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Abstract Operational transformation (OT) is an approach to concur-
rency control in groupware editors first proposed by C. Ellis and S. Gibbs
in 1989. Google Wave and Google Docs are examples of better known
OT-based systems and there are many other experimental ones described
in the literature. In their recent articles A. Imine et al. have shown that
many OT implementations contain mistakes and do not possess claimed
consistency properties.
The present work describes an experimental library which is based on
SSReflect/Coq and contains several operational transformation algorithms
and proofs of their correctness.3

1 Introduction

A collaborative groupware editor is an application that allows multiple users to
edit shared data objects (e.g., a text document or a spreadsheet). We will be
mainly concerned with synchronous groupware editors (or real-time collabora-
tive editors), i.e. editors which allow simultaneous editing of the shared data
and provide automatic real-time synchronization between users. Moreover, such
editors usually do not use locks in the implementation of their synchronization
algorithm. Instead, every user is provided with his own replica of the data and
is allowed to modify it freely.

Due to the network latency and the lock-free nature of the editor, a naive syn-
chronization algorithm applying remote operations to a local replica unchanged
will not be consistent. The replicas’ states may diverge significantly from each
other and a remote operation may not have its intended effect when applied to
the local replica. Let’s go through the simplest scenario in which this problem
occurs. Alice removes symbol “b” and Bob inserts character “c” at the second
position. After these commands are processed the state of the network becomes
invalid (see Fig. 1a).

Operational transformation was conceived to overcome this problem. In the
simplest case of two communicating clients its idea can be roughly stated as
3 The final authenticated publication is available online at https://doi.org/10.
1007/978-3-319-43144-4_22
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Figure 1: An example illustrating the need of an OT. On (a) unmodified opera-
tions lead to the invalid state. On (b) the state remains consistent if we use an
OT

follows. Instead of applying Bob’s operation oB directly, Alice first “transforms”
oB through the history of her recent local changes oA thereby calculating the
operation o′B which is applicable to the actual version of Alice’s data and has the
same effect as oB . Similarly, Bob computes o′A from known oA and oB . Then,
after the operations o′A and o′B are executed, the replicas are again in the same
state. Fig. 1b illustrates the relationship between oA, oB , o′A and o′B .

A typical implementation of an OT algorithm consists of two separated com-
ponents: a transformation function which carries out transformation of opera-
tions (i.e. computes o′B from specified oB and oA) and an integration algorithm
which is responsible for storing local histories and maintaining communication
between the clients. Only the former component typically depends on the se-
mantics of the data.

An OT algorithm is said to possess the convergence property if the replicas
of a shared document become identical at all sites after all user operations have
been executed. This property is essential for the correct operation of an OT
algorithm because the existence of a counterexample to it necessarily means that
the loss of user data is possible. To guarantee that an OT algorithm satisfies
this convergence property one needs to ensure that the integration algorithm
is correct and, moreover, that the transformation function satisfies correctness
properties C1 and C2 (see, section 2.1 for more details).

– Roughly speaking, the property C1 requires that the effect of executing oper-
ations oB ◦oA′ and oA ◦oB′ is the same (compare with Fig. 1b). The property
C1 suffices to ensure the convergence of an OT algorithm in the case where
the network has a tree topology (e.g., in the case of a network with a central
server, see [2]),

– The more complicated property C2 becomes necessary in a more general set-
ting when one considers less restrictive network topologies which may have
loops (e.g., peer-to-peer networks).
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Several generic integration algorithms together with proofs of their correctness
have been proposed in the literature (e.g., in [8], [11]). On the other hand, for
each datatype the transformation function must be implemented separately and
such an implementation is known to be a hard and error-prone task even in the
simplest case when the shared data object in question is a string buffer. Indeed,
in the recent works of Imine and others it was shown that many implementa-
tions of transformation functions for strings do not possess the above correctness
properties (see [7], [9], [10]).

