
Live in the Express Lane

Patrick Jahnke∗† Vincent Riesop† Pierre-Louis Roman‡ Pavel Chuprikov‡ Patrick Eugster‡∗§

∗TU Darmstadt †SAP ‡Università della Svizzera italiana §Purdue University

Abstract

We introduce Express-Lane (X-Lane), a novel system for mit-
igating interference in data center infrastructure to improve
the liveness of coordination services. X-Lane follows a novel
design from the ground up to achieve interactions with ultra-
low latency in the single-digit microsecond range and jitter
in the nanosecond range, while the remaining interaction is
treated as usual. To show X-Lane’s applicability and gener-
icity we implemented and evaluated two services atop it on
commodity hardware in a production environment of SAP SE:
a failure detector (X-FD) with detection time under 10 µs and
a Raft implementation (X-Raft) with latencies under 20 µs.
We further show the smooth integrability of X-Lane services
by replacing the replication protocol of Redis with X-Raft,
making it strongly consistent while improving latency 18×
and write throughput 1.5×.

1 Introduction

In the last decade, a tremendous increase in Internet con-
nectivity and the need for more computational performance
changed the way we conceive applications. Today, most new
applications are conceived as distributed, and in particular
cloud-based, applications. The design of data centers and
middleware layers then has to take into account all require-
ments for distributed coordination, including performance,
fault-tolerance, and consistency [16] — a hard task.

Interference in distributed systems. Most distributed
system designs treat the underlying infrastructure as a generic
communication system. One of the main issues with this
abstraction is the longstanding problem of interference of
concurrent interactions and thus unpredictable latency of com-
modity networks and hosts [19]. Many distributed systems
suffer from jitter induced by interference, manifesting through
packets that may be arbitrarily delayed in the network (as well
as reordered or dropped), and unbounded processing times.

Many applications and components have been designed to
cope with the unpredictability of the infrastructure by making
weak synchrony assumptions to guarantee a safe execution of
their protocol. Yet, they rely on upper bounds for the latency
of their interactions to ensure liveness, by way of timeouts,
and as thus benefit strongly from interactions with low latency
and bounded jitter. This is especially the case for coordination
tasks [52] whose use is widespread in practice. Types of
systems using the ZooKeeper [28] coordination service based
on the popular Paxos [37] protocol by default or as option
for coordination/fault tolerance include resource management
(e.g., Mesos [25], YARN [54]), key-value and wide-column
stores (e.g., Accumulo [20], HBase [1], etcd [4], TiKV [10]),
data analytics (e.g., Hadoop [12], Spark [58]), or distributed
filesystems (e.g., HDFS [13]) to only name few.

X-Lane. The research question underlying this work is
whether interference in data center commodity systems can
be mitigated to greatly accelerate coordination tasks lying at
the core of distributed systems.

Prior works on low latency communication (e.g., [14,24,41,
44, 48, 50]) focus on reducing 99th percentile latency where
packets may be sacrificed (dropped) to maintain a good per-
formance in most cases (e.g., fitting a given service-level
objective (SLO) for 99% of the packets). Our goal is to ad-
dress not only fast but also timely sensitive interactions for
tasks that exhibit severe performance degradation upon de-
layed message delivery (e.g., when timeouts trigger). To this
end, we aim at reducing maximum jitter to a point where it
becomes so small relative to an already very low latency, that,
in practice, it can be assumed to be bounded. Moreover, we
include endhost response times, and only provide bounded
jitter to applications that rely on it (e.g., for coordination).
Thus we introduce with Express-Lane — X-Lane for short —
an interference-free environment for select interactions with
ultra low latency in the single-digit microsecond range and
bounded jitter in nanosecond range. The remaining interac-
tions follow common design principles. While being more
generic in design compared to prior work on minimizing av-



erage latency, and also considering endhosts, X-Lane delivers
significantly tighter bounds for latency and jitter for commod-
ity hardware (HW) and software (SW).

In short, X-Lane isolates and prioritizes packets traversing
it by using traffic engineering techniques to provision and
monitor resources dedicated for X-Lane, and by neutralizing
sources of interference inherent to data center infrastructures,
i.e., interference present in endhosts/servers, switches, and
links. X-Lane strives first and foremost to minimize jitter, and
in the process also achieves unprecedented low latency.

Contributions and roadmap. This paper contributes:
§2 Design of X-Lane atop commodity HW and SW, and for

intelligent network devices (smartNICs) when available;
§3 Traffic engineering approach incorporating residual jitter

and queuing delay to perform packet-level latency analy-
sis in X-Lane;

§4 Implementation of X-Lane overcoming interference caus-
ing jitter on top of commodity HW and SW, as well as
improvements and simplifications taking advantage of
Netronome’s NFP-4000-based smartNICs [8];

§5 Definition and implementation of two example asyn-
chronous services using X-Lane: a failure detector dubbed
X-FD, and a state machine replication protocol dubbed
X-Raft adapted from Raft [45];

§6 Evaluation of X-Lane in a production data center of SAP
SE through the deployment of the two services. We mea-
sure median latency and maximum jitter of X-Lane on
commodity HW and SW (Linux) (5.130 µs latency and
655 ns jitter) and smartNICs (4.133 µs latency, 152 ns
jitter) with heavy concomitant traffic over the course of
21 days. Further comparisons display vast improvements
over DPDK [21] (1.735× lower latency, 81,816× lower
jitter), and QJump [24] (1.501× lower latency, 72,758×
lower jitter), which greatly affect the coordination of
distributed systems. We also show the applicability of
X-Lane by integrating X-Raft into the Redis key-value
store [9], making it strongly consistent while decreasing
latency 18× and increasing write throughput 1.5×.

We compare X-Lane to related work in §7 before we draw
the conclusions and discuss future work in § 8. Additional
material can be found on the project website [30].

2 X-Lane Design Overview

With X-Lane we propose an explicit express lane for timely
sensitive interactions, following our original design outlined
in Fig. 1. X-Lane is isolated from the “regular system” which
follows common design principles. This architecture is rem-
iniscent of earlier models of separate systems [55, 56], yet
realizes them concretely, in a single infrastructure, with com-
modity HW and SW.

2.1 Communication Model

X-Lane’s novelty is characterized by an explicit upper-bound
on the latency of all the messages sent by a given process p
to another process q, i.e., X-Lane keeps the latency of every
such message within [λ

p,q
min,λ

p,q
min + δ

p,q
max], where λ

p,q
min is the

best-case latency, and δ
p,q
max is its concomitant maximum jitter.

In the following, we denote jitter δ as a deviation from the
best-case latency λmin.

We achieve bounded communication latency in X-Lane by
implementing a periodic unicast protocol where a process p
can send a message to a given process q with latency upper
bound λ

p,q
min+δ

p,q
max, but under two constraints: p can send only

once during every period πp,q, and the packet size may not
exceed σp,q. In addition, we specifically address one-to-many
communication patterns by a periodic multicast protocol that
allows a process p to send a message to a set of processes Q
with a common latency range [λ

p,Q
min,λ

p,Q
min + δ

p,Q
max]. A crucial

requirement for both our protocols is that all their parameters
become known by the sending process at the protocol setup
time, i.e., before the first use, in order to allow services to ad-
just their internal timeouts for the best possible performance.

Note, purely bandwidth-oriented communication abstrac-
tions are not suitable for X-Lane, for they leave message
size unspecified, while, clearly, no latency bound would hold
uniformly for every message size, and queuing behind an
arbitrarily large message leads to unbounded maximum jitter.

X-Lane is able to provide timely sensitive interaction that
exhibits stable behavior as long as interconnecting devices
function properly. Hence X-Lane is best used to improve the
liveness of coordination tasks that assume an asynchronous
communication model to guarantee safety properties.

Timely unicast and multicast serve as backbone for all com-
munication between processes in X-Lane. In the following,
“periodic protocol” refers to “unicast protocol or multicast pro-
tocol”. Bounding latency in the sending process is addressed
in §2.4 and detailed in §4.

2.2 Components Overview

To achieve the properties provided by the two periodic proto-
cols, X-Lane introduces a software-defined networking (SDN)
controller that takes on two main orchestration responsibil-
ities: 1) resource allocation, i.e., answering requests from
services with the most suitable protocol parameters, subject
to network capacity constraints; and 2) resource tuning, i.e.,
keeping overall usage of X-Lane low. Traffic engineering (TE)
techniques that underpin this operation are presented in §3.

The X-Lane controller interacts with each endhost via a
client integrated in the X-Lane (Linux) kernel module (X-KM)
loaded on each endhost. The client exposes the controller API
(cf. List. 1) to services forwarding requests and responses in
both directions. It is important to note that only the bounded
communication over X-Lane is managed by the X-Lane con-



// Service request parameters for X-Lane resources
struct request {
int loadsize; // max packet size (B)
int period; // packet period (µs)
struct {
uint32_t ip; // MCast or UCast IPv4
uint16_t port; // service port

} receiver;
};
// Resources approved by the X-Lane controller
static const int UNBOUNDED = -1;
struct resources {
int loadsize; // max packet size (B)
int period; // approved period (µs)
int minLatency; // minimum latency (ns)
int maxJitter; // maximum jitter (ns)

};
// Reason for resource modification
enum Reason { TE, BW_EXCEEDED , BW_UNUSED };
// Downcalls from services to controller
↓ resources requestBandwidth(request req);
↓ void releaseBandwidth();
↓ void changeBandwidth(request req);
// Upcalls from controller to applications
↑ void bandwidthChanged(resources res,

Reason reason = TE);
↑ void bandwidthTerminated();

List. 1: Extract of the X-Lane controller C API used for re-
source allocation and tuning. Structure resources defines a
timely periodic protocol. The first three methods are called
by services the next two are upcalls/callbacks.

troller. The rest of the communication proceeds as usual and
uses the remaining resources in the usual best-effort manner.
If no requests are ever made to the X-Lane controller, no
network resources are spared or lost.

