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ABSTRACT
Buffering architectures and policies for their efficient man-
agement are one of the core ingredients of network architec-
ture. However, despite strong incentives to experiment with
and deploy new policies, opportunities for changing or auto-
matically choosing anything beyond a few parameters in a
predefined set of behaviors still remain very limited. We intro-
duce a novel buffer management framework based on machine
learning approaches which automatically adapts to traffic condi-
tions changing over time and requires only limited knowledge
from network operators about the dynamics and optimality of
desired behaviors. We validate and compare various design
options with a comprehensive evaluation study.

1 INTRODUCTION AND MOTIVATION
The growing complexity of network management has been the
subject of many debates. There are two major factors impacting
the complexity of network operations: size and structure of a
manageable state and how often it changes. Networks should
be as autonomous as possible and adjust their operation to
changing traffic patterns, allowing to better exploit network
infrastructure, ideally without manual intervention.

In this work, we study the design principles of a self-adjusting
queueing module (QM), which is an essential building block
in every network element. Traditional network management
allows only to deploy a fixed set of buffer management policies
optimizing predefined objectives and incorporating specific
traffic parameters. Finding the “perfect” policy settings is a
complicated task that requires high qualifications of network
operators. Moreover, well-chosen parameters reflect only the
current understanding about traffic patterns: usually, there is no
closed loop between network operators and the QM, and as a
result the performance of even well-chosen policy parameters
will deteriorate when traffic patterns change over time.

Instead of implementing a complex closed loop, we pro-
pose a declarative approach, where the QM is provided with
a set of “implementable” policy instances and metrics to com-
pare their performance. Each policy instance is a “black box”,
and network operators can supply to the QM multiple “reason-
able” policy instances. The QM infrastructure exploits machine
learning techniques and deploys currently best suitable policy
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Figure 1: System structure: the network operator defines
an objective and a set of policies. The learning algorithm
interacts with the queue to identify the best policy.

candidate. This approach is based on the multiarmed bandits
model, where the best policy (arm) has to be chosen based on
incomplete information, minimizing the total cost of learning
(regret). However, to make multiarmed bandits useful in real
settings, one has to choose which model is best suited: different
objectives and assumptions lead to different bandit algorithms.
One also has to solve problems related to discretization and rep-
resentation of performance indicators, e.g., choose the measure-
ment interval; in this work, we discuss these issues and show
an experimental evaluation that validates our recommendations.
Moreover, various programming abstractions [32, 36, 38] have
recently defined atomic primitives that can be used to compose
buffer management policies. In this case, a network operator
can supply to QM instances of such atomic primitives (instead
of policy instances) and the QM infrastructure will build a set
of candidate policies by making the QM even less dependent
on network operator skills in the design of new policies.

2 PROBLEM SETTING
We assume that a network operator configures the QM in a
declarative way, by specifying a set of candidate policies P
and a reward function 𝑟 , 0 ≤ 𝑟 (𝑡) ≤ 1, that expresses a desired
objective (more is better) and allows to evaluate QM perfor-
mance over any time interval 𝑡 ; sample candidate policies might
include RED [17] or CoDel [23] with various parameters, and 𝑟
could be, for instance, the network power [44], average packet
delay, or utilization over respective time interval. Each policy
instance is an implemented algorithm with fixed set of param-
eters; the QM knows nothing about their internal operation
except that they halt and can run at line rate.
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Figure 2: Sample behavior of two policies; shaded areas
show the loss incurred by using a single policy over T .

Let T denote the time period of QM operation. The currently
prevalent approach is to use a fixed policy configured by the
network administrator for the entire T . This static approach
has limitations. First, the administrator must have a deep un-
derstanding of traffic patterns to make the right choice; even
choosing the best policy by data collected about the incom-
ing traffic is a very hard problem in general, let alone trying
to predict future traffic patterns. Even more importantly, the
network traffic patterns are likely to vary during T , and as a
result the performance of each individual policy will vary too.
As an example, Fig. 2 (which is a real evaluation result, an
excerpt from Fig. 4) shows a time interval T divided into 𝑇1
and 𝑇2, and each of the two policies CoDel [23] and RED [17]
yields the best reward during its own interval. Thus, in order to
achieve optimal performance we should run different policies
on different subintervals 𝑇𝑖 ; the shaded area on Fig. 2 shows
losses incurred by using a single policy throughout T .

