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Engineering software systems to fulfill security requirements remains challenging. We advocate for 
designing and implementing software systems around integrated advanced security policies, capturing 
security requirements. We report on experience gathered with this approach in confidentiality preserving 
data analytics. 

S oftware systems continue to cause security con-
cerns, particularly with respect to the confidential-

ity of data that they handle. Data are commonly referred 
to as the new currency, used in all walks of life for making 
more informed decisions guided by computations on 
large datasets. With data breaches remaining common,6 
improving the security of software systems handling 
such data becomes crucial.

Introduction 
We posit that an important cause for security concerns, 
and, eventually, issues, is the fact that security require-
ments and constraints are not sufficiently embedded 
into software systems.

Multilevel Security
Consider the well-known approach for capturing con-
straints, notably on the confidentiality of data in a differ-
entiated manner, consisting of assigning levels or labels 
l to information or users with different security clear-
ances (or, more generally, principals). By ensuring that 

the set of levels l l{ , }L n1 f=  is arranged according 
to a lattice inducing a (reflexive and transitive) partial 
ordering d  and with top <  (most secret) and bottom 
=  (unprotected) elements, there is always the possibil-
ity of aggregating over several levels of L  by finding a 
level that conservatively “includes” all those levels.2

Such multilevel security (MLS) is notably used for 
controlling access to classified information. It can be 
complemented by a similar model for reasoning about 
data integrity, and the two can be combined.10

The Front-End Perspective
MLS classically deals with controlling the access of users 
to data with different classifications, and it has been the 
starting point for many other more refined access con-
trol models. Figure 1(a) shows a simple example of a lat-
tice that can be used for controlling access to data that 
are correspondingly labeled, with an example of such 
data given in Figure 1(b).

This access control angle captures the “front-end” 
perspective of software systems, which governs “who” 
has access to “what.” While such access models effec-
tively capture security requirements, they are typically 
not fully followed through in terms of software.
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More precisely, while these models are not only used 
to document policies but are effectively used to auto-
matically enforce such policies in access to systems, 
this enforcement occurs at a coarse granularity, and it 
does not capture “how” an access is to occur or “which” 
means are allowed for it.

The latter two ques-
tions reflect an equally 
important “back-end” 
aspect of secure com-
puter systems, with in-
creasing focus in the 
context of big data ana-
lytics. This overlooked 
aspect notably affects 
the design and devel-
opment of secure soft-
ware systems in the era 
of increasing execution of data processing applications 
across untrusted infrastructures, such as cloud and edge 
data centers.

In the following, we elaborate on this shortcoming 
and on our approach to address it, showcased through 
our hybrid approach to distributed confidentiality pre-
serving data analytics (Hydra) system for confiden-
tiality preserving cloud-based data analytics,7 at the 
culmination of a decade of research on the topic (e.g., 
Stephen et al.,14 Savvides et al.,12 and Savvides et al.11).

Secure Big Data Processing
The continuously increasing use of large datasets for 
decision making has been made possible by the rise 
of third-party shared infrastructure, starting with 
shared resources in cloud data centers. More recently, 
these data centers have been complemented by edge 
data centers to reduce response times by performing 
parts of computations closer to data producers and 
consumers.

Beyond Standard Encryption
This evolution toward computing in third-party infra-
structure has accentuated the need for security in gen-
eral and in particular for the protection of data while 
they are being computed on or with as well as data in use. 
This need clearly exceeds the capabilities of standard 

cryptographic schemes 
deployed for the stor-
age and retrieval of 
data at rest. With our 
society becoming in-
creasingly driven by 
the extraction of intel-
ligence from data and 
large language models 
dominating the news, 
many (security) primi-
tives and mechanisms 

have been proposed to secure data while they are sub-
ject to computation as well as to secure the computation 
itself. Examples include software-based primitives like 
homomorphic encryption (HE), including fully HE 
schemes4 and partially HE (PHE) schemes (e.g., Pail-
lier9), and hardware-based trusted execution environ-
ments (TEEs). Every major processor manufacturer, 
meanwhile, offers a TEE, e.g., Intel Software Guard Ex-
tensions (SGX), AMD Secure Encrypted Virtualization 
(SEV), and ARM Confidential Compute Architecture. 
Amazon Web Services (AWS), the largest cloud pro-
vider, has recently introduced its own product, Nitro. 
The advent of such TEEs, a natural and welcome evo-
lution, has given rise to the moniker confidential com-
puting. Big data processing can be seen as a subset of 
outsourced computation13 with a strong focus on per-
formance, notably scalability to large datasets, thus fa-
voring certain mechanisms of over others.