2.3 Overview of Jitter Sources
To implement an express lane usable in practice for time-
sensitive tasks, we need to mitigate the inherent interferences
in data center computing. We expose and address numerous
jitter sources in §4. In short, we identify the following causes:
• Packet loss: Packets can be lost, leading to retransmissions

and thus uncertain latency. Besides intentional drops (e.g.,
for security), packet loss has two well-known causes:
– Bit flip errors: Bits can get flipped in links, leading to

packets being marked as corrupted and discarded (§4.1);
– Buffer overflows: Packets are dropped when the finite

resources on processing units are overloaded (§4.2).
• Intrinsic jitter: While commodity switching devices for-

ward packets with little jitter (§ 4.2), endhosts and their
commodity components have been becoming more com-
plex, leading to many sources of jitter (§4.3) and motivating
the need for moving the intelligence closer to network de-
vices (§ 4.4). The lack of bounds on jitter further makes
packet delay hard to distinguish from packet loss.

X-Lane controller

X-Lane / regular system on endhosts

X-Lane bridges

SDN enabled switch Prioritized buffer

X-Lane processes / regular processes

Figure 1: Separating the traffic of Express-Lane (X-Lane) and
regular communication on switches to prioritize packets and
prevent losses in the former. An SDN controller sets switches’
rules to adapt buffer allocation and processing priority. X-
Lane is interfaced to the regular system via its bridges.

2.4 X-Lane (Based) Services
X-Lane enables processes executing on the regular system
to interact with the X-Lane services that may offer timely
responses thanks to the unique timing properties of commu-
nications of X-Lane. There are a few intricacies to X-Lane
that developers must take into account when interacting with
and/or developing these services. First, applications and ser-
vices, being in separate lanes, must use a specific interface
to exchange data with each other. Second, X-Lane handles
communications differently than in the regular system.

Building bridges between lanes. On endhosts, services
must communicate with applications which have to deal with
shared processor time. This resource sharing introduces un-
predictable jitter for those processes while critical interactions
need an upper bound for certain tasks. Hence X-Lane provides
two sets of queues, called bridges, to establish the interface
between processes in X-Lane and on the regular system.

Fig. 1 depicts the bridges. The express-to-regular (X-R)
bridge (green cuboid) grants write access to X-Lane (green
parallelogram) and read access to the regular system (blue
parallelogram); inversely for the R-X bridge (blue cuboid).

Bridges are addressable using direct memory access
(DMA) over PCIe (to minimize jitter, cf. §4.3) but are placed
at different locations depending on the endhost HW configu-
ration.

Using X-Lane services. Services are implemented as com-
ponents of the X-KM (cf. §5 for already available services),
and as thus have direct access to the client of the controller
and to the network interface card (NIC) bridge, another X-
KM component responsible for communication with the NIC.
Each service has a dedicated queue in the R-X bridge where it



can receive (1) queries from applications wishing to start/stop
using that service, and (2) queries and payloads specific to
that service API. When an application starts using a service,
the service requests network resources from the X-Lane con-
troller and spawns a new queue in the X-R bridge dedicated
to messages from this service to that application. The NIC
bridge bundles up all the payloads from a service into packets
and sends them over the wire at the allowed periodicity (cf.
period in List. 1), and unpacks payloads on the receiver side.
Like drivers, the bridge implementation varies between HWs.

Express communication on commodity HW. While
commodity NICs rapidly process and copy packets to the
main memory, they are not programmable. Procedures to
send and receive packets must thus be executed by the CPU.

When handling packets that belong to X-Lane, guaran-
teeing minimal response time and tight timing bounds for
these procedures is especially challenging on commodity HW.
There is an abundance of sources of jitter within the CPU it-
self and in the communication path between the CPU and
the NIC that prevents a jitter-free streamline flow of packets.
As a response, we implemented a series of countermeasures
to enable X-Lane on commodity HW, greatly improving the
time bounds over the regular system, as detailed in §4.3. On
commodity HW, all bridges are in the main memory.

Express communication on smartNICs. Unlike com-
modity NICs, new generation NICs — so-called smartNICs
— are highly programmable. Tasks can be offloaded from the
CPU to the processing engine of a smartNIC, ranging from
packet pre-processing to complex programs. The (relative)
simplicity of the HW and SW stacks of smartNICs, over those
of an endhost operated by a Linux kernel, and their proximity
to the physical interface enable for packets to be processed
on smartNICs with far lower latency and jitter (cf. §6.2). This
makes smartNICs ideal to handle X-Lane services.

Processing for sending and receiving packets over X-Lane
is confined within the smartNIC. This processing is mostly
as with commodity HW, but with direct access to the packet
processing pipeline and the ingress and egress buffers on the
NIC (cf. §4.4). The X-R bridge is stored in the smartNIC’s
memory while the R-X bridge is in the endhost main memory.

3 Traffic Engineering for Tunnel Trees

The key underlying mechanism of the controller are latency-
bounded fixed-bandwidth tunnels, more precisely — tunnel
trees (due to multicast), from sender to receiver processes.

3.1 Tunnel Allocation Model
The X-Lane controller relies on SDN for tunnel setup. In
particular, by acting as an SDN controller, it gets access to

network-wide view in a form of a network topology graph G
and the means to manage switches. For every link (u,v) ∈ G,
the following information is used: bandwidth bw(u,v), size
of an egress queue qlen(u,v), minimum delay λmin(u,v),
and maximum jitter δmax(u,v). Importantly, λmin(u,v) and
δmax(u,v) need only include processing and propagation de-
lays, which are stable for switches and are made stable at
endhosts by X-Lane’s endhost implementation (see §4).

A resource allocation is represented by a set T of tunnels,
where every T ∈ T is a directed subtree of the topology graph
G with a sender source snd(T ) and a set of receiver sinks
rcvs(T ). Tunnels are in one-to-one correspondence with allo-
cated resources shown in List. 1; hence, for every T ∈ T ,
we have packet size σ(T ), period π(T ), minimum latency
λmin(T ), and maximum jitter δmax(T ). X-Lane further em-
ploys TE techniques [26, 27, 31] to guarantee channel avail-
ability. The particular TE algorithm used for X-Lane is close
to B4’s state-of-the-art approach [27] (with worst-case estima-
tion of available throughput) but is built upon a finer-grained
network model to allow for packet-level latency bounds.

The X-Lane controller does not make any explicit resource
reservations in the network but instead relies on rate limiting
at the endhosts, forcing services to adhere to periodic protocol
parameters. Thus, the traffic for a given tunnel T consists of
packets of size σ(T ) entering node snd(T ) precisely every
π(T ) with starting time chosen arbitrarily for each T . Once a
packet p from T arrives at a node u, p is either delivered, if u∈
rcvs(T ), or p is placed into u’s egress queue(s) corresponding
to next hop(s) in T , provided there is sufficient buffer space,
if not — p is dropped. Switching and/or processing delays at
u are incorporated into latency and jitter of incoming links.
At the egress queue, p waits for its turn to be transmitted
according to FIFO order, and after size(p)/bw(u,v) seconds
more p leaves the queue. It takes anywhere between λmin(u,v)
and λmin(u,v) + δmax(u,v) before p enters the next hop v
accounting for the minimum residual jitter remaining after
applying techniques described in §4.

TE of X-Lane accounts for both the intrinsic uncertainties
of the system and uncertainties arising from multiple services
sharing network resources. Ultimately, TE ensures that allo-
cation T is valid w.r.t. topology G, meaning that no actual
system behavior violates λmin(T ) and δmax(T ) for T ∈ T .

3.2 Two-Phase Allocation Approach

Resources in X-Lane are allocated reactively, upon concrete
requests by services.

To bootstrap a periodic protocol, a service calls the
requestBandwidth method of the controller API passing the
desired packet size and periodicity in a request structure r.
The controller handles r as follows: 1) a new tunnel T is
allocated between the sender and receiver(s); 2) switches’ me-
ter tables are updated for resource monitoring; 3) parameter
adjustments for other affected tunnels in T are communi-



cated to corresponding services using the bandwidthChanged
callback; 4) the approved resources with periodicity adjusted
according to the allocation are returned to the service. Natu-
rally, the new tunnel T must match the request r, i.e., packet
size σ(T ) is equal to r.loadsize, snd(T ) is the process
that originated r, rcvs(T ) correspond to r.receiver.ip, and
π(T )≥ r.period mind the adjustment). The returned struc-
ture reflects all the T ’s parameters of a periodic protocol (cf.
§2.1): latency range [λmin(T ),λmin(T )+δmax(T )], periodic-
ity π(T ), and load size σ(T ). The service frees the resources
by using releaseBandwidth. For the X-Lane properties to
be reliable, every bandwidthChanged callback invoked by the
controller comes with a grace period, during which the service
can send messages under the old periodic protocol guarantees.

A distinguishing feature of our setting is the inevitable
interference between already established tunnels and the new
tunnel. Trying to minimize such interference, we arrive to an
optimization problem underlying steps 1) and 3) above.