Our main goal is to design the queue management infras-
tructure in such a way that would automatically adapt to traf-
fic changes and identify the policy that is hypothetically best
suited for current traffic patterns. The optimization objective is
to choose such a sequence of policies over T that would max-
imize the overall performance 𝑟 (T ). The QM infrastructure
knows neither what kind of traffic is expected during T nor the
performance of buffer management policies on that traffic.

We measure the performance of each policy over smaller
measurement intervals and then choose the policies to use on
future intervals. We denote the reward of a policy 𝑃 active on
a measurement interval 𝑡 by 𝑟𝑃 (𝑡) and divide T into station-
ary subintervals 𝑇1, . . . ,𝑇𝑞 on which the best policy does not
change, i.e., for every 𝑗 a single policy 𝑃∗𝑗 ∈ P shows optimal
expected performance over𝑇𝑘 ; e.g., Fig. 2 shows three subinter-
vals with optimal policies 𝑃𝐴, 𝑃𝐶 , and 𝑃𝐵 respectively. Optimal
𝑟 (T ) can be achieved by running 𝑃∗𝑗 during each 𝑇𝑗 .

Unfortunately, the QM cannot switch policies perfectly for
two reasons: it know neither when each 𝑇𝑗 begins nor what
𝑃∗𝑗 is. The main goal of this work is to present approaches to
approximate this desirable behavior by providing a solution to
the stationary optimization problem: identifying and running
the best policy 𝑃∗ over a stationary interval 𝑇 . We leave non-
stationarity detection, i.e., identifying a switch between two
stationary intervals, for further study.

Note that the reward value over a given time interval de-
pends not only on the policy’s behaviour but also, e.g., on how

it has been discretized. This raises a separate question of how
to choose the duration of measurement intervals and implies
a separate high-level infrastructural component that tests the
necessary properties and chooses hyperparameters for the op-
timization process. The closed-loop control makes the choice
of the measurement interval especially difficult: end hosts may
need some time to pick up a change in buffer management pol-
icy and adjust they behavior. If not accounted for, these reaction
delays may cause the reward to include irrelevant behavior on
the interval prefix, if the interval is short, represent just noise.
There are different countermeasures: use a larger interval so
that the true policy behavior dominates, skip the prefix from the
reward, and, a more advanced is to make the interval dynamic,
i.e., start the measurement only when the reward has stabilized.
In Section 4 we show that even the simplest approach helps.

3 STATIONARY OPTIMIZATION
The principal objective of stationary optimization is to run the
best policy 𝑃∗ for the largest possible fraction of 𝑇 . In order
to identify 𝑃∗, some part of 𝑇 has to be spent on exploration
through trial and error. There are two general approaches:
(a) evaluate then exploit: dedicate an exploration interval Δ in

the beginning of 𝑇 for the evaluation of different policies,
and then use the resulting best policy for the rest of 𝑇 ;

(b) continuous exploration: combine evaluation with exploita-
tion of the currently best policy; this approach keeps incur-
ring exploration costs but can converge on the best policy
with probability 1 and can handle dynamic policy rewards.

To apply known algorithms with proven results, we need to
make assumptions regarding the properties of the process. First,
we review several different cases that may lead to completely
different problems. The simplest case occurs if we are able to
find the best policy after trying each policy once, i.e., if the best
policy is always better than any other, on every time interval.

ASSUMPTION 1 (DISJ(Δ)). For a set Δ = 𝑡1 ⊔ . . . ⊔ 𝑡𝑛
of measurement intervals and any 𝑃 ∈ P, 𝑃 ≠ 𝑃∗, we have
𝑟min
𝑃∗ > 𝑟max

𝑃 , where 𝑟min
𝑃 = min𝑖 𝑟𝑃 (𝑡𝑖 ), 𝑟max

𝑃 = max𝑖 𝑟𝑃 (𝑡𝑖 ),
and 𝑃∗ is the best policy as defined above.

The DISJ(Δ) assumption, illustrated on Fig. 3a, allows for
a very simple yet perfectly accurate LOCALGREEDY policy
identification algorithm: try every policy once and choose the
one that has performed best. It requires only |P | measurement
intervals, so it is essentially independent of the duration of Δ.
Note that LOCALGREEDY may rank suboptimal policies (e.g.,
𝑃𝐴 and 𝑃𝐵 in Fig. 3) differently depending on the way policies
are ordered, but the best one is always identified correctly.
However, DISJ(Δ) is as unrealistic as it is powerful. In practice,
incoming traffic is always random, and numerous unknown
factors, which may differ from interval to interval, can affect
the arrivals. Thus, random fluctuations can easily lead to even
the best overall policy losing on a specific time interval.