Embarrassment of Riches
The large variety of such mechanisms leads to an embar-
rassment of riches, as the mechanisms exhibit strong 
differences along several dimensions, even within a 
same class (HE or TEEs):

■■ Features: Different mechanisms are used in quite dif-
ferent ways. For instance, PHE schemes support only 
individual operations, which might even be differ-
ent from the operation that a programmer “logically” 
seeks to perform (e.g., addition in Paillier9 requires 
ciphertexts to be multiplied). Certain schemes allow 
data with different keys to be combined, thus sup-
porting multiparty computation, while standard PHE 
schemes require all combined data to be encrypted 
with the same key. TEEs typically offer the abstrac-
tion of memory enclaves—designating portions of 

Figure 1. (a) A simple security lattice with three 
levels—High (= <), Low, and Public (= =)—and (b) 
extract of Customers and Orders relations of the 
popular TPC-H benchmark, with levels assigned.

High

Low

Public

(a)

Relation Field Type Level

Customers CustId String Low
Bal Double High
...

Orders OrderId String High
CustKey String Low
Price String High
Date String Low
...

(b)

Software systems continue to cause security 
concerns, particularly with respect to the 
confidentiality of data that they handle.
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memory that are encrypted/decrypted automatically 
on the way from/to the processor—requiring code 
for explicitly setting them up (creation and attesta-
tion) and exchanging data with them (input/output). 
Despite such similar functionalities, programming 
interfaces, e.g. for instantiating enclaves or interact-
ing with them, vary strongly between incarnations. 
Some TEEs can be used to deploy entire containers or 
even virtual machines; others are more resource con-
strained, making offerings very difficult to interchange.

■■ Security: Even only at a high level, mechanisms can 
offer different security guarantees like confidentiality  
‑and/or integrity. For instance, (some) HE schemes 
support data integrity in the sense that tampering with 
ciphertexts can lead to errors at decryption, while TEEs 
can also achieve integrity of computation and attesta-
tion of the executed code. Even within such a guarantee 
(often rather informally specified), the mechanisms dif-
fer importantly in their definition of the guarantee and 
in the conditions under which it is achieved. An impor-
tant question, of course, is with respect to what attacker 
or adversary model such guarantees are achieved. HE 
schemes and TEEs all have known attacks.8 Note that 
while software solutions typically cannot be attested, 
they can usually be inspected by users quite easily. 
Hardware solutions, on the other hand, require certifi-
cates with a root of trust for attesting the code they exe-
cute and cannot themselves be easily inspected.

■■ Performance: Different mechanisms can exhibit vastly 
different performance characteristics. With TEEs ben-
efitting from hardware support for encryption and 
decryption, these operations are usually very efficient 
in comparison to many HE schemes. Inversely, with 
actual operations on data protected with HE, certain 
schemes can be surprisingly effective by not requiring 
such de-/encryption at all. Beyond those differences, 
certain TEEs are more bound by memory constraints, 
others by computations or input/output. While TEEs 
are getting faster, so are HE schemes. Definitely, TEEs 
are currently not overhead-free, especially when used 
to secure entire containers or virtual machines trans-
parently without modifications, as often promoted by 
manufacturers as part of pain-free deployment (which 
also negatively affects the trusted computing base). 
When used in distributed computations in untrusted 
clouds, data transferred between TEE instances also 
have to be encrypted/decrypted.

■■ Deployment: Clearly, not all cloud and edge data cen-
ter providers support all, or even the same set of, TEEs. 
(At the time of writing, AWS supports only its own 
Nitro TEE, and Google Cloud Platform supports only 
SEV. SGX is present only in Microsoft Azure.) This 
disagreement is particularly problematic with compu-
tations involving data at or from both the edge and the 

cloud, as respective data centers are usually operated by 
different providers, supporting different mechanisms.