Problem (X-TE). Given a network G, an allocation T , and
a sequence of service requests r1, . . . ,rk, find a sequence of
new tunnels T ′ = T ′1 , . . . ,T

′
k and adjust parameters of T , s.t.,

T ′i matches ri for 1 ≤ i ≤ k, T ∪ T ′ is valid w.r.t. G, and
∑T∈T ∪T ′(λmin(T )+δmax(T )) is minimized.

Solving X-TE directly is challenging as deriving param-
eters (or even checking validity) for a general T is highly
non-trivial due to interdependency between arrival times for
packets queuing behind each other. Hence to simplify the
problem, we split the allocation into two phases: optimiza-
tion and adjustment. The optimization phase takes as input
a request sequence and decides on the matching sequence
of tunnels. In the current implementation, we allocate trees
one-by-one; each tree is allocated incrementally by greedily
attaching receiver sinks while minimizing the current value of
the X-TE’s objective function. The adjustment phase alters the
parameters of all tunnels so they become valid w.r.t. the net-
work G. Each tree is adjusted independently using depth-first
search traversal calculating worst-case parameters.

3.3 Resource Monitoring and Tuning
In addition to its resource allocation task, the X-Lane con-
troller improves resource utilization by monitoring and refin-
ing the set of already allocated tunnels.

Controller oversight. For instance, if a service wants
to adjust its loadsize and/or period without disrupting
other services, the requestBandwidth and releaseBandwidth
methods force it to establish a new periodic protocol first, mi-
grate all clients there, and only then release the old resources.
This two-phase approach incurs artificial delay, adds complex-
ity, and wastes X-Lane’s resources. The changeBandwidth
method of the controller’s API shortcuts the process by lever-
aging the bandwidthChange mechanism discussed earlier.

When a service attempts to use more resources than as-
signed, some of its packets get dropped at a rate limiter. X-
Lane can do nothing to maintain timeliness for those packets,
and neither should it as the service has violated the proto-
col. To ensure an already broken interaction does not waste
resources, the controller decreases priority of that service’s
packets right after the drop, voiding their timing guarantees.
Then, the jitter reduction is communicated to services shar-
ing queues with the misbehaving one, and the latter is no-
tified by bandwidthChanged with resources.priority set
to UNBOUNDED and reason to BW_EXCEEDED. This service may
recover later with changeBandwidth. Further, switches’ me-
ter tables are used to identify services that behave well but
underutilize resources. The controller reclaims a portion of
their bandwidth through the bandwidthChanged callback with
higher period and reason set to BW_UNUSED.

In the extreme scenario when a service keeps violating
the protocol and/or drives its bandwidth allocation to zero by
not utilizing resources, the controller terminates the protocol
unilaterally with bandwidthTerminated.

Fine-grained jitter control with sub-lanes. Earlier, we
saw newly set up tunnels adding jitter to existing ones and
vice versa, whose effect we incorporated in periodic proto-
col parameters. Certain combinations of services require a
different approach. A low-traffic jitter-sensitive service (e.g.,
failure detection, cf. § 5.1) and a throughput-oriented one
needing a “small enough” latency bound (e.g., replication,
cf. §5.2), affect each other in very unequal ways leading to
suboptimal overall performance. The controller addresses this
issue through virtual sub-lanes — virtual controller instances
that use different priority levels for timely communication,
isolating services in a higher-priority sub-lane from lower-
priority sub-lanes. This separation needs only be reflected at
the tunnel setup, where lower-priority tunnels must include
jitter from higher-priority ones but not the other way around.

4 Overcoming Jitter in Data Centers

Comprehensive mitigation of jitter sources due to interfer-
ence with the rest of the data center (outlined in §2.3) is key
to achieving latency with tight bounds. In what follows we
describe our technique and discuss implementation details.

4.1 Bit Flips Errors in Links

Most of the messages transmitted via X-Lane are expected to
be much smaller than the MTU size. To reduce the data trans-
mission overhead, X-Lane tries to pack multiple data chunks
into a single physical packet. The increased chance of packet
loss due to bit flip errors is mitigated by using two custom
error correction schemata that provide the same mean time to
fault packet acceptance as layer 2 headers (i.e., 106 years with



...

NAPI, QJump, DPDK

X-Lane
3.a Inspect the packets

X-Lane 
queue

QueuePhysical port 1

Queue

Physical port n

3.b Interrupt / polling

PCIe

NIC

Device 
driver X-Lane 

queue

Endhost

2. Copying 
the packet(s)

1. New packet arrives

Figure 2: Overview of packet reception on commodity HW.

a bit error rate of 10−12), while supporting either up to 55
chunks of 26 bytes per MTU or up to 40 chunks of 36 bytes
(depending on the schema). Both schemata use a specific
choice of cyclic redundancy code (CRC) polynomials.

4.2 Buffer Overflows and Jitter in Switches

Endhost NICs have a large amount of buffer memory avail-
able, allowing them to enqueue large numbers of packets
before they are constrained to drop some. In contrast, com-
modity switching HW has a much smaller amount of (shared)
buffer memory, that is commonly exceeded in the case of con-
gestion, leading to packet losses ultimately hampering latency
and jitter bounded communication. Commodity switches us-
ing an ASIC as forwarding processor can have their shared
buffer split in multiple queues that are populated with packets
from incoming traffic and are processed following a given
scheduling strategy.

X-Lane uses a strict priority scheduler to realize the TE
approach introduced in §3, to serve queues in order of priority,
i.e., a non-empty queue is chosen over any other queue with
lower priority. For each switch handling X-Lane’s flows, the
X-Lane controller (cf. § 2.2) dedicates the switch’s highest
priority queues to X-Lane, and adapts the queues’ size to
the expected load. X-Lane packets are therefore processed
as fast as possible, reducing both jitter and the risk of packet
drops since packets are processed before the queue is full.
Furthermore, commodity switches are tailor-fitted to forward
packets, they thus do so deterministically in the ns range [2].

4.3 Jitter in Endhost Commodity Hardware

While the standard network stack built upon endhost commod-
ity HW can be used for throughput-oriented communication,
the many sources of jitter it contains preclude X-Lane from us-
ing it for communication with bounded latency. Fig. 2 depicts
how packets are handled when received on X-Lane (green)
compared to the regular system (blue); X-Lane focuses on
timestamping packets as early as possible to minimize stamp-
ing jitter, doing so even before their payload is inspected,

IR
Q

 
A

ff
in

it
y

IR
Q

 
A

ff
in

it
y

O
S 

Sc
h

ed
u

le
r

O
S 

Sc
h

ed
u

le
r

M
as

ka
b

le
 

IR
Q
‘s

M
as

ka
b

le
 

IR
Q
‘s

Ti
m

er
 

Ti
ck

s
Ti

m
er

 
Ti

ck
s

N
M

I
N

M
I

SM
I

SM
I

R
C

U
W

ar
n

in
gs

R
C

U
W

ar
n

in
gs

Figure 3: X-Lane is pinned to a dedicated core on which the
sources of preemption (cuboids) are entirely (gray) or partly
(green) disabled. The regular system is running on all other
cores with all the side effects.

therefore performing optimistic timestamping. In the follow-
ing, we give an overview of the measures implemented in
X-Lane to drastically reduce jitter and latency of transmitting
packets atop endhost commodity HW and SW.

First, at least a CPU core must remain available at all times
for X-Lane services to promptly send and receive packets
to/from other services running on other endhosts. To do so, X-
Lane runs on a dedicated core (§4.3.1) and shunts preemption
on it to minimize completion time of X-Lane services (§
4.3.2). Second, packets must be copied between the CPU, for
processing, and the NIC, for remote exchange, while avoiding
jitter-prone kernel memory management (§4.3.3). Fig. 3 gives
an overview of preemption sources X-Lane disables compared
to a regular system.

4.3.1 Highly Responsive X-Lane Dedicated CPU Core

Execution slots on CPU cores are managed by the OS ker-
nel scheduler which, typically, distributes these slots in a fair
manner across all applications to avoid resource starvation.
Timing-sensitive tasks are therefore regularly preempted to
leave room for other tasks, increasing both latency and jit-
ter for the former. Even earliest deadline first (EDF) sched-
ulers [43] are affected by their jitter-prone environments and
cannot guarantee the highest degree of responsiveness for
such tasks. Furthermore, CPUs can switch between power
consumption modes (i.e., C-states defined by the ACPI stan-
dard) to save energy when idle but need to wake up from an
idle mode to execute a task, hampering response time [18].

X-Lane thus is pinned to a core, and isolates it from the
scheduler to avoid task preemptions for a better response time.
We call this core X-Lane’s core as it is (almost) exclusively
managed by X-Lane. X-Lane’s core is isolated by including it
in the isolcpus kernel boot parameter. To avoid costly wake-
ups, X-Lane’s core remains in the highest active state by
setting the following kernel boot parameters: cpuidle.off=1,
powersave=off, processor.max_cstate=0.



4.3.2 X-Lane’s Uninterrupted Execution

Interrupt request (IRQ) signals are generated by HW devices,
e.g., I/O devices or CPU, to notify a core of an event to handle.
The CPU preempts the task it is running to treat the received
IRQ, which in effect increases the task’s completion time and
completion jitter due to the unpredictability of these IRQs.

We mitigate these delays by shielding X-Lane’s core from
as many IRQs as possible, as overviewed in Fig. 3. Those that
cannot be ignored see their impact reduced (e.g., timer ticks).

IRQ affinity. On multi-core systems, IRQs can be dis-
tributed among cores statically — IRQs are always routed to
the same core, or dynamically — IRQ affinity is set such that
IRQs are handled by the core running the lowest priority task.