One way to relax DISJ(Δ) is to assume some (unknown)
probability distribution over possible traffic behaviors. The
stationarity assumption here would be that the expected reward
for every policy remains constant, and rewards on different
time intervals are independent random variables.
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Figure 3: Possible reward values at different subintervals
of Δ satisfying different assumptions.

ASSUMPTION 2 (AVGEQ(Δ)). For a set Δ = 𝑡1 ⊔ . . . ⊔ 𝑡𝑛
of measurement intervals, any 𝑃 ∈ P, and any 1 ≤ 𝑖 < 𝑗 ≤ 𝑛,
E[𝑟𝑃 (𝑡𝑖 )] = E[𝑟𝑃 (𝑡 𝑗 )], and 𝑟 (𝑡𝑖 ) and 𝑟 (𝑡 𝑗 ) are independent.

The objective now becomes E[∑𝑖 𝑟𝑃 (𝑡𝑖 )] = 𝑛E[𝑟𝑃 (𝑡𝑖 )], i.e.,
it is also stochastic and there is a certain probability of error. We
minimize either the probability of error (if we need to choose a
single best policy) or the total regret, i.e., difference between
its expected reward and the expected reward of the clairvoyant
algorithm that always chooses the best policy. Independence
is also an important part of AVGEQ(Δ): without it the setting
would be essentially equivalent to making no assumptions at
all. In particular, AVGEQ(Δ) (illustrated on Fig. 3b) means that
there are no long-lasting (spanning several measurement inter-
vals) effects that substantially change the reward distributions.

Still, in practice long-term dependencies often do exist, so
one must look for an even more relaxed (but still hopefully
tractable) setting. The next setting assumes only that the more
often we try a policy, the closer the average reward gets to its
true performance; this is a strict relaxation of AVGEQ(Δ).

ASSUMPTION 3 (LIMIT(Δ)). For a set Δ = 𝑡1 ⊔ . . . ⊔ 𝑡𝑛 of
measurement intervals, any 𝑃 ∈ P, and any sequence 1 ≤ 𝑖1 <

. . . < 𝑖𝑘 ≤ 𝑛, there exists the limit lim𝑛,𝑘→∞ 1
𝑘

∑
𝑗 𝑟𝑃 (𝑡𝑖 𝑗 ).

Finally, we introduce the most general setting ADV(𝑇 ), where
the inputs can be completely arbitrary and even adversarial.

ASSUMPTION 4 (ADV(Δ)). 𝑟𝑃 (𝑡𝑖 ) are arbitrary.

Note that in reality these assumptions pertain to properties of
the traffic distribution. Let us now see how these assumptions
map to the two basic approaches of stationary optimization.

Evaluate then exploit. In this setting, we assume that a
special evaluation period Δ, a prefix of 𝑇 , is reserved for pure
exploration; this problem is known in machine learning as
best arm identification. The main assumption here is that Δ
is representative of the entire 𝑇 , and the rewards of policies
will not change over time, or at least the best policy will stay

Assumption Constraints Method Accuracy

FINDBEST

DISJ (Δ) 𝑟min
𝑃∗ > 𝑟max

𝑃 LG exact

AVGEQ (Δ) E[𝑟𝑃 (𝑡𝑖 ) ] = E[𝑟𝑃 (𝑡 𝑗 ) ] SR 1 − 𝑒𝑂 (𝑛)
LIMIT (Δ) ∃ lim𝑛,𝑘→∞ 1

𝑘

∑𝑘
𝑗=1 𝑟𝑃 (𝑡𝑖 𝑗 ) SH > RR

MAXREWARD

DISJ (𝑇 ) 𝑟min
𝑃∗ > 𝑟max

𝑃 LG 0

AVGEQ (𝑇 ) E[𝑟𝑃 (𝑡𝑖 ) ] = E[𝑟𝑃 (𝑡 𝑗 ) ] UCB1 𝑂 (log𝑛)
ADV (𝑇 ) — EXP3.1 𝑂 (√𝑛)

LG = LOCALGREEDY, SR = SUCCESSIVEREJECTS,
SH = SUCCESSIVEHALVING, RR = ROUNDROBIN

Table 1: FINDBEST and MAXREWARD summary.

the same. The reward obtained during Δ is irrelevant for the
learning algorithm’s objective, but it does lead to a loss in
the total regret, so the length of Δ represents a fundamental
trade-off between exploration and exploitation, i.e., between
the accuracy of identification and the fraction of time when
suboptimal policies are active. We assume that Δ contains 𝑛
reward measurement intervals 𝑡1, 𝑡2, . . . , 𝑡𝑛 .