Furthermore, even less is known about the correctness of OT algorithms for
more general data types such as trees, despite the fact that such datatypes are
useful in practice. Indeed, strings can be used only as a data model for a text
editor, while trees can represent a variety of different structured documents (e.g.,
a spreadsheet or an XML document). Besides that, earlier efforts mainly con-
centrated on algorithms with a very small set of user operations (e.g., consisting
only of operations of insertion and deletion of a single character). While formal
verfications of such algorithms is easier, their behavior is less satisfactory from
the semantic viewpoint as compared to algorithms with a more complicated set
of operations. For example, if the last-mentioned reduced set of operations is
used then it becomes impossible to take into account any higher-level semantic
entities such as words or sentences in the implementation of the transformation
function and, as a result, the loss of character order in the document may occur
under a certain scenario, see [6, p. 325].

The main goal of this paper is to describe our attempt to formalize several
transformation functions for two different kinds of a tree datatype, namely the
datatype of ordered trees (which may represent, e.g., an XML-like document)
and the datatype of unordered trees (which may represent the directory structure
of a filesystem). The choice of an OT for trees as a subject for verification was
motivated by the fact that Jetpad platform 3 stores shared data in a tree-like
structure.

Our definition of the transformation function for ordered trees is a generalized
and corrected variant of algorithms of Ressel and Sun (cf. [10]). Using Coq we
verify that our transformation functions satisfy convergence property C1 and
inversion property IP1 (in the terminology of [12]). The choice of Coq as a
verification tool was made due to the following considerations:
– many complex algorithms including compilers and static analyzers have been

verified in Coq (e.g., CompCert, Verasco, etc.);
– Coq includes a comprehensive standard library and allows tactic-based proofs,

whose power is greatly increased by the SSReflect library (cf. [5]);
The rest of the article is organized as follows. In Section 2 we formalize the

basic terminology related to the operational transformation approach. Then, in
Section 3 we present the main results of the paper, namely the precise definitions
of the transformation functions whose correctness has been verified in Coq. The
library source code in Coq can be found at github.com/JetBrains/ot-coq/.
3 Jetpad is a closed-source proprietary collaborative platform of JetBrains upon which

several products such as CoachingSpaces or CensusAnalyzer are based.

https://github.com/JetBrains/ot-coq/
www.coachingspaces.com
censusanalyzer.com
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2 Formalization of OT algorithms and their correctness
properties

2.1 Operation model

In this section we formally define the notion of a transformation function and
formulate its correctness properties. Our definitions generally follow [7], however,
there are certain differences which are explained in detail below.

First of all, we need to give names to variables corresponding to a set of
possible states of a shared data object and a set of atomic user operations which
can modify it. Let us denote these two variables by X and cmd, respectively.

Now, we define the type class abstracting the minimal functionality of an OT
algorithm. This class should encapsulate the following three entities:

1. an interpretation (or transition) function interp specifying how user opera-
tions are applied to the data;

2. a transformation function it which performs the transformation of opera-
tions;

3. a formula expressing the convergence property C1 of the function it.

First of all, notice that we do not require the function interp to be total, i.e.
we allow certain operations to be inapplicable to certain states of the data. For
example, an operation of file deletion is only applicable if the file exists. Thus,
we choose the following signature for interp:

interp: cmd → X → option X.

The equality interp op x = None, thus, should be interpreted as “op is inappli-
cable to x”.

Now we are going to specify the signature of the transformation function. In
the literature (e.g., in [4,10,7]) it is typically defined as it: cmd → cmd → cmd.
The operation op′1 = it op1 op2 is interpreted as the result of a transformation
of op1 through op2.

In this context, convergence property C1 can be stated as follows: any pair
of atomic operations op1, op2 applicable to s can be completed to a square by
means of operations it op1 op2, it op2 op1 (see Fig. 2a).

For the sake of completeness, we also give the precise statement of the con-
vergence property C2. The property C2 requires that for any op1, op2, op3 one
has the following equality of operations (cf. [7, Definition 2.12]):

it (it op1 op2) (it op3 op2) = it (it op1 op3) (it op2 op3).