Most IRQs are routed away from X-Lane’s core via a static
distribution while other cores use a dynamic distribution,
achieved by changing each IRQ’s smp_affinity file in /proc.

IRQ masking. Some IRQs cannot be re-routed by setting
their IRQ affinity, such as inter-processor interrupts (IPIs) that
target a specific core. These IRQs can however be masked to
prevent them from preempting the targeted core.

X-Lane uses the local_irq_save(int state) kernel
function to masks IRQs before it executes an X-Lane
service, and it restores the IRQ state afterwards using
local_irq_restore(int state) with the same parameter.
The masked IRQs are routed to other cores, by adapting their
affinity, to preserve the correct operation of the system.

NMI watchdog. The Linux kernel integrates a watchdog
timer that regularly sends non-maskable interrupts (NMIs) to
each core to test for HW failures; it halts the system if the
HW does not handle the NMI. There exists no standard kernel
mechanisms to ignore the watchdog’s NMIs.

X-Lane prevents these jitter-inducing NMIs by disabling
the watchdog using the nowatchdog kernel boot parameter.

Timer ticks. Timer ticks are a special type of IRQs orig-
inating from CPU-local timers or external timers. They are
used to run routines at a set frequency, typically between 100
and 1000 Hz, as configured in the kernel [46]. In our exper-
iments, we have observed a substantial processing time for
each of these interrupts, ranging from 1.5 µs to 50 µs.

X-Lane mitigates timer interrupts by configuring the kernel
with the CONFIG_NO_HZ_IDLE=y option and adding X-Lane’s
core to the nohz_full kernel boot parameter, which sets the
given core to adaptive-tick mode. While this mode does not
completely oust interrupts, it greatly reduces their frequency
to 1 Hz, offering significant timing improvements. For even
greater improvements, X-Lane masks timer interrupts during
the execution of its services. Masking these IRQs however
does trigger warnings from the read, copy, update (RCU) stall
detector that preempts the tasks on the masked cores.

RCU warnings. The RCU stall detector issues a warning
if a core is looping (1) in an RCU read-side critical section
or (2) with interrupts and preemptions disabled. The stall
detector triggers these warnings, i.e., time-wise unpredictable
offloadable callbacks, once its grace period is over.

The RCU stall detector issues warnings to X-Lane’s core
as a side-effect of masking timer (and other) interrupts on
them. X-Lane thus offloads RCU callbacks to other cores
by configuring the kernel with the CONFIG_RCU_NOCB_CPU=y
option and adding X-Lane’s core to the rcu_nocbs kernel boot
parameter. Further, less callbacks are triggered and offloaded
by increasing the grace period of the RCU stall detector set
in the rcu_cpu_stall_timeout kernel boot parameter.

Unmaskable SMIs. System management interrupts
(SMIs) are x86-specific unmaskable interrupts that force all
cores to switch to system management mode to run safety-
related tasks. These thus monopolize all cores for up to mil-
liseconds, creating jitter. Some SMIs are critical to the safety
of the system/HW such as the ones forcing cores throttling to
prevent overheating and HW damage. These SMIs however
are rare and typically do not happen in nominal scenarios.

To prevent SMIs and still protect system health, core throt-
tling is disabled in the BIOS and X-Lane manages fans itself.

4.3.3 Packet Transfer Between X-Lane’s Core and NIC

Sending and, in particular, receiving packets on an endhost is
not a task as straightforward as on a switch. The complexity
of this task lies within the memory management and device
management modules of the Linux kernel that contain design
decisions typically favoring fairness, i.e., reducing overall
latencies, over prioritizing accesses for select applications.

To reduce latency and jitter, X-Lane optimizes (1) how
packets are copied between X-Lane’s core, that packs out-
going and unpacks incoming packets, and a NIC, that en-
codes/decodes packets to/from the wire, and how (2) these
two devices notify one another that a packet is ready to be
handled by the other.

Packet copy. When booting, the NIC’s driver initializes a
queue on the NIC for outgoing packets waiting to be sent (i.e.,
TX ring buffer), and two queues for received packets waiting
to be processed by a CPU core (i.e., RX ring buffers): one
on the NIC and one in the main memory. Queues hosted on
the NIC are accessible by every CPU via DMA over PCIe.
However, different cores experience different access timings
since computer architectures nowadays have non-uniform
memory accesses (NUMA). As such, both CPU and the main
memory are split into several NUMA nodes; memory accesses
and device accesses via PCIe within the same NUMA node
are faster than across nodes as the latter are forced to use the
slower QuickPath interconnect (QPI) link.



X-Lane operates its dedicated RX ring buffers, one on the
NIC and one in the main memory (X-Lane queues in Fig. 2),
for packets received on the lane to prevent jitter from the
regular system packets’ head-of-line blocking. The TX ring
buffer remains unaffected as there is no risk of head-of-line
blocking when the NIC transmits packets. In addition, X-Lane
selects its dedicated core such that it runs on the NUMA node
that the NIC’s PCIe lanes are connected to, thus avoiding
the QPI link when performing a DMA to the NIC to send or
receive packets.

Packet notification. While the NIC constantly polls its
local TX ring buffer, populated by cores, and thus does not
need any extra step to send packets, the NIC driver running on
a core must be informed by the NIC that a packet is waiting to
be processed in an RX ring buffer. The driver can be notified
by: (1) receiving an IRQ sent by the NIC for each received
packet, which is fast but inefficient for bursty traffic that cre-
ates a lot of IRQ masks, or (2) regularly polling the NIC’s
RX ring buffer (as with DPDK [21]), that fetches packets in
batches but incurs a latency penalty for older packets (at the
front of the queue) and for low polling frequencies.

X-Lane uses the IRQ-based approach to optimize delivery
timing. X-Lane’s core is not subject to bursty IRQs as the
bandwidth is carefully managed and smoothened by the X-
Lane controller (cf. §2.2). As shown in Fig. 2, a NIC receiving
a packet sends an IRQ to X-Lane’s core, set with a fitting IRQ
mask, using receive flow steering [47] (step 1). In response,
X-Lane’s core timestamps the packet, doing it as early as
possible to minimize pre-stamping jitter, and copies the packet
via DMA from X-Lane’s queue in the NIC to X-Lane’s queue
in the main memory to prepare it for inspection (step 2). X-
Lane then shares the packet timestamp with the application
via the X-R bridge and only delivers the unpacked payload
once it has been inspected (step 3.a), also via the X-R bridge.
X-Lane does not change how packets are handled on the
regular system, e.g., with NAPI, DPDK (step 3.b).

4.3.4 Endhost Implementation Discussion

Additional work in the kernel would further improve the readi-
ness of the implementation. For instance, X-Lane is currently
limited by the granularity of some kernel boot parameters that
affect all cores (e.g., disabling the NMI watchdog) and would
benefit from per-core feature selection to better isolate its
core. Further, most of these features are statically set at boot
time, or even compile time. A dynamic configuration would
help X-Lane’s adaptation at runtime, reducing its endhost
footprint when X-Lane is unused. Ideally, we would be able
to fully isolate cores at runtime to greatly improving X-Lane’s
efficiency both in terms of endhost resource utilization and
implementation effort.

X-Lane currently uses one core but can scale to multiple
without introducing delays as long as they are in the same

NUMA node. The implementation currently focuses on Intel
Xeon architecture, but AMD’s EPYC has fewer NUMA nodes
yet more cores, different memory management, and PCIe 4
that could improve X-Lane’s performance.

4.4 Jitter in Endhost Specialized Hardware
As an alternative to endhost commodity HW, we propose
an implementation of X-Lane on recent intelligent network
devices (smartNICs) that completely avoid kernel-induced
jitter since they are not managed by it.

Our implementation supports Netronome’s smartNICs with
NFP-4000 network flow processors. The NFP-4000 natively
supports programs in microC, a dialect of C, and P4 [15] via
a P4-to-microC transpiler. We chose microC to implement
X-Lane’s services on the NFP-4000-powered smartNIC as it
is more expressive than P4 despite recent developments on
the latter, e.g., microC can directly access packet processing,
flow processing cores, internal and external memory units.

Following the NFP-4000’s architecture [8], X-Lane compo-
nents are running on a flow processing island that has 12 flow
processors and its own memory to buffer packets. The number
of flow processors used for X-Lane can be scaled on demand
to match the traffic. Unlike the commodity HW implementa-
tion, here X-Lane has direct access to the packet processing
pipeline and the ingress/egress buffers closest to the phys-
ical interface which greatly reduces the jitter associated to
sending/receiving packets on endhosts (cf. §4.3.3).

5 Example Services Exploiting X-Lane

We propose two services (cf. § 2.4), a failure detector (FD)
service and a state machine replication (SMR) service, that
exploit X-Lane to accelerate asynchronous protocols.These
services are available for applications as part of the X-KM.

5.1 Failure Detector X-FD
We leverage a periodic multicast protocol (cf. § 2.1) that
resides at the core of X-Lane to propose a heartbeat-based
FD, X-FD, with a heartbeat period T. Unlike H B [11] that
outputs a vector of message counters to the application, X-FD
tracks the state of remote processes in an alive table stored in
the X-R bridge that can be read by any application.

