required processing

In the first set of simulations (Fig. 5(1-3)), we study perfor-
mance as a function of the maximal required processing W . As
W grows, all algorithms deteriorate in absolute terms (packets
become heavier), but it is clear that PQ−w,v , which pays more
attention to required processing, fares better while PQv,−w
loses badly as W grows. This is expected since PQv,−w cares
little about W and therefore is likely to get stuck with very
heavy packets. We see that PQv/w is uniformly the best policy,
performing very close to OPT and deteriorating only slightly.

B. Buffer size B

In the second set of simulations (Fig. 5(4-6)), we study
performance as a function of the buffer size B.

In this setting as well, PQv/w,−w and PQv/w,v remain
indistinguishable, and since these experiments were done in
the relatively low ranges of the W/V ratio, PQv,−w is also
very close to PQv/w. PQv,−w, on the other hand, is able to
store, in a larger buffer, more high-value packets and do so for
longer, so as B increases and congestion decreases, PQv,−w
becomes closer to the other three. Note, in this setting, all
algorithms become significantly worse off compared to the
fractional OPT through no fault of their own: the “unfairness”
of fractional OPT becomes much more pronounced with large
B (it has more and more extra space to store packets).

C. Maximal value V

In the third set of experiments (Fig. 5(7-9)), we look at
performance as a function of the maximal value V . It turns out
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that while the relative performance to fractional OPT drops,
the performance level of the three leading algorithms does
not significantly depend on V in realistic cases, and only
PQv,−w drops significantly in relative quality. This, again, can
be explained by the fact that PQv,−w suffers from a wider
variety of packets, getting stuck with valuable yet heavy ones.
The relative order of algorithms remains unchanged.

D. Incoming stream intensity
The fourth set of experiments (Fig. 5(10-12)) shows how

performance depends on the intensity of the packet source,
expressed in terms of the timeslot size t (naturally, more
packets on average arrive during a longer t). This setting lets
us explore the most congested settings: all algorithms join
together at the high end of intensity simply because now there
are, on average, enough (1 | V ) packets arriving to keep all
algorithms busy only with the obviously best packets. The
relative standings of all algorithms remain the same throughout
this increasing congestion.

E. β for β-push-out policies
The fifth set of experiments (Fig. 5(13-15)) studies a dif-

ferent situation; here, we have introduced nonzero copying
cost α (on all three graphs, α = 0.3) and have studied how
performance depends on β for β-push-out counterparts of our
policies (as introduced in Section VII); since the number of
admitted packets is not well defined for our fractional OPT,
OPT did not participate in these experiments; we have taken
the results of PQv/w,−w for β = 1 as the starting point,
dividing all the rest by this value. We see that in all cases,
β = 1 appears to be the perfect or almost perfect choice in
practice: sometimes β = 1.2 or β = 1.3 yield better results,
but only slightly.

F. W for the two-valued case
The last, sixth set of experiments (Fig. 5(16-18)) deals with

the two-valued case, when the intrinsic value of a packet can
only take values in {1, V } while required work can still be an
arbitrary integer from 1 to W . We repeated the experiments
from Section VIII-A with this additional restriction, and the
results closely match our theoretical results from Section VI:
contrary to the general case, now PQv,−w is not the obviously
worst algorithm but performs on par with PQv/w policies,
while PQ−w,v diverges from them for larger W in exactly the
same way as in the general case (compare to Section VIII-A,
Fig. 5(1-3)). Since PQv,−w may be easier to implement than
PQv/w (required work does not have to be considered or
even known), for the two-valued case we recommend to use
PQv,−w. Again, as a side effect we see that the fractional
OPT performs better (relative to other algorithms) when more
buffer space is provided.

To summarize, in this section we have shown a comprehen-
sive simulations study on synthetic traces. The main result is
that the PQv/w policy that we have introduced in this work
is uniformly the best policy across all tested settings, and
there is little difference between tie-breaking variations of it,
while in the two-valued case experimental results supported
the theoretical conclusion that PQv,−w is a good policy.

Processing policy General case Two-valued case
Adversarial general lower bounds

Any online algorithm min{ 2B√
W,

B√
V }−1

2
1 + V−1

V 2 −O
(

1
W

)
Any priority queue

√
W min{V,W/V }

Any FIFO online algorithm
(√

W
B

+ 1− 1
B

)
V+B−1
W+B−1

Lower and upper bounds for specific algorithms
Lower bound Lower Upper

PQ−w,v , PQβ−w,v V V V

PQv,−w , PQβv,−w
W (V−1)

V
− o(1) W

V
+ o(1) 1 + W+2

V
PQv/w , W ≥ V V V

PQβ
v/w

, βW ≥ V V V

PQv/w , W < V W W
V

+ o(1) 2 + 2
V

TABLE I
RESULTS SUMMARY: LOWER AND UPPER BOUNDS.