All the above differences slow adoption of corre-
sponding mechanisms, which contributes to 82% of all 
data breaches these days involving data from the cloud.6

Security Policy as Code
The above differences make it pretty much impossible 
to identify a clear winning mechanism for all computa-
tions on all types of data across all environments.

The Back-End Perspective
The above observations raise the question of which 
security mechanism(s) to concretely use where and 
when. No solution may perfectly fit the requirements, 
which are obviously bounded by constraints of current 
solutions and may change over time. Strong security 
is obviously required and desired, but we have not yet 
converged on standardized solutions for data in use, as 
we have for data at rest.

Beyond all technicalities of the solutions them-
selves, even experts may choose differently at a given 
point in time, as they may assess the risks of an attacker 
successfully mounting a certain attack differently. Such 
an assessment can also depend on the technical envi-
ronment (beyond the TEEs or HE schemes), including 
the hardware deployed and its configuration and the 
software stack supported, down to version numbers 
of individual software packages. Lastly, besides such 
platform differences, the choice of data center operator 
(cloud or edge provider) can also make an important 
difference, including through other protection mech-
anisms and attacker countermeasures deployed and 
even internal management processes. As some of the 
variables mentioned above may not be entirely known 
to experts on the outside, nonbinary risk assessment 
becomes necessary, leading to a more differentiated 
view of security, away from a binary static picture.

Extended Security Policy
Absolute security is impossible, and corporations have 
to put numbers on costs as well as revenues, encour-
aging the quantification of security risks reflecting the 
likelihoods of attacks materializing, compounded by 
estimated financial losses and weighed against costs 
for the acquisition and operation of protection and 
defense solutions. This weighing calls for a malleable 
notion of trust to capture the wide spectrum of security 
requirements.

In the spirit of MLS, we augment a lattice of security 
levels with a mapping of these levels to security mecha-
nisms, including both hardware- and software-based 
ones (or combinations thereof), together with domains, 
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capturing a notion of sufficient trustworthiness. More 
precisely, with M  and D  denoting the set of available 
security mechanisms and domains, respectively, the 
extended security policy then revolves around tuples of 
the form

, ,m d lG H

where mechanism m M!  is deemed to be “strong or 
trustworthy enough” to protect data (or any principal) 
at level l L!  or below (according to )'  in domain 

.d D!  The domain d typically represents an infra-
structure with a corresponding operator/provider. 
Separating it from the security mechanisms allows sup-
porting same mechanisms in infrastructures run by dif-
ferent operators (e.g., both Microsoft Azure and Google 
Cloud offer SEV) which may not be necessarily prone 
to the same attacks.

The immediate understanding is that a system built 
around such a policy, for treating data at level l in domain 
d, can choose any mechanism assigned to l or a level ll  
above l l l( )' l  for d. Figure 2(a) presents an example of 
a mapping for the lattice of Figure 1(a), and Figure 2(b) 
provides an example of how schemes can be inferred by 
a system for the relations of Figure 1(b) for a given query 
based on their assigned levels and the mapping.

Guarantee
Our Hydra7 system, outlined shortly, leverages this 
extended security policy to provide a variant of noninter-
ference5 tailored to the MLS setup: no adversary capable 

of tampering only with mechanisms below (weaker than) 
some l l( )'  can tell the difference between two evalua-
tions of the same expression as part of a query, differing 
only in the input data at level l or above ( l).e

For simplicity, we focus here on confidentiality, 
while the approach can be used also for integrity, and 
the two can be combined.10

Putting Security Policy as Code to Work
Toward correctly applying our extended security policy 
with a mapping of security levels to security mecha-
nisms in a concrete system, we introduce several con-
straints. If correctly enforced, our policy brings many 
benefits with respect to the several dimensions along 
which security mechanisms and their application—
and, thus, security requirements—can differ.