X-FD operates in three successive steps. First, a user space
application increments a timer value in the R-X bridge at
least once per period T. Due to the jitter-prone nature of the
application, the value update period must be much smaller
than T (e.g., T/3 in § 6.4). Second, X-FD reads the corre-
sponding value once per T from the R-X bridge and uses it
for the heartbeat message, which is sent through X-Lane ev-
ery period. Finally, when the destination endhost receives the
packet at the queue dedicated to X-Lane on the NIC, X-FD op-
timistically timestamps the packet (cf. §4.3.3) and, while the



packet’s payload is being analyzed, the alive table is updated
with sender IP, port and last alive message timestamp.

5.2 State Machine Replication X-Raft

We offer a second service by adapting Raft [45], a popular
SMR protocol [35, 36], to X-Lane in the form of the X-Raft
service — a faster version of Raft using the periodic multicast
protocol (and Raft’s acks).

We adapted the well known etcd Raft [4] without any struc-
tural modifications to the algorithm or to its different phases
(e.g., leader election, log replication/recovery, membership).

X-Raft uses the R-X bridge to enable an application to
interact with the SMR (e.g., to propose a value) and uses the
X-R bridge to notify the application. Leader election and con-
sensus rounds are performed in X-Lane without interacting
with the application.

X-Raft uses X-FD to detect process failure and initiate
leader reelection if needed. Throughput-oriented log repli-
cation packets are sent via a lower-priority sub-lane with a
very small period while commit statements are piggybacked
on X-FD’s low-jitter periodic messages. In addition, X-Raft
batches parallel consensus instances in one packet akin to
other consensus protocols [57]. Timeouts are greatly reduced
thanks to X-Lane’s low latency.

The log hosted by the leader is a buffer for uncommitted
inputs; an input i is removed from the log when all replicas
commit to a state that includes i. X-Raft uses a ring buffer for
the log that is big enough to store the logs long enough for all
replicas to commit a state or fail. The commit state pointer on
the ring buffer is updated when replicas commit a new state.

6 Evaluation

In this section we assess the performance of X-Lane by first
evaluating the latency and jitter of the underlying switching
HW (§ 6.1), followed by extensive evaluation of X-Lane’s
communication timings (§ 6.2) and their variability (§ 6.3).
We then evaluate the X-Lane-enabled services by measuring
latency and accuracy of the FD service (§ 6.4), and latency
and throughput of the SMR service both in isolation and once
integrated in the Redis key-value store (§6.5).

Tab. 1 presents an overview of the implementation efforts
behind each endhost component of X-Lane.

6.1 Hardware Setup

We ran our evaluation in a production data center of SAP SE
hosting Arista 7280CR-48 [3] switches and 17 servers with
Intel Xeon E5-2680 v4 at 2.40GHz (26 cores, 52 threads),
1 TB RAM, Mellanox ConnectX-4 4x10 GbE [7] and Intel
XL710 4x10 GbE [6] as commodity NICs, and Netronome
Agilio CX 2x10 GbE [8] smartNICs.

Table 1: Number of lines of code for each X-KM component.

Core component #LoC Service (cf. §5) #LoC

Controller client 476 X-FD 223
NIC bridge 515 X-Raft 843
SmartNIC bridge 163

Switches’ timing impact. We evaluated the impact of
switches on latency and jitter by running multiple bench-
marks with varying numbers of switches between endhosts.
We observed a stable latency overhead per switch of 3 µs
for unicast and 6 µs for multicast with no measurable jitter
beyond this difference, as expected [23]. We also evaluated
the accumulated impact of switches in common data center
topologies [5], by running benchmarks up to a 4-hop topol-
ogy; it only impacted latency, not on jitter. For this reason,
we evaluated X-Lane and its services on a 1-hop topology.
This topology simulates in-rack computing that represents the
majority of communication in optimized systems [5].

Note that the Arista 7280CR-48 switches we used are much
slower than, for instance, switches from the Arista 7150 se-
ries with processing times of 350 ns according to their data
sheet [2]. Theoretically, such switches could thus reduce the
latency of our setup by at least 2.6 µs, without affecting jitter.

6.2 Timing Observations
Most related works focus on reducing overall latency and
maximizing network utilization, this work emphasizes jitter
as another, crucial, dimension for many applications and in
particular coordination tasks. Hence, we compare latency
and jitter of three variants of X-Lane to each other, against
QJump [24], and DPDK [21]. DPDK was used at a lower level
by, and thus frames the performances of, many related works
on low latency (e.g., Homa [44], Fastpass [48]), high perfor-
mance OSs (e.g., IX [14], ZygOS [50]), and high performance
SMRs (e.g., HovercRaft [33]) (cf. §7).

Setup. We compare five configurations — DPDK, QJump,
and three variants of X-Lane. The two main variants are
specific to the used HW, and the third serves as a baseline:
X-LaneSNIC: X-Lane on intelligent network devices;
X-LaneCOM: X-Lane on commodity HW;
X-Lane0: X-LaneCOM with modifications made to CPU

scheduling (cf. §4.3.1) and interrupts (cf. §4.3.2) disabled.
We report DPDK’s values using default settings as its max-

imum jitter did not vary measurably when varying its settings,
only the number of packets with such high jitter.

We measured latency and jitter of the periodic unicast pro-
tocol on all configurations. We report latency as the time
between a process sending a packet and the receiving pro-
cess timestamping said packet. Sender and receiver processes



0 5000 10000
Packet number

4.075
4.125
4.175
4.225

La
te

nc
y 

(μ
s) X-LaneSNIC

0 5000 10000
Packet number

5.00
5.25
5.50
5.75 X-LaneCOM

0 5000 10000
Packet number

5
6
7
8

X-Lane0

0 5000 10000
Packet number

8

5.0E4 QJump

0 5000 10000
Packet number

8

5.5E4 DPDK

Figure 4: Overview of 10,000 packet latency (in µs) on the three X-Lane variants, QJump and DPDK. Note y-axes greatly vary.

Table 2: Summary of X-Lane’s timings showing 0th, 50th,
99th, 100th latency λ percentiles (in µs), maximum jitter δmax
(in ns) from λmin, and a metric based on probability bound
(i.i.d. assumption) for 10×λ99th violation over next 100,000
packets. Replacing our Arista 7280CR-48 by an Arista 7150
could in theory reduce all latencies by 2.6 µs (cf. §6.1).

Approach λmin λ50th λ99th λmax δmax P100,000

10·λ 99th

X-LaneSNIC 4.082 4.133 4.234 4.234 152 0.104
X-LaneCOM 4.938 5.130 5.446 5.649 655 0.301
X-Lane0 4.789 5.351 5.823 8.247 3.2E3 0.823
QJump 4.270 7.702 5.1E2 4.8E4 4.8E7 1.000
DPDK 4.103 8.904 4.0E2 5.4E4 5.4E7 1.000

are co-located on the same server to avoid cross-server clock
skew; packets are still sent though the network. Processes
sent packets with a 1 s period for QJump and DPDK due to
high jitter, and a 10 ms period for X-Lane.

Dataset. The runs resulted in 181,440,000 packets for each
approach, sampled over 21 days in a production data center of
SAP SE. X-Lane variants ran with substantial cross-traffic and
varying endhost utilization (up to an average CPU usage of
90%) while DPDK and QJump ran on an idle network of idle
endhosts, setting the bar much higher for X-Lane. All possible
point-to-point connections between servers were evaluated.

Latency and jitter results. Overall the results reveal: (1)
holistic approaches (X-LaneSNIC, X-LaneCOM) perform better
than network-focused ones (X-Lane0, QJump) and endhost-
focused ones (DPDK), (2) offloading X-Lane to smartNICs
(X-LaneSNIC) further improves timings compared to the al-
ready efficient commodity HW approach (X-LaneCOM).

Tab. 2 overviews the timing measurements while Fig. 5
complements the table by exhibiting the main percentiles of
the packet jitter distribution of each configuration. Even when
running on commodity HW, X-LaneCOM shows great perfor-
mance benefits compared to QJump and DPDK, e.g., 1.501×
and 1.735× lower median latency, and 72,758× and 81,816×
lower maximum jitter, respectively. Unsurprisingly, the results
indicate that offloading X-Lane to an intelligent network de-
vice achieves the best results across the board. Compared to
X-LaneCOM, X-LaneSNIC achieves 1.241× lower median la-
tency and 4.377× lower maximum jitter. As jitter is the most

0 100 101 102 103 104 105 106 107 108

Jitter (ns, log scale > 1)

X-LaneSNIC
X-LaneCOM

X-Lane0
QJump
DPDK

λmin

Figure 5: Distribution of X-Lane’s packet jitter δ (in ns,
log scale for data > 1). A jitter of 0 corresponds to the
packet(s) with minimum latency λmin within a dataset. Boxes
are 25th/75th percentiles, black bars are medians, whiskers are
1st/99th percentiles, further data points are grayed out.

important factor for coordination tasks in distributed systems,
X-Lane shows its drastic reduction of maximum jitter makes
it a prime candidate for such tasks (cf. §6.4, §6.5). The dif-
ference in timings between X-Lane0 and X-LaneCOM shows
the importance of tuning on endhost commodity HW (cf. §
4.3) to reduce maximum jitter, i.e., tail latencies.

Fig. 4 further shows the individual latency of 10,000 pack-
ets among the highest outliers. Some packets for QJump and
DPDK, i.e., the “outliers” in Fig. 5, dramatically increase the
jitter implying all the bad side-effects for coordination.

6.3 Latency Bound Tightness

We study the variability of the results obtained after 21 days
of sampling in §6.2 to determine the tightness of X-Lane’s
bounds. We first focus on packets whose latencies are beyond
the 99th percentile, then propose an extrapolation using a
simple probability-based metric.