IX. CONCLUSION

In this work, we have begun the study of buffer manage-
ment for processing packets with two different characteristics:
processing requirement and value. In these settings we have
considered a single queue buffering architecture and have
mostly studied algorithms based on priority queues; in the
setting with two characteristics, there may be different rea-
sonable priority queues that have different policies. We have
investigated various packet processing orders and found that
they have linear lower bounds on the competitive ratio, which
makes them unattractive in the general case. However, we have
provided positive results in the special case of two different
values, 1 and V and heterogeneous processing requirements.

The results of our work are summarized in Table I; note
that all algorithms in the table employ push-out (albeit with
different heuristics for it). In the main result of this work,
we have shown a (1 + (W + 2)/V ) upper bound for the
buffer management policy PQv,−w that orders packets first by
value and then by required processing. For W < V , this also
becomes a constant upper bound on the competitive ratio of
PQv/w which orders packets by unit processing (ratio of value
to processing). This result has been somewhat counterintuitive
since the intuition would be that the PQv/w policy that
optimizes for value per timeslot would be best, but in the
general two-valued case it has a non-competitive lower bound.

In addition, we have shown a number of general lower
bounds, for the cases of any deterministic online algorithm
with FIFO processing and transmission order, for any priority
queue, and even for any deterministic online algorithm at all;
while these lower bounds are relatively weak, they are non-
constant and show that it is impossible to achieve constant
upper bounds in these cases without additional assumptions
on the relations between parameters such as B, V , and W .

For the two-valued case, we have shown tightly matching
lower and upper bounds on the competitive ratio (they differ by
1+o(1)). It still remains an interesting open problem to prove
upper bounds for the general case of arbitrary values; another
interesting problem would be to prove upper bounds for β-
push-out policies. However, the really crucial question here is
whether there exists a processing policy with better than linear
competitive ratio for the general case of two characteristics:
our general lower bounds are not constant but they are far
from linear too. We suggest this problem for further study.
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10 15 20 25 30 35 40
0.60

0.70

0.80

0.90

1.00

(1) W , B = 30, V = 10, t = 0.15

10 15 20 25 30 35 40
0.60

0.70

0.80

0.90

1.00

(2) W , B = 100, V = 10, t = 0.15

10 15 20 25 30 35 40
0.60

0.70

0.80

0.90

1.00

(3) W , B = 300, V = 30, t = 0.15

20 40 60 80 100 120 140 160 180 200
0.60

0.70

0.80

0.90

1.00

(4) B, W = 50, V = 10, t = 0.15

1,000 2,000 3,000 4,000
0.60

0.70

0.80

0.90

1.00

(5) B, W = 10, V = 25, t = 0.15

2,000 4,000 6,000 8,000

0.60

0.80

1.00

(6) B, W = 10, V = 10, t = 0.15

15 20 25 30 35
0.60

0.70

0.80

0.90

1.00

(7) V , W = 10, B = 30, t = 0.15

15 20 25 30 35

0.60

0.80

1.00

(8) V , W = 10, B = 100, t = 0.15

15 20 25 30 35

0.60

0.80

1.00

(9) V , W = 50, B = 300, t = 0.15

0.2 0.25 0.3 0.35 0.4 0.45 0.5
0.80

0.85

0.90

0.95

1.00

(10) t, W = 10, B = 100, V = 10

0.2 0.25 0.3 0.35 0.4 0.45 0.5
0.80

0.85

0.90

0.95

1.00

(11) t, W = 50, B = 100, V = 10

0.2 0.25 0.3 0.35 0.4 0.45 0.5

0.60

0.80

1.00

(12) t, W = 10, B = 100, V = 30

1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6
0.20

0.40

0.60

0.80

1.00

(13) β, W = 10, B = 100, V = 10, α = 0.3

1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6
0.20

0.40

0.60

0.80

1.00

(14) β, W = 10, B = 100, V = 30, α = 0.3

1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6
0.20

0.40

0.60

0.80

1.00

(15) β, W = 50, B = 100, V = 10, α = 0.3

10 15 20 25 30 35 40
0.80

0.85

0.90

0.95

1.00

(16) W , B = 30, V = 10, t = 0.15 (two-valued)
10 15 20 25 30 35 40

0.80

0.85

0.90

0.95

1.00

(17) W , B = 100, V = 10, t = 0.15 (two-valued)
10 15 20 25 30 35 40

0.80

0.85

0.90

0.95

1.00

(18) W , B = 300, V = 30, t = 0.15 (two-valued)

Fig. 5. Simulation results: share of successfully transmitted packets in the required processing model as a function of (1-3) maximal required processing
W , (4-6) buffer size B, (7-9) maximal value V , (10-12) timeslot size t used for the CAIDA traces, (13-15) β parameter for β-push-out policies, (14-16)
maximal required processing W in the two-valued case. Specific simulation parameters are shown in graph captions.
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