Constraints
The constraints below ensure the correct operation of a 
system using our extended security policy. These con-
straints can be easily verified on a given security policy 
at system start-up or reconfiguration:

■■ Plaintext handling: To allow for unprotected han-
dling of data in some domains (e.g., where protection 
mechanisms outside of the system may be in place or 
trust is high due to other reasons), we introduce an 
“empty” mechanism denoted by an underscore (_).

■■ Intradomain transmission: As we are concerned with 
the more generic scenario of a distributed data process-
ing system, it is important that data can be transferred 
between nodes in a secure manner. Thus, our policy 
requires a cryptographic scheme to be defined for 
every level l and every domain d to allow for encrypted 
transmission of data at level l between nodes within d. 
For simplicity we can allow a wildcard * to designate 
all domains, allowing a single rule to be added for all 
domains. A default like the popular Advanced Encryp-
tion Standard (AES) scheme in Galois countermode 
can then be introduced through a simple preset rule 
GAES–GCM, *, HighH, for which any more specific rule, 
e.g., for a level l '  High, adds alternatives.

■■ Interdomain transmission: For handling secure trans-
mission between domains, we introduce a predefined 
Internet domain Inet. Similar to intradomain trans-
mission, we can easily add a default by using a preset 
rule GAES–GCM, Inet, HighH. Note that no rules for 
Inet should permit hardware mechanisms like TEEs, 
as the domain is strictly used for communication and 
not for computation.

■■ Client: We also introduce a predefined client (user) 
domain Client, in which all levels are permitted in 
plaintext without a mechanism, i.e., G_, Client, HighH. 
This domain allows for client-side completion of 

Figure 2. An (a) example mapping for an extended security policy for the simple 
lattice of Figure 1(a) and (b) possible assignment of schemes for Customers and 
Orders relations inferred from the mapping based on the levels assigned in Figure 
1(b). SGX and Paillier stand for the mechanisms introduced already, and the 
others except for AES variants are partially homomorphic (or property preserving) 
encryption schemes. AES: advanced encryption standard; GCM:  Galois counter 
mode; ECB: electronic code book; OPE: order-preserving encryption; SWP: Song, 
Wagner, and Perrig. 

Mechanism
� ∈ M

Domain
� ∈ D

Level
� ∈ L

_ Client High

SGX, Azure High

AES-GCM

SWP, Azure Low

AES-ECB,

Paillier,

ElGamal,

OPE

(a)

Field Scheme

CustId AES-ECB
Bal AES-GCM
...
OrderId AES-GCM
CustKey AES-ECB
Price AES-GCM
Date OPE
...

(b)
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computation but also for re-encryption, which can be 
used to deal with inherent limitations of PHE schemes 
and in lieu of manual “escape hatches” often used in prac-
tice to deal with “label creep” in complex computations. 
This phenomenon results from the outcome of a com-
bination of n data items, with different levels ll , , n1 f  
being treated as the highest level li  ..i n( [1 ])!  
among the constituents ..l l j n( [1 ]) j i 6d !  or even 
as a higher one l ..l l j n( [1 ])j 6' !  if none is higher 
than all others (in the worst case, l ).<=  Of course, 
a security policy could define several custom client 
domains, e.g., capable of handling different levels.

Benefits
Treating such a policy as an integral part of a system 
provides a number of concrete benefits mitigating 
issues caused by differences among mechanisms, as 
outlined below:

■■ Features: Focusing on our security policy allows con-
sidering abstract functionality rather than how exactly 
mechanism features are to be used to achieve that func-
tionality. Moreover, the system has improved main-
tainability going forward, supporting the addition of 
new mechanisms, for the same functionalities or pos-
sibly beyond, to M  (or inversely, restricting the use of 
those deemed inappropriate based on new findings).

■■ Security: Similarly, security guarantees can be pro-
vided with respect to the security policy rather than 
specific mechanisms, allowing for custom threat 
taxonomies for mechanisms to be accommodated. 
Furthermore, building a system around an artifact 
capturing security requirements has the clear advan-
tage of forcing system developers to think of overall 
security as part of design rather than considering it as 
an afterthought, and it allows persisting requirements 
all the way through development to deployment.