Beyond the 99th percentile. Fig. 6 depicts percentiles
characteristic of tail latency based on the sampled dataset.
DPDK, which has the highest λavg, makes one jump at the
99.98th percentile. At the 99.997th percentile, we see once
again that as more of QJump’s “outliers” are taken into ac-
count, there is a sharp increase in tail latency. All X-Lane
variants exhibit a stable behavior with X-LaneSNIC being the
most stable followed by X-LaneCOM and X-Lane0. Another
indication that X-Lane fully bounds the latency is the relative
jitter defined as (λmax−λmin)/λavg. While the relative jitter is
≈ 0.02 for X-LaneSNIC, ≈ 0.13 for X-LaneCOM, and ≈ 0.36
for X-Lane0, the values for DPDK and QJump are orders of
magnitude higher: ≈ 1,807 and ≈ 1,113, respectively.



90th 99th 99.9th 99.99th 99.999th
100
101
102
103
104
105

100thLa
te

nc
y 

(μ
s, 

lo
g 

sc
al

e)

X-LaneSNIC
X-LaneCOM

X-Lane0
QJump

DPDK

Figure 6: Tail latencies at different percentiles (different num-
bers of “nines”) observed over 21 days.

100 101 102 103

Latency threshold Λ (μs, log scale)

0.0
0.2
0.4
0.6
0.8
1.0

FD
 a

cc
ur

ac
y

X-LaneSNIC
X-LaneCOM
X-Lane0

QJump
DPDK

Figure 7: Accuracy of X-FD achieved when varying the la-
tency threshold Λ. An alive process is incorrectly suspected
of having failed if its heartbeat latency is greater than Λ.

Probability-based metric. We consider as a metric the
probability of having among the next N packets at least one
with latency exceeding λ, λ > λavg. We cannot get that prob-
ability’s true value, so we use instead an upper bound PN

λ

under a simplifying assumption that the law of large numbers
applies; i.e., packet latencies are independent and identically
distributed, and we have performed enough experiments for
sample mean λavg and variance σ2 to be close to their true val-
ues. We derive the probability bound P1

λ
for a single violation

from the following tail-bound: P1
λ
≤ σ2/(λ−λavg)

2. By using
an independence assumption we further get Pn

λ
≤ 1−(1−P1

λ
)n.

Pn
λ

is a rough bound used only as a metric: the smaller its value
is for an approach, the less that approach is prone to outliers.

Tab. 2 shows the probability to violate an SLO of 10×λ99th

over 100,000 packets. The results support a greater reliability
of X-Lane’s measured latency over that of QJump and DPDK.

6.4 Failure Detector X-FD

We implemented the X-FD service (cf. § 5.1) atop all five
configurations described in § 6.2 to compare the accuracy
and completeness they provide in practice. We ran X-FD
with 17 servers and a heartbeat period T of 1 ms whose value
is incremented in an application every T/3. We varied the
latency threshold Λ after which a process p is suspected of
failure by others if no message was received from p in Λ.

Fig. 7 shows the rate of correct detection (i.e., accuracy) of
the FDs with various threshold Λ (i.e., timeliness of complete-
ness). We omitted T in the computation of the threshold. In
practice, X-FD implemented on X-Lane reached perfect accu-
racy with practical thresholds well below 8 µs, and even below
5 µs for X-LaneSNIC. QJump reaches ≈ 90% accuracy within

10 µs but struggles for a few milliseconds for the remaining
10% needed for perfect accuracy. DPDK takes longer.

These results mean for instance that X-Lane can de-
tect leader failures (e.g., in Raft [45]) orders of magnitude
faster than its “low-latency” counterparts. Re-elections can
promptly start hence greatly improving liveness.

6.5 State Machine Replication X-Raft

We implemented X-Raft (cf. § 5.2) using X-LaneCOM and
evaluated it against etcd Raft [4] by measuring the latency
and throughput of write requests (i.e., operations) in groups
of 3 to 9 processes, one per server. The configuration was
evaluated by having an application send write requests to the
group. Latencies were measured as the time between the user
space sender emits a request and the time it is available for
all user space applications in the group. Accesses to the log,
hosted in a RAM disk, were thus not included in the latencies.
The sender emits once 10 M write requests whose size follows
a truncated normal distribution: min = 1 B, max = 10 MB
and observed mean = 25.6 B, standard deviation = 10 B.

Fig. 8 shows X-Raft performs much better than etcd both
in terms of average latency, 15.7 µs for X-Raft, 26 ms for etcd,
and average throughput, 96 MB/s for X-Raft, 1.1 MB/s for
etcd. We note that, compared to a unicast protocol, X-Raft
experiences 3 µs of added delay due to the switch processing
multicast (cf. §6.1). Unlike etcd, X-Raft batches requests be-
fore sending them and relies on multicast that scales well with
regard to group size. etcd’s bandwidth requirement however
is linearly proportional to group size.

Treating write requests as operations, with 25.6 B mean re-
quest size, X-Raft achieves 3.7 M ops/s mean throughput. As
a comparison, HovercRaft [33] achieves 1 M ops/s with 24 B
requests but uses programmable switches, and NOPaxos [40]
achieves 250 k ops/s (unknown size) but centralizes traffic.

Redis integration. To evaluate the genericity of X-Lane,
we replaced the default inconsistent replication protocol of the
Redis key-value store [9] with X-Raft. The result, a strongly
consistent replicated key-value store, only took 26 lines of
code of integration. Fig. 8 shows latency and write throughput
for Redis and Redis+X-Raft with 3-9 servers. X-Raft reduces
latency 18× on average and increases throughput 1.5×.

7 Related Work

Distributed coordination and failure detection. Over
the years, several authors have explored improvements of
coordination for distributed systems but only considering in-
dividual components or specific problems. Seminal works
like mostly-ordered multicast [49] and unreliable ordered
multicast [40] are multicast approaches where the ordering
is done at the switches. Both approaches greatly improve the



12 ms25 ms
50 ms

Latency (μs or ms)

50
100

Throughput (MB/s)

0.5 ms
1 ms

1.7 ms

30
40

3 5 7 9
Number of processes

14 μs
16 μs

etcd Redis X-Raft Redis+X-Raft

3 5 7 9
Number of processes

1.00
1.25

Figure 8: Write latency and throughput of X-Raft, etcd Raft,
and Redis stand-alone vs with X-Raft. Mean values are plotted
with min-max vertical bars.

Paxos [37] consensus protocol thanks to in-network order-
ing. R2P2 [34]-based HovercRaft [33], NetPaxos [17], and
Consensus in a Box [29] similarly leverage switches for con-
sensus protocols; like the Albatross [38] membership service,
they do not give guarantees under an overloaded network.
Their main goal is to speed up resolution of individual ser-
vices via specific switch instrumentation, without considering
other instances of the same protocol, other such protocols, or
the network as a whole. Additionally, these approaches do
not include controlled interaction to the endhosts’ user space
required for many jitter-bounded applications (e.g., FDs).

Silo [32] shows feasibility of guarantees without constrain-
ing network elements; the guarantees provided are however
not strong enough for applications like FDs in terms of jitter
and packet loss. Falcon [39] focuses on what the network
needs to provide to implement a perfect (reliable) FD, rather
than how it can do so, and resorts to program-controlled
crashes when the FD falsely suspects processes of being
crashed due to missed timeouts, contradicting reliability.

Low latency. In recent years there were numerous propos-
als for achieving low latency network communication. The
introduced approaches typically bound latency at the 99th per-
centile. The reason for the 99th percentile is that it is hard to
deal with the sources of jitter in a complex system (cf. §4.3).
Tails of the tail [41], a seminal work in this area, identifies
major jitter sources on endhosts, but does not consider the
network, and focuses on 99th and 99.9th percentile latency,
not 100th. Another path leading work is QJump [24] which
proposes to achieve bounded latency on commodity hardware,
but focuses on queues’ priorities for low latency delivery and
does not consider sources of jitter on endhosts (cf. §4.3).

The DPDK framework is known for its fast and efficient
poll mode drivers and fast packet processing capabilities. It
has a wide range of driver implementations for various NICs.
The DPDK developers have restructured and implemented
a majority of the network device driver code and structure.

DPDK operates by polling the network device from the user
space application, which allows the programmer to harvest
network packets bypassing the kernel network stack com-
pletely. As mentioned in §6.2 many works build on DPDK,
e.g., Homa [44], Fastpass [48], IX [14], ZygOS [50]. These
approaches try to optimize utilization and 99th percentile la-
tency. Thus, they could be applied for the regular system but
as shown in §6.3 are insufficient for X-Lane.

Time synchronization. DTP [53], Huygens [22] and Sun-
dial [42] are time synchronization schemes for data centers
with precision below 100 ns. However, time synchronization
alone does not enable interactions with bounded latency.

Endhost synchrony. Efforts on achieving real-time (RT)
guarantees for commodity OSs like Linux are related to X-
Lane. RTLinux [51] is a real-time OS microkernel running the
entire Linux OS as a fully preemptive process. RTLinux treats
every process as having RT requirements, while X-Lane can
treat a process in fair scheduled manner, or with even stronger
RT guarantees; traditional RT schedulers, e.g. EDF [43], can
actually not guarantee that a specific task is performed by a
given deadline, as they can not predict the system environment
and are influenced by system service executions.

8 Conclusions

X-Lane implements unprecedented low latency and jitter for
coordination interaction crucial to the liveness of many ap-
plications in data centers. As this is not needed for all types
of distributed interaction, X-Lane confines these bounds to
an express lane, which is carefully isolated from the regular
existing environment for best-effort traffic both in the network
and at the endhosts. X-Lane’s original design uses commodity
SW and HW, and smartNICs when available.