PROBLEM 1 (FINDBEST). For Δ = 𝑡1 ⊔ . . . ⊔ 𝑡𝑛 , find a
policy 𝑃 ∈ P that maximizes

∑𝑛
𝑖=1 𝑟𝑃 (𝑡𝑖 ).

We now see a natural tradeoff between assumptions and
performance: we would like to relax the restrictions as much
as possible, but more general methods might perform worse.
Under DISJ(Δ) there is no problem: LOCALGREEDY is perfect.

Under AVGEQ(Δ), there is a natural way to reduce the vari-
ance of estimates: average over several reward measurements.
A straightforward UNIFORM strategy tries every policy ⌊𝑛/|P|⌋
times and then chooses the policy with the highest average re-
ward. It is known that under AVGEQ(Δ) the error probability
of UNIFORM decreases exponentially with 𝑛 [10]. However,
intuitively, if a policy has already performed very poorly sev-
eral times, the rest of Δ is probably better spent distinguishing
between other policies. In [4], this intuition was formalized as
the SUCCESSIVEREJECTS algorithm that has a provably better
performance than UNIFORM while still being parameter-free.

Under LIMIT(Δ), one cannot guarantee that by the end of
any given Δ the correct policy is chosen with high probability:
it is always possible that 𝑛 was not large enough. Still, the
SUCCESSIVEHALVING algorithm [21] needs provably fewer
measurements than the round-robin algorithm under LIMIT(Δ).
Finally, under ADV(Δ) there is nothing we can do: the explo-
ration part of the interval has no bearing on what happens next.
Table 1 contains a short summary of the results.

Continuous exploration. Making decisions based on a pre-
fix Δ is a bad idea if Δ does not accurately represent the entire
period𝑇 . At the end of the day, best arm identification is merely
an improved version of UNIFORM, and it falls prey to the same
issues: large error probability under AVGEQ(Δ) or insufficient
rate of convergence under LIMIT(Δ). To address this, we al-
low to evaluate any policy at any moment, getting the classical
exploration vs. exploitation tradeoff between gathering new
information and using the currently best hypothesis.

PROBLEM 2 (MAXREWARD). For a set𝑇 = 𝑡1 ⊔ . . . ⊔ 𝑡𝑛 of
measurement intervals, assign a policy from P to each interval
so that E

[∑𝑛
𝑖=1 𝑟 (𝑡𝑖 )

]
is maximized.
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In MAXREWARD, the exploration/exploitation trade-off is
implemented by policy selection instead of choosing Δ. This
is a more flexible approach: decisions can be made online,
on the basis of already collected data. In what follows we
extend the same assumptions from Δ to the entire interval 𝑇 .
DISJ(𝑇 ) is again trivial: LOCALGREEDY is still perfect. Under
AVGEQ(𝑇 ), average rewards of each policy are assumed to be
equal among all measurement intervals 𝑡1, . . . , 𝑡𝑛 . A policy’s
performance can still be evaluated by averaging over multi-
ple reward measurements. This is the default setting for the
multi-armed bandits problem, and classical results in this field
apply [42]. For example, the 𝜖-GREEDY algorithm (run the
currently best policy with probability (1 − 𝜖) and a random
policy with probability 𝜖) yields expected regret 𝑂 (𝜖𝑛), linear
in 𝑛 = |𝑇 |. Better algorithms are motivated by “optimism under
uncertainty”: assume the best if little is known. The UCB1 al-
gorithm [6] has expected regret 𝑂 (log𝑛); on 𝑡𝑖 , UCB1 chooses