■■ Performance: If different mechanisms are applicable 
in terms of security, according to the policy, for the 
level of some data to be processed, the system can 
choose the “best” mechanism based on some other 
more inherent properties of the data and the compu-
tation to be performed and an objective function. For 
instance, the system can optimize for expected latency 
for a given query, or it can make broader decisions in 
terms of (resource) efficiency based on momentary 
resource availability, including choosing slower mech-
anisms when the nodes with faster ones are temporar-
ily overloaded.

■■ Deployment: If a system is capable of decoupling 
security mechanisms, it supports portability among 
mechanisms and, thus, (cloud) platforms; this can 
extend to efficient interoperability among plat-
forms by taking federation into account rather 

than, e.g., first straightforwardly copying all data to 
one place. Note that these properties do not directly 
imply the easy addition of new mechanisms and, thus, 
maintainability.

System Architecture
We have built the Hydra7 confidentiality preserving 
distributed data analytics system around our extended 
security policy, leveraging the benefits outlined to 
address challenges and, inversely, overcoming chal-
lenges to reap the benefits.

Overview
Hydra is a system for distributed confidentiality pre-
serving cloud-based data analytics (Figure 3 displays 
its architecture). Its codebase extends the widely 
used Apache Spark system, with around 40,000 lines 
of code (LOC). Hydra can be used by data analysts 
through Spark’s unmodified SparkSQL interface, pro-
viding a data flow model for queries based on opera-
tors in the style of Structured Query Language (SQL) 
operators/operations arranged according to a directed 
acyclic graph.

Integrating Mechanisms
A first major conceptual challenge consisted in defining 
appropriate abstractions for capturing a variety of mech-
anisms (features–functionality). Hydra currently sup-
ports HE encryption schemes and TEE-based enclaves. 
In a first step, we introduced programming interfaces 
that capture the basic features of these types of mecha-
nisms (deployment–portability and features–main-
tainability), adjusted to the internal data processing 

Figure 3. The architecture of Hydra built around our extended 
security policy. Except for the orange parts, execution happens 
on the client side, where the analyst resides.
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model of Hydra (deployment–interoperability and 
features–maintainability). Interfaces for HE schemes 
typically include functions for encryption and decryp-
tion and for homomorphic operations they support. For 
TEEs, we have different levels of support—native, con-
tainer, and virtual machine—with respective interfaces. 
We have reaped the maintainability benefits (features–
maintainability) of our approach when integrating 
SEV and Nitro, with very limited effort. More specifi-
cally, integrating these into Hydra required only two 
and three new LOC, respectively, to be added (essen-
tially for implementing a Scala class/trait). Integrating 
the first five PHE schemes required only a total of 76 
LOC (22, 20, 14, 12, and eight LOC, respectively).

Runtime System
Spark has a complex malleable pipeline for query prepro-
cessing preceding actual query execution. However, this 
part of the system is deployed on the trusted client side, 
and the extensions required for our purpose (see Figure 3)  
were beyond those foreseen for query optimization.

Spark also has a complex distributed runtime sys-
tem, allowing it to scale to large datasets while making 
good use of data center resources and also allowing it 
to recover from process failures. The entire Hydra sys-
tem being designed around our security policy, though 
extending an existing system, made it natural to con-
sider enforcement of security requirements in the entire 
runtime system (security–design).

Selecting Mechanisms
To effectively achieve the potential benefits of our 
approach, notably in terms of performance, we intro-
duced a notion of pluggable transformation heuristics 
for transforming SparkSQL queries, for example, to 
automatically use security mechanisms in a way that 
optimizes for a given objective function. These heuris-
tics are similarly based on appropriate programming 
interfaces with, additionally, a domain-specific lan-
guage for very easy description of simple heuristics, 
such as the one for the SGX‒PHE hybrid execution 

used for Figure 4, comparing running times of Hydra 
to prior monolithic systems, which it easily outper-
forms (performance–latency). Dynamic decisions 
are possible in a limited form (performance–effi-
ciency), with more advanced support being the sub-
ject of ongoing efforts. Note that our current heuristics 
framework enforces certain properties automatically 
by design (security–design), while others are verified 
on transformed queries based on a type system with 
respect to the security policy (security–taxonomies) 
enforcing our novel MLS noninterference guarantee.