X-Lane opens up many avenues for future research, e.g.,
which parts of an application best benefit from X-Lane, how
to design and optimize coordination protocols accordingly.
We are exploring extensions and refinements of our work
such as expanding the endhost implementation (cf. § 4.3),
adding services (e.g., clock synchronization), and enhancing
X-Lane’s safety towards practical synchronous services.

Acknowledgments

We thank the anonymous reviewers and our shepherd Dan
Ports for their valuable feedback. This work was partially
funded by ERC Consolidator grant #617805 (LiveSoft), DFG
Center #1053 (MAKI), SNSF grant #200021_192121 (FOR-
WARD), SNSF grant #200021_197353 (BASIS), NSF grant
#1618923, Hasler Foundation, and a Facebook Distributed
Systems Research Award.



References

[1] Apache HBase. http://hbase.apache.org/.

[2] Arista 7150 Series. https://www.arista.com/assets/

data/pdf/Datasheets/7150S_Datasheet.pdf.

[3] Arista 7280R Series. https://www.arista.com/assets/
data/pdf/Datasheets/7280R-DataSheet.pdf.

[4] etcd. https://github.com/etcd-io/etcd/.

[5] F16 - Facebook’s topology. https://engineering.fb.

com/data-center-engineering/f16-minipack/.

[6] Intel XL710. https://www.intel.com/content/

dam/www/public/us/en/documents/datasheets/

xl710-10-40-controller-datasheet.pdf.

[7] Mellanox ConnectX-4. http://www.mellanox.com/

related-docs/prod_adapter_cards/PB_ConnectX-4_VPI_

Card.pdf.

[8] Netronome NFP-4000 network processor.
https://www.netronome.com/static/app/img/products/

silicon-solutions/WP_NFP4000_TOO.pdf.

[9] Redis. https://redis.io/.

[10] TiKV. https://github.com/tikv/tikv/.

[11] Marcos K. Aguilera, Wei Chen, and Sam Toueg. Heart-
beat: A Timeout-Free Failure Detector for Quiescent
Reliable Communication. In Distributed Algorithms,
pages 126–140, 1997.

[12] Apache. Hadoop. https://hadoop.apache.org.

[13] Apache Software Foundation. Hadoop Distributed File
System. http://hadoop.apache.org/.

[14] Adam Belay, George Prekas, Ana Klimovic, Samuel
Grossman, Christos Kozyrakis, and Edouard Bugnion.
IX: A Protected Dataplane Operating System for High
Throughput and Low Latency. In 11th USENIX Sympo-
sium on Operating Systems Design and Implementation,
OSDI ’14, pages 49–65, 2014.

[15] Pat Bosshart, Dan Daly, Glen Gibb, Martin Izzard, Nick
McKeown, Jennifer Rexford, Cole Schlesinger, Dan
Talayco, Amin Vahdat, George Varghese, and David
Walker. P4: Programming Protocol-Independent Packet
Processors. In ACM SIGCOMM Computer Communica-
tion Review, volume 44, pages 87–95, July 2014.

[16] Manuel Bravo, Nuno Diegues, Jingna Zeng, Paolo Ro-
mano, and Luis ET Rodrigues. On the use of Clocks to
Enforce Consistency in the Cloud. In IEEE Data Eng.
Bull., volume 38, pages 18–31, 2015.

[17] Huynh Tu Dang, Daniele Sciascia, Marco Canini, Fer-
nando Pedone, and Robert Soulé. NetPaxos: Consensus
at Network Speed. In Proceedings of the 1st ACM SIG-
COMM Symposium on Software Defined Networking
Research, SOSR ’15, pages 5:1–5:7, 2015.

[18] Shuhaizar Daud, R Badlishah Ahmad, Ong Bi Lynn,
Zahereel Ishwar Abd Kareem, Latifah Munirah Ka-
maruddin, Phaklen Ehkan, Mohd Nazri Mohd Warip,
and Rozmie Razif Othman. The Effects of CPU Load &
Idle State on Embedded Processor Energy Usage. In 2nd
International Conference on Electronic Design, ICED
’14, pages 30–35, 2014.

[19] Jeffrey Dean and Luiz André Barroso. The Tail at Scale.
In Communications of the ACM, volume 56, pages 74–
80, 2013.

[20] Apache Foundation. Apache Accumulo. https://

accumulo.apache.org.

[21] Linux Foundation. DPDK: Data Plane Development
Kit. https://www.dpdk.org.

[22] Yilong Geng, Shiyu Liu, Zi Yin, Ashish Naik, Balaji
Prabhakar, Mendel Rosenblum, and Amin Vahdat. Ex-
ploiting a Natural Network Effect for Scalable, Fine-
grained Clock Synchronization. In 15th USENIX Sympo-
sium on Networked Systems Design and Implementation,
NSDI ’18, pages 81–94, 2018.

[23] Phillipa Gill, Navendu Jain, and Nachiappan Nagappan.
Understanding Network Failures in Data Centers: Mea-
surement, Analysis, and Implications. In Proceedings
of the 2011 Conference of the ACM Special Interest
Group on Data Communication, SIGCOMM ’11, pages
350–361, 2011.

[24] Matthew P. Grosvenor, Malte Schwarzkopf, Ionel Gog,
Robert N. M. Watson, Andrew W. Moore, Steven Hand,
and Jon Crowcroft. Queues don’t matter when you
can JUMP them! In Proceedings of the 12th USENIX
Conference on Networked Systems Design and Imple-
mentation, NSDI ’15, pages 1–14, 2015.

[25] Benjamin Hindman, Andy Konwinski, Matei Zaharia,
Ali Ghodsi, Anthony D. Joseph, Randy Katz, Scott
Shenker, and Ion Stoica. Mesos: A Platform for Fine-
Grained Resource Sharing in the Data Center. In Pro-
ceedings of the 8th USENIX Symposium on Networked
Systems Design and Implementation, NSDI ’11, pages
295–308, 2011.

[26] Chi-Yao Hong, Srikanth Kandula, Ratul Mahajan, Ming
Zhang, Vijay Gill, Mohan Nanduri, and Roger Watten-
hofer. Achieving High Utilization with Software-driven
WAN. In ACM SIGCOMM Computer Communication
Review, volume 43, pages 15–26, 2013.

http://hbase.apache.org/
https://www.arista.com/assets/data/pdf/Datasheets/7150S_Datasheet.pdf
https://www.arista.com/assets/data/pdf/Datasheets/7150S_Datasheet.pdf
https://www.arista.com/assets/data/pdf/Datasheets/7280R-DataSheet.pdf
https://www.arista.com/assets/data/pdf/Datasheets/7280R-DataSheet.pdf
https://github.com/etcd-io/etcd/
https://engineering.fb.com/data-center-engineering/f16-minipack/
https://engineering.fb.com/data-center-engineering/f16-minipack/
https://www.intel.com/content/dam/www/public/us/en/documents/datasheets/xl710-10-40-controller-datasheet.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/datasheets/xl710-10-40-controller-datasheet.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/datasheets/xl710-10-40-controller-datasheet.pdf
http://www.mellanox.com/related-docs/prod_adapter_cards/PB_ConnectX-4_VPI_Card.pdf
http://www.mellanox.com/related-docs/prod_adapter_cards/PB_ConnectX-4_VPI_Card.pdf
http://www.mellanox.com/related-docs/prod_adapter_cards/PB_ConnectX-4_VPI_Card.pdf
https://www.netronome.com/static/app/img/products/silicon-solutions/WP_NFP4000_TOO.pdf
https://www.netronome.com/static/app/img/products/silicon-solutions/WP_NFP4000_TOO.pdf
https://redis.io/
https://github.com/tikv/tikv/
https://hadoop.apache.org
http://hadoop.apache.org/
https://accumulo.apache.org
https://accumulo.apache.org
https://www.dpdk.org


[27] Chi-Yao Hong, Subhasree Mandal, Mohammad Al-
Fares, Min Zhu, Richard Alimi, Kondapa Naidu B.,
Chandan Bhagat, Sourabh Jain, Jay Kaimal, Shiyu
Liang, Kirill Mendelev, Steve Padgett, Faro Rabe, Saikat
Ray, Malveeka Tewari, Matt Tierney, Monika Zahn,
Jonathan Zolla, Joon Ong, and Amin Vahdat. B4 and Af-
ter: Managing Hierarchy, Partitioning, and Asymmetry
for Availability and Scale in Google’s Software-Defined
WAN. In Proceedings of the 2018 Conference of the
ACM Special Interest Group on Data Communication,
SIGCOMM ’18, pages 74–87, 2018.

[28] Patrick Hunt, Mahadev Konar, Flavio Paiva Junqueira,
and Benjamin Reed. ZooKeeper: Wait-free Coordina-
tion for Internet-scale Systems. In Proceedings of the
2010 USENIX Conference on USENIX Annual Techni-
cal Conference, volume 8 of USENIX ATC ’10, pages
145–158, 2010.

[29] Zsolt István, David Sidler, Gustavo Alonso, and Marko
Vukolic. Consensus in a Box: Inexpensive Coordination
in Hardware. In 13th USENIX Symposium on Networked
Systems Design and Implementation, NSDI ’16, pages
425–438, 2016.

[30] Patrick Jahnke, Vincent Riesop, Pierre-Louis Roman,
Pavel Chuprikov, and Patrick Eugster. Live in the
Express Lane (project website). https://github.com/
patrickjahnke/X-Lane.