𝑃 = argmax𝑃
[
𝜇𝑃 ,𝑖 +

√︁
2 log 𝑖/𝑛𝑃 ,𝑖

]
, where 𝜇𝑃 ,𝑖 is the current

estimate of 𝜇𝑃 (empirical average reward), and 𝑛𝑃 ,𝑖 is the num-
ber of times policy 𝑃 has been chosen. Its variance-aware ver-

sion UCB-V [5] uses priorities 𝜇𝑃 ,𝑖 +
√︂

2𝑉𝑖 ,𝑛𝑃 ,𝑖 𝐸𝑛𝑃 ,𝑖 ,𝑖
𝑛𝑃 ,𝑖

+𝑐 3𝑏𝐸𝑛𝑃 ,𝑖 ,𝑖𝑛𝑃 ,𝑖
,

where𝑉𝑖 ,𝑛𝑃 ,𝑖 is the empirical variance estimate for arm 𝑖, 𝐸𝑛𝑃 ,𝑖 ,𝑖
is the exploration function, usually 𝐸𝑛𝑃 ,𝑖 ,𝑖 = 𝜁 log 𝑖, and 𝑐 , 𝜁
are constants. If there are no restrictions at all, ADV(𝑇 ), an
optimal solution to MAXREWARD may have to use several dif-
ferent policies during 𝑇 , which was not the case for DISJ(𝑇 ) or
AVGEQ(𝑇 ). There can be no general performance guarantees,
but since we know that 𝑇 is stationary we can restrict ourselves
to comparing only against single-policy solutions, i.e., with
max𝑃

∑𝑛
𝑖=1 𝑟𝑃 (𝑡𝑖 ). Unlike FINDBEST, now it becomes possi-

ble to outplay even an adversary (at least on average) with
a randomized algorithm. One possible such algorithm in this
case is called EXP3.1 [7], shown to guarantee expected regret
𝑂 (√𝑛) [7], again sublinear, so per-interval loss still tends to
zero, although slower than for UCB1 under AVGEQ(𝑇 ). Note
that learning algorithms should be fast since they should not
slow down network elements; fortunately, all algorithms above
have very low complexity: e.g., UCB1 or UCB-V need to keep
a priority queue of policies and store a few numbers per policy;
the number of different policies is low in practice and does not
depend on the network load or traffic.

Table 1 presents a brief summary of the results mentioned
above. It shows the natural tradeoff between the strength of
assumptions and guaranteed results: stronger assumptions lead
to weaker guarantees. Theoretical guarantees, however, may
be overly pessimistic, and in realistic settings the learning cost
(regret) might be significantly lower. In the next section, we
proceed to a practical evaluation of our proposed framework.

4 EVALUATION
Evaluation setup. We used the NS2 simulator [1] with the
dumbbell topology similar to [23]. Two types of traffic are
routed through a single bottleneck link with 3Mbit/s band-
width: batch transfer TCP connections that each transmit 108 B
of data and web traffic (TCP) generated using the model [20]

built into NS2. Access delay is set to 20ms, and bottleneck
delay to 10ms, totalling to 100ms RTT. While 3Mbit/s band-
width is quite low by modern standards, we wanted to use
proven parameters of CoDel, which was originally evaluated
at 3Mbit/s [23]. The input is defined by the number of batch
FTP transfers 𝑁ftp, request rate of web connections 𝑅web, and
start times of FTP and web transfers, 𝑇ftp and 𝑇web. Start times
for individual FTP transfers are chosen randomly between 𝑇ftp
and 𝑇ftp + 100 s. The code is available at GitHub [12].

Policies. We use the SFQCoDel (Stochastic Fair Queueing
with CoDel) policy [23] implemented in NS2 with two param-
eters: interval int and target tgt; we set tgt = 5ms and vary
int. The second policy is RED [17] with four main parameters:
min and max queue thresholds minth and maxth, max drop
probability 𝑝drop, and queue length weighting coefficient 𝑤𝑞 .
We have tested several configurations for both CoDel and RED.

As the reward we used network power (see also [44]) defined
as 1
|𝐹 |

∑
𝑓 ∈𝐹 log

(
throughput𝑓 /delay𝑓

)
, combining through-

put—the total number of bytes sent by 𝑓 divided by the time
it takes to complete 𝑓 and delay—the average RTT of success-
fully transmitted packets. We approximate this measure over
a measurement interval 𝛿 by considering queueing delay in-
stead of RTT and per-interval flow throughput instead of true
throughput. We compared several policies with learning based
on this reward: greedy, uniform exploration, UCB, and SR (suc-
cessive rejects); see Section 3. The learning process begins at
time 𝑇learn to give warm-up time to TCP flows.