Extensions
Many extensions to the basic mapping between security 
mechanisms and levels introduced earlier are possible. 
We first discuss potential extensions to our security 
policy to improve security and/or performance and 
tradeoffs within and between them and then discuss a 
potential extension to multiparty scenarios.

Options and Priorities
There are different ways of integrating a given secu-
rity mechanism into a system; e.g., TEEs can be 
integrated to execute entire virtual machines and 
containers but also more natively specialized for the 
system at hand and its operations (features–func-
tionality). For example, in Hydra,7 SGX was sup-
ported originally through a custom-built interpreter, 
due to strict resource constraints and to enable the 
reuse of enclaves. At the policy level, this distinc-
tion can be currently folded into mechanisms them-
selves; e.g., m1 = Nitro-dock, m2 = Nitro-VM. The 
mappings of the form , ,m d lG H  can be extended with 
a v representing mode or variant to , , ,vm d lG H  in 
order to capture refined security–taxonomies.

While performance can (also) benefit when sev-
eral mechanisms m m, , n1 f  are admissible for a same 
domain-level pair, i.e., the policy contains m d l, ,iG H  

..i n[1 ],6 !  it may be difficult for a system to entirely 
automatically choose the best option for a given case.  
A simple extension could, thus, consist in allowing 

Figure 4. Performance benefits of combining mechanisms demonstrated by Hydra.7 Latency (logarithmic scale) compared to Cuttlefish12 and 
Opaque15 on the TPC-H benchmark. Using only PHE, HydraPHE is on average 1.6× faster than Cuttlefish, and HydraSGX is 11.3× faster than 
Opaque. HydraHybrid, combining PHE and SGX, is 1.7× and 1.6× faster than HydraPHE and HydraSGX, respectively, and 2.7× and 17.9× faster 
than Cuttlefish and Opaque, respectively. HydraHybrid’s simple heuristic leverages microbenchmarks of operators with different mechanisms 
to decide when to favor PHE over SGX.
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mappings to include simple priorities for each option, 
e.g., m d l p, , , ,iG H  where p is an integer value. (This 
could be combined with the extension above.)

A more advanced approach could consist in identify-
ing particular classes of scenarios, e.g., scenarios bound 
by memory, the central processing unit, or the input/
output, and specifying priorities among the available 
options for each class separately.

Focusing on big data processing scenarios, one can 
consider integrating several measures related to data, 
inspired by the “five V’s,”1 by extending security policies:

■■ V1—volume: Different mechanisms may be preferable 
for differently sized datasets, e.g., based on different ini-
tial one-time setup costs for mechanisms, like (homo-
morphic) encryption of data or enclave creation.

■■ V2—velocity: In some scenarios, latency may domi-
nate (for individual queries), while for others, effi-
ciency my dominate (with respect to many queries).

■■ V3—value: Beyond a possible implicit notion of value 
already captured by security levels, there are different 
means of assigning value to data that can be further 
used to set priorities (e.g., freshness).

■■ V4—variety: Data are a priori assigned levels inde-
pendent of their data types. Especially complex data 
types can, however, favor certain mechanisms for bet-
ter performance.

■■ V5—veracity: Within the same level, different mecha-
nisms may be prioritized for a given data item based 
on the amount of data that was aggregated to deter-
mine it, e.g., to improve performance without a 
major downside to security.

Multiparty Scenarios
Another possible form of variety (see V4) can arise 
from multiparty scenarios with different organizations 
or stakeholders contributing data. This can even hap-
pen with suborganizations within larger corporations 
that grew organically with different divisions or possi-
bly by acquiring and incorporating other corporations. 
There are two main ways in which extended security 
policies can handle such scenarios.