This property is rather restrictive and difficult to prove in practice. Also, it
has been suggested in [10] that it is not possible to implement a transformation
function for text buffers satisfying C2. Furthermore, as we said before, the
property C2 is not necessary to achieve convergence for networks with dedicated
servers which is the main case of interest for us. For these reasons, we do
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Figure 2: Diagrams expressing different variants of convergence property C1

not include the statement of C2 into our formal definition of a convergent OT
algorithm presented below.

There are two things that we change in the signature of the function it.
The first is that we make the definition of it asymmetric by adding a special
boolean flag which allows it to take into account possible difference in the
priority of clients. We give an example illustrating why such a prioritization
may be necessary.

Consider the following situation: Alice and Bob simultaneously insert two
different characters into the same position of a shared text (say, op1 = ins “a”
0, op2 = ins “b” 0). The problem with the signature it: cmd → cmd → cmd is
that there appears to be no way to implement it so that the resulting conflict
is resolved in a semantically satisfactory manner and the property C1 is also
preserved.

A possible way to resolve this problem is to assign different priorities to
different clients and then take them into account in the implementation of the
function it. Thus, in the last example, we could agree to always insert the string
typed by Alice before Bob’s if both are inserted into the same position.

Thus, we are either forced to store the information about client priorities
inside cmd, despite the fact that it is not used in the implementation of an
interpretation function, or we should make the signature of it asymmetric. In
our algorithm we use the latter approach, while the former was used, for example,
in the algorithms of Ellis–Gibbs and Ressel (see [10, § 2.3]). Notice that in these
algorithms the priority of operations is encoded with natural numbers since they
assume the presence of multiple clients with different priorities.

In contrast, in our integration algorithm we do not assign different priorities
to clients. Instead, all users are connected to the central server and each client-
server connection is considered as a network with two collaborating users of
which the central server has the higher priority. Notice that the server does not
modify the shared data by itself and only propagates user-made changes. With
this approach a boolean flag is sufficient to distinguish between the client and
the server on each client-server connection.

The second modification is that we allow the result of a transformation of two
atomic operations to be a composite operation, i.e. a list of atomic operations.
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This not only makes our definition more flexible and general, but also simpli-
fies the definition of the operation type cmd in practice. For example, it is very
common that the result of a transformation of two nonempty primitive opera-
tions is empty (e.g., if two users simultaneously delete the same file). The fact
that we allow it to return composite operations eliminates the need to define a
dedicated empty operation constructor for cmd. Instead, it can simply return
an empty composite operation. We conclude with the following two definitions
which will be used throughout the rest of the article.

Definition 1 A transformation function is a function with the following signa-
ture:

it: cmd → cmd → bool → list cmd.

Definition 2 We say that the transformation function it satisfies the property
C1 if for any boolean flag f , any pair of primitive operations op1, op2, applicable
to a state s, can be completed to a square Fig. 2b.

We can put together all our formal definitions stated above into the following
Coq class.
Class OTBase (X cmd: Type) := {
interp:cmd → X → option X;
it :cmd → cmd → bool → list cmd;
it_c1 :forall (op1 op2: cmd)(f: bool) m (s1 s2: X),
interp op1 s = Some s1 → interp op2 s = Some s2 →
let s21:= exec_all interp (Some s2) (it op1 op2 f) in
let s12:= exec_all interp (Some s1) (it op2 op1 ~~f)in
s21 = s12 /\ s21 <> None}.

In the above code example exec_all interp is the function extending the in-
terpretation function to composite operations in an obvious way.

In our model we also want to have a special type class formalizing the no-
tion of an OT algorithm with invertible user operations. We can define it as a
descendant class of OTBase by adding the following two members: the inversion
function inv and the formula expressing the property IP1 (see [12]). The latter
asserts that the effect of any operation op applicable to a state s can be undone
by means of inv op.
Class OTInv (X cmd : Type) (M : OTBase X cmd) := {
inv : cmd → cmd;
ip1 : forall op s s1, interp op s = Some s1 → interp (inv op) s1

= Some s}.

Other, more subtle inversion properties have also been described in the literature
(e.g., properties IP2, IP3, see [12]). However, these properties are not satisfied
by the transformation algorithms described in Section 3. For this reason we do
not include them into the definition of OTInv.