Experimental results. Selected results of our experimen-
tal study are shown in Fig. 4. Fig. 4a compares explore-then-
exploit algorithms, showing that SUCCESSIVEREJECTS works
best. On Fig. 4b and 4c, mean rewards for the policies are
very different, and simple explore-then-exploit strategies be-
have better since they decide faster. Fig. 4d demonstrates an
important case where due to changing traffic patterns a wrong
policy starts out as the best. We see that UCB-V rewards do
not fall all the way down to the level of the now-worst RED
variant; moreover, UCB-V quickly starts to converge to the
new leader. Another important point is that UCB-V remem-
bers the previous behavior of suboptimal policies and hence
does not fall back to full exploration but rather prefers the next-
best policy. As a result, the worst policy is unlikely to be used
until all other show an even worse behavior. Fig. 4e shows
the case of similar mean rewards, so there is a relatively large
error probability for explore-then-exploit policies, while contin-
uous exploration gradually reduces the probability of making
the wrong choice and overcomes explore-then-exploit. Fig. 4f
shows the case when the difference between RED and CoDel
grows rapidly due to a large number of FTP flows appearing
150s into the simulation; naturally, in this case UCB-V can
adapt better. Fig. 4g shows the case of many policies, when
there is little time for FindBest approaches to identify the best
option while multi-armed bandits still converge to the best pol-
icy. Fig. 4h shows the case of 100Mbit/s bandwidth, where
there is only a small difference between approaches and due to
reward bias (explained next) UCB follows a suboptimal policy.
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Figure 4: Evaluation results. Parameters: 𝑇learn = 100𝛿 , 𝑇web = 0 s; 𝑅web = (a-c,e-h) 30, (d) 40; 𝑁ftp = (a,d) 14, (b,c,e-h) 15;
𝑇ftp = (a-c,f-h) 0 s, (d) 150 s, (e) 550 s; |𝑇 | = (a-c,f) 400 s, (d,g,h) 1000 s, (e) 2000 s; 𝛿 = (a,c-h) 1 s, (b) 4 s.

Measurement interval. In Section 2, we saw that under
closed-loop transport protocol, the reward over an interval may
not reflect actual policy behavior. Indeed, Fig. 5 shows that for a
too small measurement interval the reward observed by learning
may be quite different from the reward obtained by the policy
in isolation; e.g., the first column shows how network power
under learning is biased towards higher values due to a better
policy affecting traffic. Note that learning algorithms see the
same relative order of policies since every policy experiences
roughly the same “pulling effect”, and the choice of the next
policy does not depend on the current policy. The difference
between policies, however, may diminish, as we see in the
100Mbit/s columns of Fig. 5, increasing convergence time, so
the choice of the right measurement interval remains important.

5 WHITE-BOX AND DISCUSSION
So far learning models took as input a reward function and a
set of candidate policies, which should contain a policy that
performs well for every “representative” traffic pattern. The
search space here contains essentially all possible policies, and
usually there is little prior knowledge of which policy is good
for a given objective (complex theoretical analysis may be
required to obtain such knowledge). This makes the network
operator’s choice very hard and likely to miss good policies for
specific arrival patterns. In this section we propose a method to
automatically compose policies from a set of characteristics that
can significantly relax requirements for operator qualification.

Algorithm 1 POLICY (admPrio, procPrio, isCongested)
Let 𝐵 be a set of packets in a buffer
on arrival of a packet 𝑝 do

if isCongested() then
𝑝worst ← (𝐵 ∪ {𝑝 }) .maxBy(admPrio)
𝐵 ← (𝐵 ∪ {𝑝 }) \ {𝑝worst }