[31] Sushant Jain, Alok Kumar, Subhasree Mandal, Joon
Ong, Leon Poutievski, Arjun Singh, Subbaiah Venkata,
Jim Wanderer, Junlan Zhou, Min Zhu, Jon Zolla, Urs
Hölzle, Stephen Stuart, and Amin Vahdat. B4: Experi-
ence with a Globally-deployed Software Defined WAN.
In Proceedings of the 2013 Conference of the ACM
Special Interest Group on Data Communication, SIG-
COMM ’13, pages 3–14, 2013.

[32] Keon Jang, Justine Sherry, Hitesh Ballani, and Toby
Moncaster. Silo: Predictable Message Latency in the
Cloud. In ACM SIGCOMM Computer Communication
Review, volume 45, pages 435–448, August 2015.

[33] Marios Kogias and Edouard Bugnion. Hover-
cRaft: Achieving Scalability and Fault-Tolerance for
Microsecond-Scale Datacenter Services. In Proceed-
ings of the Fifteenth European Conference on Computer
Systems, EuroSys ’20, pages 25:1–25:17, 2020.

[34] Marios Kogias, George Prekas, Adrien Ghosn, Jonas
Fietz, and Edouard Bugnion. R2P2: Making RPCs first-
class datacenter citizens. In 2019 USENIX Annual Tech-
nical Conference, USENIX ATC ’19, pages 863–880,
2019.

[35] Leslie Lamport. Time, Clocks, and the Ordering of
Events in a Distributed System. Communications of the
ACM, 21(7):558–565, July 1978.

[36] Leslie Lamport. Using Time Instead of Timeout for
Fault-Tolerant Distributed Systems. In ACM Transac-
tions on Programming Languages and Systems, pages
254–280, April 1984.

[37] Leslie Lamport. The Part-Time Parliament. In ACM
Transactions on Computer Systems, volume 16, pages
133–169, May 1998.

[38] Joshua B. Leners, Trinabh Gupta, Marcos K. Aguilera,
and Michael Walfish. Taming Uncertainty in Distributed
Systems with Help from the Network. In Proceedings of
the Tenth European Conference on Computer Systems,
EuroSys ’15, pages 9:1–9:16, 2015.

[39] Joshua B. Leners, Hao Wu, Wei-Lun Hung, Marcos K.
Aguilera, and Michael Walfish. Detecting Failures in
Distributed Systems with the Falcon Spy Network. In
Proceedings of the Twenty-Third ACM Symposium on
Operating Systems Principles, SOSP ’11, pages 279–
294, 2011.

[40] Jialin Li, Ellis Michael, Naveen Kr. Sharma, Adriana
Szekeres, and Dan R. K. Ports. Just Say NO to Paxos
Overhead: Replacing Consensus with Network Order-
ing. In 12th USENIX Symposium on Operating Systems
Design and Implementation, OSDI ’16, pages 467–483,
2016.

[41] Jialin Li, Naveen Kr. Sharma, Dan R. K. Ports, and
Steven D. Gribble. Tales of the Tail: Hardware, OS,
and Application-Level Sources of Tail Latency. In Pro-
ceedings of the ACM Symposium on Cloud Computing,
SoCC ’14, pages 1–14, 2014.

[42] Yuliang Li, Gautam Kumar, Hema Hariharan, Hassan
Wassel, Peter Hochschild, Dave Platt, Simon Sabato,
Minlan Yu, Nandita Dukkipati, Prashant Chandra, and
Amin Vahdat. Sundial: Fault-tolerant Clock Synchro-
nization for Datacenters. In 14th USENIX Symposium on
Operating Systems Design and Implementation, OSDI
’20, pages 1171–1186, 2020.

[43] Chang L. Liu and James W. Layland. Scheduling Al-
gorithms for Multiprogramming in a Hard-Real-Time
Environment. In Journal of the ACM, volume 20, pages
46–61, 1973.

[44] Behnam Montazeri, Yilong Li, Mohammad Alizadeh,
and John K. Ousterhout. Homa: A Receiver-Driven
Low-Latency Transport Protocol Using Network Pri-
orities. In Proceedings of the 2018 Conference of the
ACM Special Interest Group on Data Communication,
SIGCOMM ’18, pages 221–235, 2018.

https://github.com/patrickjahnke/X-Lane
https://github.com/patrickjahnke/X-Lane


[45] Diego Ongaro and John Ousterhout. In Search of an
Understandable Consensus Algorithm. In 2014 USENIX
Annual Technical Conference, USENIX ATC ’14, pages
305–319, 2014.

[46] Linux Kernel Organization. NO_HZ: Reducing
Scheduling-Clock Ticks. https://www.kernel.org/doc/
Documentation/timers/NO_HZ.txt.

[47] Linux Kernel Organization. Scaling in the Linux
Networking Stack. https://www.kernel.org/doc/

Documentation/networking/scaling.txt.

[48] Jonathan Perry, Amy Ousterhout, Hari Balakrishnan,
Devavrat Shah, and Hans Fugal. Fastpass: A Centralized
"Zero-queue" Datacenter Network. In Proceedings of
the 2014 Conference of the ACM Special Interest Group
on Data Communication, SIGCOMM ’14, pages 307–
318.

[49] Dan R. K. Ports, Jialin Li, Vincent Liu, Naveen Kr.
Sharma, and Arvind Krishnamurthy. Designing Dis-
tributed Systems Using Approximate Synchrony in Data
Center Networks. In 12th USENIX Symposium on Net-
worked Systems Design and Implementation, NSDI ’15,
pages 43–57, 2015.

[50] George Prekas, Marios Kogias, and Edouard Bugnion.
ZygOS: Achieving Low Tail Latency for Microsecond-
Scale Networked Tasks. In Proceedings of the 26th
Symposium on Operating Systems Principles, SOSP ’17,
pages 325–341, 2017.

[51] Federico Reghenzani, Giuseppe Massari, and William
Fornaciari. The Real-time Linux Kernel: A Survey On
Preempt_RT. In ACM Computing Surveys, volume 52,
pages 1–36, February 2019.

[52] Laura S. Sabel and Keith Marzullo. Election Vs. Con-
sensus in Asynchronous Systems. Technical report,
Cornell University, 1995.

[53] Vishal Shrivastav, Ki Suh Lee, Han Wang, and Hakim
Weatherspoon. Globally Synchronized Time via Data-
center Networks. In IEEE/ACM Transactions on Net-
working, volume 27, pages 1401–1416, 2019.

[54] Vinod Kumar Vavilapalli, Arun C. Murthy, Chris Dou-
glas, Sharad Agarwal, Mahadev Konar, Robert Evans,
Thomas Graves, Jason Lowe, Hitesh Shah, Siddharth
Seth, Bikas Saha, Carlo Curino, Owen O’Malley, San-
jay Radia, Benjamin Reed, and Eric Baldeschwieler.
Apache Hadoop YARN: Yet Another Resource Nego-
tiator. In Proceedings of the 4th Annual Symposium on
Cloud Computing, SoCC ’13, pages 5:1–5:16, 2013.

[55] Paulo Verissimo and António Casimiro. The Timely
Computing Base Model and Architecture. In IEEE
Transactions on Computers, pages 916–930, 2002.

[56] Paulo E. Veríssimo. Travelling Through Wormholes: A
New Look at Distributed Systems Models. In SIGACT
News, pages 66–81, 2006.

[57] Maofan Yin, Dahlia Malkhi, Michael K. Reiter,
Guy Golan Gueta, and Ittai Abraham. HotStuff: BFT
Consensus with Linearity and Responsiveness. In Pro-
ceedings of the 2019 ACM Symposium on Principles
of Distributed Computing, PODC ’19, pages 347–356,
2019.

[58] Matei Zaharia, Mosharaf Chowdhury, Tathagata Das,
Ankur Dave, Justin Ma, Murphy McCauley, Michael J.
Franklin, Scott Shenker, and Ion Stoica. Resilient Dis-
tributed Datasets: a Fault-Tolerant Abstraction for In-
memory Cluster Computing. In 9th USENIX Sympo-
sium on Networked Systems Design and Implementation,
NSDI ’12, pages 15–28, 2012.

https://www.kernel.org/doc/Documentation/timers/NO_HZ.txt
https://www.kernel.org/doc/Documentation/timers/NO_HZ.txt
https://www.kernel.org/doc/Documentation/networking/scaling.txt
https://www.kernel.org/doc/Documentation/networking/scaling.txt

	Introduction
	X-Lane Design Overview
	Communication Model
	Components Overview
	Overview of Jitter Sources
	X-Lane (Based) Services

	Traffic Engineering for Tunnel Trees
	Tunnel Allocation Model
	Two-Phase Allocation Approach
	Resource Monitoring and Tuning

	Overcoming Jitter in Data Centers
	Bit Flips Errors in Links
	Buffer Overflows and Jitter in Switches
	Jitter in Endhost Commodity HW
	Highly Responsive X-Lane Dedicated CPU Core
	X-Lane's Uninterrupted Execution
	Packet Transfer Between X-Lane's Core and NIC
	Endhost Implementation Discussion

	Jitter in Endhost Specialized HW

	Example Services Exploiting X-Lane
	Failure Detector X-FD
	State Machine Replication X-Raft

	Evaluation
	HW Setup
	Timing Observations
	Latency Bound Tightness
	Failure Detector X-FD
	State Machine Replication X-Raft

	Related Work
	Conclusions