Apart from the property C1, we do not impose any semantical constraints
on the behavior of the transformation function. In particular, C1 is satisfied
by the trivial transformation function, which always cancels operations of both
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clients (e.g., it op1 op2 f = [:: inv op1].) Another trivial example of the function
satisfying C1 is the function that always rolls back an operation of the client with
a lower priority:

it op1 op2 true = [::], it op1 op2 false = [:: inv op2; op1].

2.2 Transformation of composite operations (file Comp.v)

In the previous subsection we defined the signature of a transformation function
in such a way that the result of transforming two atomic operations could be a
composite operation. While this approach has multiple advantages mentioned
above it also creates difficulties associated with the transformation of composite
operations.

Imagine that we want to write a function transforming a composite operation
op1 through another composite operation op2 provided that we already know
how atomic operations are transformed. Of course, there is only one way to
do this: first cut atomic pieces off op1 and op2, then transform these pieces
using the transformation function it for atomic operations and, finally, run the
transformation recursively on the remaining chunks. The following piece of code
implements this behavior (cf. Fig. 3a):

x xs

y y′ y′′

ys ys′

x′ xs′

x′′

(a) mtrans

. . .

tt tt

tt

tt

tt

tt
tt

tt

tt

tt tt

(b) Infinite looping of mtrans

Figure 3: Illustration of the transformation of a composite operation

Fixpoint mtrans (it: cmd → cmd → bool → list cmd) (op1 op2:
list cmd) (nSteps: nat): option ((list cmd) * (list cmd)):=

match nSteps with
| 0 ⇒ None
| S nSteps′ ⇒
match op1, op2 with
| nil, _ | _, nil ⇒ Some (op2, op1)
| x :: xs, y :: ys ⇒
match mtrans it xs (it y x false) nSteps′ with

https://github.com/JetBrains/ot-coq/blob/master/Comp.v
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| Some (y′′, xs′) ⇒
match mtrans it ((it x y true) ++ xs′) ys nSteps′ with
| Some (ys′, x′′) ⇒ Some (y′′ ++ ys′, x′′)
| _ ⇒ None
end

| _ ⇒ None
end

end
end.

Notice that we had to add a parameter nSteps to the definition of mtrans to
limit the recursion depth, otherwise, Coq would reject the definition as poten-
tially nonterminating. It is easy to see that such nontermination, indeed, may
occur. For example, consider the following trivial implementation of OT (with
the property C1 also trivially satisfied).
Definition bad_it := (fun (_ _ : unit) (_ : bool) ⇒ [::tt;

tt]).
Instance nonterm : OTBase unit unit :=
{interp := (fun _ _ ⇒ Some tt); it := bad_it}.

Although this function works well for elementary operations, we will get an
infinite loop if we try to transform composite operations. Indeed, mtrans loops
on the following simple example after the first two iterations and the result of
transformation can not be computed (cf. Fig. 3b).
Eval compute in mtrans bad_it [::tt] [::tt] 2.

= Some ([:: tt; tt], [:: tt; tt])
Eval compute in mtrans bad_it [::tt] [::tt; tt] 100.

= None

Although the above example looks somewhat artificial it is, in fact, similar
to the following situation often encountered in practice. Imagine that two con-
current user operations are semantically inconsistent with each other, i.e. there
is no sensible way to transform them so that the effect of both operations is
preserved. For example, this may happen if the operation model of OT becomes
sufficiently complex. In this case the only way to enforce property C1 is to roll-
back the operation of one of the users and execute the operation of the other.
Such implementation forces the transformation function to return a composite
operation when invoked on a pair of elementary ones.

In the remainder of this section we describe a condition sufficient for practical
purposes which guarantees that the result of transformation of two composite
operations can be computed in a finite number of steps. We will further refer to
this condition as the computability property.

The idea is to define two natural-valued functionals which should be inter-
preted as assignments of “size” and “cost” to an atomic operation:

sz0: cmd → nat, si0: cmd → nat.