else if not 𝐵.isFull() then
𝐵 ← 𝐵 ∪ {𝑝 }

on choose next packet for processing do
if 𝐵 = ∅ then

return ∅
𝑝 ← 𝐵.maxBy(procPrio)
return {𝑝 }

We begin with the building blocks. A single-queue buffer
management policy is defined by three elements [32]: (1) admis-
sion priority admPrio : P×P→ B defining the order of packets
in admission and when dropping them on congestion; (2) pro-
cessing priority procPrio : P×P→ B defining the order of pro-
cessing the packets; (3) congestion condition isCongested : B,
where P is a set of all possible packets, and B = {true, false}.
Once admPrio, procPrio, and isCongested are known the
policy operates as shown in Algorithm 1. This policy structure
allows to replace the set of policies P (which are difficult to
design) with three “simpler” sets: a set of admission priority
comparators P𝑎 , a set of processing priority comparators P𝑝 ,
and a set of congestion conditions P𝑐 . The set of policies is
now P = {POLICY(𝑎,𝑝 , 𝑐) : 𝑎 ∈ P𝑎 , 𝑝 ∈ P𝑝 , 𝑐 ∈ P𝑐 }. Note
that only the congestion condition may have complex structure;
admission and processing priorities are pure comparators.
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Figure 5: Rewards distribution: CoDel and RED under various conditions. Dark bars show rewards for an isolated policy,
while lighter ones—rewards as seen by learning. Common parameters: 𝑅web = 30, 𝑁ftp = 15, 𝑇web = 𝑇ftp = 0 s, |𝑇 | = 1000 s.

To choose a priority one has to choose a packet characteristic
and a sign (are higher values better or worse). We believe that
it is much easier to decide whether a certain characteristic is
relevant to the objective than to understand whether a given
policy optimizes that same objective. P𝑎 and P𝑝 can even be
generated exhaustively from all available characteristics.

The choice of congestion conditions P𝑐 cannot be easily
reduced to packet characteristics, and in general all buffered
packets have to be input to isCongested, perhaps together with
state information. But here we can use push-outs, allowing to
drop admitted packets on congestion, and let isCongested()
be equal to 𝐵.isFull(). Intuitively, this greedy approach should
not lose much to a custom isCongested since we can ignore
𝑝worst until the buffer is full and throw it away only then.

After replacing the set of candidate policies with two sets
of comparators, we can take another simplification step. We
expect procPrio to prefer better packets and, intuitively, we
want to keep better packets on admission too, so we can let
admPrio(𝑝1,𝑝2) = not procPrio(𝑝1, 𝑝2) (this might fail ei-
ther when non-tail drops are prohibited or when admission and
processing have different sets of packet characteristics).

The next step, which we suggest for future research, is to
learn queue management policies in a fully automated way,
without network operators, given only objective and packet
characteristics available to generated policies. Based on this, the
QM infrastructure could automatically produce candidate poli-
cies and then exploit the layer designed for switching among
“black-box” policies. We believe that the “black-box” approach
we develop here can also in the future be extended to learning
policies directly in a “white-box” manner.

6 RELATED WORK
There are two main components of congestion control: control
at the end hosts and buffer management. Prior work has concen-
trated on using online learning and reinforcement learning for
congestion control at the end hosts [14, 22, 45]; in this work,
we introduce machine learning techniques for buffer manage-
ment. In other related work, we note the research into flexible
adaptable networks [19, 24] and highlight the work [8] that
proposes an approach similar to ours. The difference is that the

work [8] leverages data collected by solving computationally
hard problems in networking and uses it to reduce the search
space for the algorithms, while we use performance to choose
among several policies. Specification of buffer management
policies in various settings with provable guarantees is a com-
plex task [2, 3, 11, 13, 15, 25–31]. Frenetic [18], Pyretic [35],
and Maple [43] among others have proposed abstractions to
express management policies in packet networks, focusing
on service abstractions based on flexible classifiers, but not
addressing management of buffering architectures. Other ap-
proaches [16, 40] allow only for a predefined set of buffer
management parameters, limiting expressivity. Works such
as [9, 33, 39] abstract representations of the southbound API
(e.g., OpenFlow) in the data plane, while languages such as
P4 [9] are very successful in representing packet classifiers
but less suited to express buffer management policies. [37, 38]
expressed policies by one priority and one calendar queue,
leaving the language specification as future work; Mittal et al.
attempt to build a universal packet scheduling scheme [34].
Recently, [36, 41] explore the ways to improve efficiency of the
QM. In difference from the current prior art that is mostly deal-
ing with efficient APIs to express buffer management policies,
this work adds an additional dimension allowing to choose on
demand preferable candidate policies for arrival patterns.

7 CONCLUSION
In this work, we have shown the main design principles of
a declarative self-adaptive QM infrastructure with black-box
approach allowing the QM to reduce dependency on the de-
sign skills of network operators. In addition we discuss about
directions to exploit the developed QM infrastructure for the
white-box approach, where a network operator provides only a
desired objective and a set of potentially involved characteris-
tics to build candidate policies automatically reducing depen-
dency on qualification skills of network operators even more.
This is only the first step towards a more ambitious goal of
declarative autonomous data planes.
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