In the simplest case, the parties share one com-
mon security policy, and data are tagged with owner-
ship information taken into account by the system at 
runtime. After introducing one or several auxiliary cli-
ent domains with corresponding rules in L  to access 
combined data, a system could then handle such data by 
considering for a given security mechanism whether it 
can handle data that are encrypted using different keys. 
This is typically the case for all common TEEs (assum-
ing keys are accordingly managed and shared) and even 
some HE schemes. While a framework allowing mech-
anisms to be plugged in should provide appropriate 

interfaces for mechanisms to delineate their capabilities, 
like which operations are supported and how, in the case 
of (P)HE schemes, or the ability to support user-defined 
functions, such multiparty processing can also be added. 
This could also open the door to adding other mecha-
nisms for multiparty processing, like garbled circuits.13 
Note that any of these feature categories could also be 
used in the mapping to help specify priorities.

For a more advanced form of multiparty setup 
with different parties having their own lattices ,L i  

..i n[1 ],!  a combined integrating lattice L  can be cre-
ated as a product lattice, just like when integrating confi-
dentiality and integrity.10

T he computing landscape is shifting its focus from 
controlling access to data to securing computa-

tions on such data, achieved by the means of third-party 
shared cloud and edge data centers.

With the vast majority of data breaches these days 
involving data in such infrastructures, it becomes 
important to secure corresponding computations and, 
thus, corresponding software systems.

Moving security policies capturing important secu-
rity requirements from front-end systems and docu-
mentation to back-end systems, by having the latter 
systems built around such policies, has many benefits.

Many issues remain to be further addressed to com-
plete our generic vision of “security policy as code” 
based on our extended notion of security policy with 
mappings to mechanisms and systems:

■■ Securing the policy: Governing the system, the security 
policy itself has to be secured. The easiest approach 
is to handle it as data with the highest confidential-
ity level ,<  although in this context, clearly, integrity 
is almost more important than confidentiality to not 
offer attackers an easy target—modifying the map-
ping allows trivially bypassing all security mecha-
nisms and measures.

■■ Guarantees: As mentioned, our extended security pol-
icy is not a priori limited to confidentiality. But sub-
sumption in lattices for integrity usually follows the 
opposite direction than in the case of confidentiality 
(write down, read up for integrity versus write up, 
read down for confidentiality10), which can restrict 
the options for a system. Note that other guaran-
tees, such as availability, which are also important for 
real-life systems and strongly impact software design 
and implementation, also need to be investigated.

■■ Key management: For simplicity, we have neglected 
the issue of key management. Like the security policy, 
keys also need to be protected. The simplest approach 
here is similarly to treat them as ,<  but it may be 
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sufficient to label a key for encryption at level l with 
that same level.

■■ Attestation: Remote attestation of TEEs is important to 
ensure that they execute the intended code. Correct and 
efficient attestation brings its own challenges, which are 
likely to get accentuated by integrating different products.

■■ Formalization: Defining precise guarantees of a sys-
tem orchestrated around a possibly changing security 
policy is, of course, as important as it is challenging. 
For Hydra and its focus on confidentiality, we defined 
a variant of noninterference. For other security guar-
antees, other frameworks might be more suited. A 
particularly interesting direction could be to investi-
gate the application of differential privacy3 in an MLS 
setup, particularly in the data processing context, due 
to the paradigm’s connection to veracity (V5).

■■ Policy transitions: A system ideally allows its security 
policy to be changed on the fly, with immediate adap-
tation. Such changes are certainly simpler for a sys-
tem like Hydra for online analytical processing with 
read-only queries, which can each be treated in isola-
tion. For a more complex data processing system (e.g., 
storage), consistency would have to be considered 
more closely and defined more precisely for transi-
tioning between two security policy versions.

■■ Transparency: Hydra manages to avoid escape hatches 
by resorting to client-side query completion or query 
re-encryption without visible performance degradation, 
allowing it to use and mix mechanisms transparently to 
users. Other systems may have to compromise on such 
transparency to reach performance goals or vice versa.

■■ Generality: Hydra currently supports HE and TEEs 
(with additional PHE schemes, like our highly effi-
cient symmetric schemes11 and Intel’s novel Trust 
Domain Extensions TEE, currently being integrated), 
but other security mechanisms have been described 
with quite different features and guarantees. Integrat-
ing further mechanisms into Hydra, or into alterna-
tive data processing systems, will likely strongly affect 
architecture and programming interfaces and is likely 
to benefit from formal modeling. 
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