The rationale here is the following: if the total “size” of a composite operation
increases in the process of transformation then the value of the “cost” functional
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should at the same time decrease. Since the latter is a natural number, it is
guaranteed that the total “size” of the operation will stop increasing at some
point and that the transformation function will terminate.

Formally speaking, we extend sz0 and si0 by additivity to composite op-
erations, denoting them by sz and si. Every atomic operation is required to
have nonzero “size” and both functionals sz and si are required not to increase
on each transformation square from Definition 1 (i.e. the sum of values on the
“transformed” right and bottom arrows should not exceed the sum of values on
the “original” left and top arrows). We also assume that for each transformation
square at least one of the following two statements holds:

– The operations are transformed without rollbacks. In this situation “size”
functional sz does not increase for both operations, i.e. sz o′i ≤ sz oi, i = 1, 2.

– If one of the operations is rolled back, the “size” of one of the transformed
arrows may increase. In this situation we require that the “cost” functional
strictly decreases on such transformation square.

It is easy to see that under these assumptions the result of transforming two
composite operations o1 and o2 can be computed in less than (sz o1 + sz o2)

2 +
si o1+si o2 steps (i.e. atomic transformations). We formulate this as a theorem
in Coq.
Context {X cmd: Type} (ot: OTBase X cmd) (comp: OTComp X cmd

ot).
Theorem ot_computable: forall (op1 op2: list cmd),
exists nSteps, mtrans it op1 op2 nSteps <> None.

3 Examples of verified transformation functions

In the current section we present two concrete implementations of abstract
classes defined in Section 2. In each of the two cases we describe how exactly
the abstract classes and signatures are instantiated and also outline the idea of
the proof of corresponding convergence and computability properties. The al-
gorithms described below are contained in the following modules of our library:
TreeOt.v, Fs.v, RichText.v.

3.1 The case of ordered trees with labels

In this subsection we describe an OT algorithm for concurrent editing of ordered
trees. The algorithm in question is a modification of the OT algorithm of Ressel
for text buffers (cf. [10, 2.3.2]).

We are working with ordered trees labeled by elements of some fixed type
T (i.e. a label of type T is assigned to every vertex of a tree). Of course, we
will need the two most basic operations of tree editing: insertion and removal
of a tree branch. Similarly to Sun’s algorithm for strings (see [10, 2.3.3], [13])
we allow sequential insertion and deletion of multiple tree branches in a single

https://github.com/JetBrains/ot-coq/blob/master/TreeOt.v
https://github.com/JetBrains/ot-coq/blob/master/Fs.v
https://github.com/JetBrains/ot-coq/blob/master/RichText.v
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operation. We also include one more operation EditLabel which modifies the
label of a single tree node via some user-defined set of commands TC and,
otherwise, leaves the tree structure unchanged.

Since we want our OT algorithm for trees to be C1-consistent we should first
assume the OT algorithm for labels to be C1-consistent (see Section 2). We
implement this in Coq by adding several parameter variables.
Context {T : eqType} (TC: Type) {otT : OTBase T TC}.

Now, we can give the following definition for the type of elementary operations:
Inductive tree_cmd : Type :=
| EditLabel of TC
| TreeInsert of nat & list (tree T )
| TreeRemove of nat & list (tree T )
| OpenRoot of nat & tree_cmd.

The first three constructors of this type correspond to the operations modifying
the root node of a tree, while a sequence of OpenRoot constructors can be used
to specify a position in the tree to which the first three operations are to be
applied.

The semantics of the interpretation function interp for this operation set is
as follows.

– Case EditLabel tc. The operation executes command tc on the label of the
tree’s root node using the function interp specified in the “parameter” class
otT .

– Case TreeInsert n l. The operation inserts the list l into n-th position of the
children list of the root node. None is returned if a range check error occurs
during this process.

– Case TreeRemove n l. The operation compares the list l with the sublist of
branches of the root node starting at n-th position. If these lists are the same
then the corresponding sublist of children is removed from the root node.
Otherwise, or if a range check error occurs, the function returns None.

– Case OpenRoot n c. The operation applies operation c to the n-th child of the
root. The operation returns None if there is no child with such index.

The behavior of the interpretation function is illustrated in Fig. 4.
It is easy to see that the above set of operations satisfies property IP1 pro-

vided so does the algorithm for labels. The inversion function can be defined by
swapping TreeInsert and TreeRemove constructors:
Context (ipT : OTInv _ _ otT ).
Fixpoint tree_inv (c : tree_cmd) :=
match c with
| EditLabel c′ ⇒ EditLabel (@inv _ _ _ ipT c′)
| TreeInsert n l ⇒ TreeRemove n l
| TreeRemove n l ⇒
if l is [::] then TreeInsert 0 [::] else TreeInsert n l

| OpenRoot n c′ ⇒ OpenRoot n (tree_inv c′)
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Figure 4: An example illustrating the behavior of operations TreeInsert and
TreeRemove

end.
Instance treeInv: (OTInv (tree T) tree_cmd treeOT) := {inv :=

tree_inv}.

Notice that the fact that we compare the list of nodes in the actual model with
the list of nodes specified in TreeRemove command before executing the latter
is essential for checking property IP1.

The next step is to define the transformation function for tree operations.
First, we define some auxiliary functions.
Definition tr_ins (len: nat) (n1 n2: nat): nat :=
if (n1 < n2) then n1 else n1 + len.

Definition tr_rem (len: nat) (n1 n2: nat): option nat :=
if (n1 < n2) then Some n1 else
(if (n1 >= n2 + len) then Some (n1 - len) else None).

Fixpoint cut {X} (l : list X) (sc rc : nat) :=
match sc, rc, l with
| S sc′, _, x :: xs ⇒ x :: (cut xs sc′ rc)
| 0, S rc′, x :: xs ⇒ cut xs sc rc′

| _, _, _ ⇒ l
end.

The function cut l n m removes from l the sublist of length m starting from n-th
position. Now we are all set to define the transformation function for trees. The
idea behind its definition is that we attempt to preserve the intuitive “effect”
of both operations op1 and op2. To accomplish this we have to perform a large
case-by-case analysis.
Fixpoint tree_it (op1 op2: tree_cmd) (f: bool): list tree_cmd :=
let triv := [:: op1] in
match op1, op2 with
| EditLabel c1, EditLabel c2 ⇒
map EditLabel (@it _ _ otT c1 c2 f)
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| EditLabel _, _ | _, EditLabel _ ⇒ triv
| OpenRoot n1 tc1, OpenRoot n2 tc2 ⇒
if n1==n2 then map(OpenRoot n1) (tree_it tc1 tc2 f) else triv

| TreeRemove n1 l1, OpenRoot n2 tc2 ⇒
match tr_rem (size l1) n2 n1 with
| None ⇒ let i := n2 - n1 in
match replace i (tree_interp tc2 (nth i l1)) l1 with
| Some l′1 ⇒ [:: TreeRemove n1 l′1]
| _ ⇒ triv
end

| _ ⇒ triv
end

| _, OpenRoot _ _ ⇒ triv
| OpenRoot n1 tc1, TreeInsert n2 l2 ⇒
[:: OpenRoot (tr_ins (size l2) n1 n2) tc1]

| OpenRoot n1 tc1, TreeRemove n2 l2 ⇒
match tr_rem (size l2) n1 n2 with
| Some n′

1 ⇒ [:: OpenRoot n′
1 tc1]

| None ⇒ nil
end

| TreeInsert n1 l1, TreeInsert n2 l2 ⇒
if (n1==n2) then
(if f then triv else [::TreeInsert (n1+size l2) l1])
else [:: TreeInsert (tr_ins (size l2) n1 n2) l1]

| TreeInsert n1 l1, TreeRemove n2 l2 ⇒
let len := size l2 in
if n1≤n2 then triv else
if n1≥n2+len then[::TreeInsert (n1-len) l1] else nil

| TreeRemove n1 l1, TreeRemove n2 l2 ⇒
let (len1, len2) := (size l1, size l2) in
(if n2 + len2≤n1 then [::TreeRemove (n1-len2) l1] else
(if n2 ≤ n1 then
(if n2 + len2 < n1 + len1

then [:: TreeRemove n2 (cut l1 0 (len2+n2-n1))]
else nil)

else [:: TreeRemove n1 (cut l1 (n2-n1) len2)]))
| TreeRemove n1 l1, TreeInsert n2 l2 ⇒
let (len1, len2) := (size l1, size l2) in
if n1 + len1 ≤ n2 then triv else
(if n2 ≤ n1 then [:: TreeRemove (n1+len2) l1] else
match insert (n2 - n1) l2 l1 with
| Some l′1 ⇒ [:: TreeRemove n1 l′1]
| None ⇒ triv
end)

end.

Instance treeOT: (OTBase (tree T) tree_cmd) :=
{interp := tree_interp; it := tree_it}.
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The above transformation function always cancels TreeInsert whenever it con-
flicts with a concurrent TreeRemove. In order to transform two concurrent
EditLabel operations the transformation function for the label type is invoked.
Notice that the priority flag f is used in this piece of code to resolve the con-
flicting situation when two lists of trees are concurrently inserted into the same
position.

The proof of the fact that tree_it satisfies property C1 is rather bulky
and technical. After applying induction over op1 it essentially boils down to
proving a number of commutation lemmas about list operations. The proof of
C1 itself takes 250 lines of Coq code, in addition, further 700 lines are occupied
by commutation lemmata for list operations.

Notice that the problem of transforming composite operations mentioned
in Section 2.2 does not arise for tree_it provided it does not arise for the
“parameter” algorithm otT . The reason for this is that tree_it can only return
a proper composite operation as a result of transformation of two EditLabel
operations (which is clear from the examination of the definition).

3.2 The case of unordered trees

Now we describe a transformation algorithm for unordered trees i.e., trees for
which the order among siblings is irrelevant. Informally speaking, the difference
between the datatypes of ordered and unordered trees is the same as between
the datatypes of ordered lists and sets. The directory structure of a filesystem
may serve as an example of an unordered tree.

From the implementation viewpoint it will be convenient for us to consider
unordered trees as usual ordered trees whose branches are sorted with respect to
some total ordering defined on the type of labels. In particular, such implemen-
tation simplifies the test for equality and also allows us to implement unordered
trees in Coq as a subset type, i.e. as an ordered pair consisting of a tree and the
evidence (proof object) of its sortedness (see, e.g., [1, § 6]).

The main difference between the operation set for unordered trees and the
operation set from the previous subsection is that now we refer to nodes of
an unordered tree using their labels rather than indices. We support 3 different
atomic tree operations: modification of the node’s label (file renaming), insertion
and deletion of a subtree.
Inductive raw_fs_cmd T :=
| Edit of T & T
| Create of tree T
| Remove of tree T
| Open of T & raw_fs_cmd.

More formally, semantics of these operations can be described as follows.

– Case Edit l1 l2. The operation seeks a child with label l1 among the children
of the root node. If such a child is found, its label is changed to l2. None
is returned if there is no such child, or if there is another child with label l2
among the children of the root node.
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– Case Create t. The operation adds t to the set of children of the root node.
None is returned if there is already another node with the same label.

– Case Remove t. The operation looks for a child of the root node which coincides
with t and then removes it. None is returned if such a child is not found.

– Case Open l c. The operation looks for a child with label l and applies operation
c to it. As before, None is returned if there is no such child.
The transformation function presented below is even simpler as compared to

the function tree_it from Section 3.1 because in the context of unordered trees
there is no need to compare indices of operations and only node labels are to be
taken into account (value t denotes the label of the root node of t).
Fixpoint fs_it (op1 op2 : raw_fs_cmd) (f : bool) : seq fs_cmd :=
match op1, op2 with
| Edit l1 l′1, Edit l2 l′2 ⇒
match l1 == l2, l′1 == l′2 with
|false, false ⇒ [:: op1]
|true, true ⇒ [::]
|true, false ⇒ (if f then [::] else [:: Edit l′2 l′1])
|false, true ⇒ [:: Edit l′2 l2]
end

| Edit l1 l′1, Create t2 ⇒
if l′1 == value t2 then [:: Remove t2; op1] else [:: op1]

| Edit l1 _, Remove t2 ⇒
if l1 == value t2 then [::] else [:: op1]

| Create t1, Edit l2 l′2 ⇒
if value t1 == l′2 then [::] else [:: op1]

| Create t1, Create t2 ⇒
if value t1 == value t2 then merge_trees t1 t2 else [:: op1]

| Remove t1, Edit l2 l′2 ⇒
if l2 == value t1 then [:: Remove (Node l′2 (children t1)) ]

else [:: op1]
| Remove t1, Remove t2 ⇒
if value t1 == value t2 then [::] else [:: op1]

| Remove t1, Open l2 yc ⇒
if value t1 == l2 then
(if fs_interp yc t1 is Some t then [:: Remove t]
else [::])

else [:: op1]
| Open l1 c1, Edit l2 l′2 ⇒
if l1 == l2 then [:: Open l′2 c1 ] else [:: op1]

| Open l1 _, Remove t2 ⇒
if value t2 == l1 then [::] else [:: op1]

| Open l1 c1, Open l2 c2 ⇒
if l1 == l2 then map (Open l1) (fs_it c1 c2 f)
else [:: op1]

| _, _ ⇒ [:: op1]
end.

In the above piece of code the priority flag f is used to resolve the conflicting
situation when two users concurrently attempt to replace a node’s label with
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two different labels. There is a notable conflicting situation which did not occur
in the previous section, namely when two different trees with identical labels
are concurrently inserted into the same node. We handle such a conflict by
recursively merging the contents of these trees (merge_trees t1 t2 generates a
sequence of create operations for all descendants of t1 that are not descendants
of t2).

Notice that the above transformation function can return a composite opera-
tion as a result of transforming two atomic Create operations. In order to verify
that the result of transformation can always be computed in a finite number
of steps we use the sufficient condition for computability i.e. we define certains
functionals fs_sz0, fs_si0: raw_fs_cmd → nat and check that they satisfy the
inequalities of Section 2.2.

4 Related work

In [3] A. H. Davis et al. have proposed an OT algorithm for editing structured
data (e.g., trees). However, their protocol has not been formally verified and,
moreover, assumed the presence of a garbage collector.

In [7], [10] SPIKE theorem prover and UPPAAL TIGA model checker were
used to find counterexamples violating the correctness of several published OT
algorithms for strings. As a result, it was shown that all tested algorithms violate
property C2 while some of them violate even C1. In [9] Coq was applied to the
same problem of finding counterexamples to property C2.

However, to the best of our knowledge, our work is the first to obtain a formal
proof of property C1 by means of a proof assistant.

5 Conclusions and future work

In our work we attempted to formalize OT algorithms for two different datatypes
commonly met in practice and obtained the following results:

– a library containing commutation lemmas for lists and trees has been devel-
oped (file ListTools.v);

– the correctness of several inclusive transformation functions has been verified
by means of Coq (Sections 3.1, 3.2).

Our algorithms may be easily extracted from the library (either automatically
or manually) and be used in real world applications.

Along the way, we propose a generalized signature of the transformation func-
tion it which allows the transformation result to be a composite operation. The
latter allows the implementation of it to be more flexible and, moreover, makes
possible to define semantically correct transformation functions without pollut-
ing the set of commands with domain-irrelevant entities such as nop operation.
We also present a sufficient condition ensuring computability of transformed
operations in this setting, which is an essential requirement for any practical

https://github.com/JetBrains/ot-coq/blob/master/ListTools.v
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implementation. We believe that the ideas behind our approach are general
enough to be successfully applied to other data models as well.

There is a number of different directions one could take for future research
within this topic. For example, one could try to figure out whether property C2

holds for the algorithm formulated in Section 3.2. One could also attempt to for-
malize OT algorithms for different datatypes and try different sets of operations
for the datatypes used in this article. For example, our library already contains
an attempt to extend the operation set of Section 3.1 with two more operations
TreeUnite and TreeFlatten which may be useful for the implementation of
rich-text editors (see RichText.v).
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